Классификация гидравлических машин кратко

Обновлено: 05.07.2024

Найди готовую курсовую работу выполненное домашнее задание решённую задачу готовую лабораторную работу написанный реферат подготовленный доклад готовую ВКР готовую диссертацию готовую НИР готовый отчёт по практике готовые ответы полные лекции полные семинары заполненную рабочую тетрадь подготовленную презентацию переведённый текст написанное изложение написанное сочинение готовую статью

Частица массой движется в потенциальном поле, в котором её потенциальная энергия равна (гармонический осциллятор). Оцените с помощью соотношения неопределённостей минимально возможную энергию частицы в этом поле

Используя соотношение неопределённостей энергии и времени, определите естественную ширину спектральной линии излучения атома при переходе его из возбуждённого состояния в основное. Среднее время жизни атома в возбуждённом состоянии , а длина волны

Свободно движущаяся нерелятивистская частица имеет относительную неопределённость кинетической энергии порядка . Оцените, во сколько раз неопределённость координаты такой частицы больше её дебройлевской длины волны.

Покажите, что соотношения неопределённостей позволяют сделать вывод об устойчивости атома, то есть о том, что электрон при движении по круговой орбите не может упасть на ядро.

Покажите, используя соотношение неопределённостей, что электроны не могут входить в состав атомного ядра. Линейные размеры ядра считать равными , а энергию связи нуклонов в ядре равной 10МэВ.

Кинетическая энергия электрона в атоме водорода составляет величину порядка 10эВ. Используя соотношение неопределённостей, оцените минимальные линейные размеры атома.

Считая, что минимальная энергия нуклона (протона или нейтрона) в ядре равна 10МэВ, оцените, исходя из соотношения неопределённостей, линейные размеры ядра.

Классификация гидравлических машин

Гидравлические машины служат либо для передачи энергии от перемещающегося потока жидкости вращающемуся валу машины, либо для передачи энергии вращения вала движущемуся потоку. В первом случае речь идёт о турбинах, во втором - о нагнетателях. В нашем курсе для случаев, когда перемещающейся средой является воздух, принят термин аэродинамические машины.



В системах ТГВ используются именно нагнетатели, поэтому рассмотрим классификацию этих машин (рис.1.1).

Рис.1.1 Классификация гидравлических машин

Лопастные (рис.1.2) и объёмные (рис.1.3) нагнетатели кардинально различаются по принципу действия. Принцип действия объёмных машин состоит в периодическом всасывании среды из одного пространства в некоторый постепенно увеличивающийся объём и затем в сокращении этого объёма, который сопровождается выбрасыванием среды в другое пространство.



Рис. 1.2 Лопастные нагнетатели

а) центробежные (радиальные); б) осевые; в) диаметральные.

В поршневых нагнетателях (рис.1.3а) периодическое изменение объёма происходит за счёт возвратно-поступательного движения поршня в цилиндре. В качестве примера ротационного нагнетателя на рис.1.3б показан пластинчатый нагнетатель. Здесь цилиндрический ротор эксцентрично расположен внутри цилиндрического статора. Ротор имеет цилиндрические пазы, в которых перемещаются пластины, разделяющие пространство между ротором и статором на ряд не сообщающихся камер, объём которых при каждом обороте сначала увеличивается (всасывание), а затем уменьшается (нагнетание).

Рекомендуемые материалы

Разработка проекта производства работ для строительства крупнопанельного 1-секционного 12-ти этажного жилого здания

Другая разновидность ротационных нагнетателей - шестерёнчатые - это пара шестерен, находящихся в зацеплении. В них "камеры", образованные между зубом одной шестерни и впадиной другой, перемещаясь по окружности, периодически сообщаются то с пространством всасывания, то нагнетания.

Все приведенные выше объёмные машины являются герметизирующими, т.е. разделяющими области всасывания и нагнетания, как во время движения рабочих органов, так и в состоянии их покоя.

На ином принципе основаны лопастные нагнетатели (рис.1.2). Воздействие их на поток является динамическим, оно возникает только в процессе движения лопаток относительно перемещаемой среды. При остановленном роторе это действие прекращается, области всасывания и нагнетания оказываются сообщающимися, и существование разности давлений между этими областями становится невозможным.



Лопастные машины различаются в зависимости от направления потока на входе и на выходе из рабочего колеса. У центробежных (радиальных, рис.1.2а) нагнетателей направление потока на входе - вдоль оси вращения, на выходе - радиальное. У осевых нагнетателей (рис.1.2б) - и на входе и на выходе - параллельно оси вращения. У диаметральных нагнетателей (рис.1.2в) направление потока на входе - по радиусу к центру, на выходе - по радиусу от центра к периферии.



Рис. 1.3 Объёмные нагнетатели Рис. 1.4 Струйные нагнетатели

а) поршневые; б) ротационные

В струйных нагнетателях (рис.1.4) рабочая среда перемещается за счёт энергии высокоскоростной струи активного (эжектирующего) потока. При этом происходит смешение рабочего и перемещаемого потоков.

Вместе с этой лекцией читают "Псороптоз кроликов".

Область применения нагнетателей в системах ТГВ

Большинство вентиляционных установок гражданских, общественных и промышленных зданий оборудовано центробежными (радиальными) вентиляторами. В системах общеобменной вентиляции широко используются осевые и крышные вентиляторы. Радиальные вентиляторы применяются в теплогенерирующих установках (ТГУ) в качестве дымососов и дутьевых вентиляторов. В установках ТГУ находят также широкое применение осевые и центробежные насосы (перемещение теплоносителей, подпитка котлов, подача воды в камеры орошения и др.).

Краткий исторический обзор

Устройства для перемещения воды и воздуха были известны ещё в глубокой древности. Для подачи воды в оросительные каналы использовались водоподъёмные колёса (колеса с черпаками на периферии), для привода которых использовалась энергия течения рек. Для подачи воздуха с целью поддержания огня или с целью проветривания подземных выработок было известно использование мехов, которые приводились мускульной силой. В древней Греции известен был поршневой насос Ктезебрия.

Развитие машинного способа производства стимулировало решение ряда задач в области гидравлических машин. Следует в особенности выделить работы Л.Эйлера, который заложил основы теории турбомашин. Классическая схема центробежного насоса появилась в начале ХIХ века в США. В России в 1832 г. А.А.Саблуков предложил конструкцию центробежных вентиляторов для проветривания шахты и заводских помещений. Широкое распространение центробежных нагнетателей стало возможным после появления электродвигателей в конце прошлого века. Современная теория лопастных нагнетателей основывается на работах Н.Е.Жуковского (Россия), Л.Прандтля (Германия), О.Рейнольдса (Англия). Большую роль сыграли работы учеников Н.Е.Жуковского и в первую очередь работы И.А.Ушакова в области вентиляторостроения. В области насосостроения могут быть названы И.И.Куколевский, Т.Ф.Проскура и А.А.Ломакин.

В настоящее время научные исследования в области вентиляторостроения ведутся в ЦАГИ им. Н.Е.Жуковского д.т.н. Брусиловским, д.т.н. Т.С.Соломаховой и др. В области насостроения также работы выполняются во ВНИИгидромашины, Харьковском и Донецком технических университетах и других организациях, разрабатывающих нагнетатели для конкретных отраслей (например, шахтной).

Гидравлическая машина – это специальное оборудование, в котором подаваемая из насоса жидкость передаёт свою механическую энергию турбинам (так называемые гидродвигатели). Есть другой вариант – это машина, которая придаёт протекающей через неё жидкости механическую энергию (проще говоря – насос).

Гидравлическая машина, берущая энергию из протекающей воды, состоит из:

  • электро-генератор;
  • турбина;
  • подающий аппарат или специальные каналы.

Насос является одним из самых распространённых агрегатов. Они применяются в сельском хозяйстве, строительстве, химической, металлообрабатывающей, текстильной и пищевой промышленностях.

Гидравлическими машинами называют агрегаты, которые могут перемещать различные виды жидкостей и газов, а также, вырабатывать энергию от текущей жидкости (гидродвигатели). Именно создание и перемещение потока жидкостей и есть главное назначение гидравлических машин.

Классификация гидравлических машин

Гидравлические машины классифицируют по принципу действия и внутреннему строению.

Главное разделение – насосы и гидравлические двигатели.

К насосам относятся такие группы:

  1. Объёмные – это агрегаты, рабочий процесс которых, происходит переменно. В рабочую ёмкость через входную трубу попадает жидкость. После заполнения камеры, входная труба перекрывается задвижкой и в камере нагнетается давление (поршень). Открывается выводящая труба и жидкость покидает ёмкость. Задвижка закрывается, а на входе наоборот открывается. Процесс повторяется
  2. Динамические – в этих агрегатах, рабочая часть насоса, взаимодействует с жидкостью в проточной части. Потоку придаётся дополнительная кинетическая энергия, за счёт лопастей, винтов или вихревого потока.

Гидравлические двигатели разделяются на:

  1. Активные – в этом случае, поток распределяется по нескольким каналам, через которые он с большой скоростью ударяет в определённые лопасти турбины.
  2. Реактивные – это агрегат, в котором колесо вырабатывающее энергию, находится в ёмкости с большим давление под водой.

Однако у гидравлических двигателей, большинство моделей можно использовать как насос. Следовательно, они могут разделяться на объёмные и динамические.

Принцип работы и устройство гидромашин

С развитием технологий, появляется все больше новых машин, используемых в различных отраслях промышленности.

Лопастные насосы

Этот тип гидромашин, получил огромное распространение в обеспечение населения водой. Эти насосы можно разделить на осевые и центробежные.

Если говорить о принципе действия центробежного насоса, то в этом случае жидкость будет двигаться от центра колеса к периферии под воздействием центробежных сил.

Из каких элементов состоит: основное колесо (рабочее) на котором располагаются лопасти, подвод воды и отвод, а также двигатель. Колесо состоит из двух круглых пластин, между которыми располагаются изогнутые лопасти и подвижная ось двигателя. Колесо вращается в противоположную сторону изгиба лопаток. Тем самым, двигатель с помощью него передаёт потоку механическую энергию.

Осевой насос подразумевает движение жидкости только вдоль подвижной оси, на которой могут располагаться несколько рабочих колёс с лопастями. Они расположены так, чтобы вода поднималась вокруг оси до нужно отметки. В некоторых моделях таких насосов, можно регулировать положение лопастей.

Поршневой насос

Принцип работы заключается в вытеснение жидкости находящийся в рабочей камере, с помощью подвижных элементов насоса. Рабочая камера представляет собой емкость, в которой есть вход и выход для жидкости. Подвижные элементы бывают трёх видов: диафрагма, плунжер и поршень.

Устройство поршневого насоса: шатун, кривошип, поршень, цилиндр (корпус в котором двигается вытесняющая поверхность), пружинные клапаны (впускной и выпускной), ёмкость для жидкости.

Именно поршневые модели являются самыми распространёнными из вытеснителей. В них может присутствовать один, два или несколько поршней.

Плунжерные варианты используются реже вследствие своей дороговизны (это связанно с высокой точностью изготовления движущихся элементов). Однако их преимуществом перед поршневыми, является возможность получения высокого давления.

Состоит плунжерный насос из: ведущий вал, кулачок, плунжер, корпус (цилиндр), пружина (плунжер двигается вперёд с помощью кулачка, а обратно под воздействием пружины).

Самый постой в изготовление, вследствие этого дешёвый вариант – Диафрагменный насос. Из-за простой конструкции, этот вариант не подходит для создания большого давления. Прочность диафрагмы не предназначена для высоких нагрузок. Он состоит из: шток, гибкая диафрагма, корпус, два клапана (впускной и выпускной).

Шестерные насосы

Это машины роторного типа. Они получили большую популярность среди нерегулируемых насосов. Такой агрегат состоит из: две одинаковые шестерни (зацепленные друг за друга), камера п-образной формы (в ней и находятся шестерни), разделитель.

Принцип работы: после запуска двигателя, из всасывающего отверстия, вода попадает в зону между зубьями. Дальнейшее вращение шестерней, приводит к передвижению жидкости в нагнетательную плоскость. В месте зацепления шестерен, жидкость вытесняется и под воздействием давления попадает к дальнейшим рабочим частям насоса.

Преимущества таких гидромашин:

  • простая конструкция;
  • низкая стоимость;
  • высокий показатель надёжности;
  • высокая частота вращения.
  • фиксированный рабочий объём, без возможности регулирования;
  • конструкция не предназначена для работы с высоким давлением;
  • неравномерная подача жидкости, если брать в пример пластинчатые гидромашины.

Пластинчатые гидромашины

Это не то же самое, что и лопастные машины (динамический вид). Рабочими поверхностями здесь являются шиберы (пластины). Они относятся к объёмному виду. Подвижным элементом является ротор. Он совершает вращательные движения. А шиберы двигаются по возвратно-поступательной траектории внутри ротора.

Пластинчатые гидромашины подразделяются на две группы: однократные и двукратные. Первый вариант может быть регулируемым, второй нерегулируемый.

Состоят такие агрегаты из: шиберы с пружинами (от двух и более), рабочие камеры (условно разделяются пластинами), ротор.

Рабочий процесс: после запуска двигателя, ротор начинает движение. Шиберы под воздействием пружин, плотно соприкасаются со стенками статора и разделяют общую рабочую емкость на две герметичные камеры (если пластине две). Под воздействием всасывания, емкости заполняются жидкостью и в ходе вращения, передают её в выходное отверстие.

Преимущества пластинчатых гидромашин:

  • тихий рабочей процесс;
  • возможность регулировки агрегатов однократного действия.
  • сложная конструкция;
  • создание низкого давления при работе;
  • нарушение качества работы при низких температурах.

Поворотный гидродвигатель

Особенностью таких агрегатов, является ограничение угла рабочего вала. Они широко применяются в создание рулевого управления сельскохозяйственных машин. Угол оборота, напрямую зависит от количества пластин. Если она одна, он будет составлять примерно 270 градусов, если две – 150, три – 70.

Чтобы регулировать работу вала, потребуется специальный гидрораспределитель. Этот вид агрегатов не подходит для работы с большим давлением жидкости.

Гидротурбины

В этих гидромашинах, механическая энергия протекающей жидкости, передаётся лопастям рабочего колеса. Самый масштабный и яркий пример использования гидротурбин, это гидроэлектростанции. Они разделяются на реактивные и активные.

Состоит такой агрегат из: рабочее колесо, подводящий аппарат или сопла (зависит от типа турбины).

По внутреннему строению их можно разделить на ковшовые, диагональные, осевые и радиально-осевые.

Предшественником гидротурбин, можно назвать водяное колесо, которое приводилось в движение с помощью мощного потока воды (их устанавливали на реках или больших ручьях).

Осевые турбины

Самые быстроходные из всех видов турбин. Рабочее колесо по форме напоминает вентилятор с большими лопастями, которые могут быть как фиксированными, так и подвижными. В таких турбинах обязательно устанавливается подающий аппарат. Он отвечает за КПД агрегата, а также в нужным момент полностью перекрывает подступ воды к лопастям. Также обязательным элементом, являются трубы для откачивания воды.

Поворотно-лопастные турбины

Осевой вид турбины, с изменяющими своё положение лопастями. Всего их в такой конструкции может быть 8 штук. Сама конструкция напоминает гребной винт. Изменение положения лопастей, даёт возможность сохранять высокий показатель КПД при уменьшении и незначительном увеличение силы напора. Если лопасти зафиксированы, этот вид будет называться пропеллерным. Он самый дешёвый и самый ограниченный в возможностях (может работать только в одной силе потока).

Самым редким вариантом поворотно-лопастных турбин, являются двухперовые. Их главное отличие от других видов, это разделение лопасти на два пера. Такие модели активно используют за границей.

Радиально-осевые турбины

Это самый старый и самый популярный вид. Его главной особенностью является простота конструкции и невысокая цена. На самых больших гидроэлектростанциях, установлены именно такие гидротурбины. Им принадлежит рекорд по выдаваемой мощности.

В этом виде турбин, жидкость поступает на рабочее колесо с наружной стороны. Проходя по радиусу, минуя множество каналов определённой формы, она достигает центра и заставляет ротор раскручиваться. Для того, чтобы жидкость поступала равномерно и правильно, колесо окружается спиральной камерой, за которой находится направляющий аппарат. Его лопасти располагаются под определёнными углами, для увеличения КПД турбины. Когда вода отдала свою механическую энергию рабочему колесу, она откачивается с помощью специальных труб.

Главным минусом этого вида турбин, являются фиксированные лопасти. Тем самым, радиально-осевая турбина может показать высокой значение КПД, только при определённых напорах. Если использовать Радиально-осевую турбину при напоре в 700 м, её размер должен быть огромен, вследствие чего, она сильно проигрывает ковшовым турбинам. Максимально допустимой силой напора, для достижения высокого показателя КПД, будет отметка в 300м.

Диагональные турбины

Этот вид вобрал в себя лучшие качества двух предыдущих. Диагональные турбины, являются новой разработкой, по сравнению с другими. Главной особенностью этого вида, является гол наклона лопастей (30-60 градусов). И в это же время, лопасти можно регулировать. Вследствие этого, диагональные турбины подходят для обширного диапазона мощностей потока, сохраняя высокий показатель КПД.

Однако такая универсальность и производительность дорого обходится. Это связанно со сложностью конструкции.

Есть диагональные турбины с фиксированными лопастями. Они распространены на небольших ГЭС.

Ковшовые гидротурбины

Этот вид предназначен для работы с большими напорами. Ковшовые турбины относятся к активному типу в отличие от остальных. Рабочее колесо приводится в действие отдельными струями воды, попадающими на ковши колеса. Сами струи формируются с помощью направленных отверстий или сопл. Их может быть до шести штук. Рабочее колесо состоит из диска, с закреплёнными на нём ковшами.

Ковшовые гидротурбины разделяются на вертикальные и горизонтальные. Второй вариант используется на средних гидроэлектростанциях.

Где используется

Если говорить про простые варианты гидромашин (в которых давление передаётся при помощи жидкости), они используются в таких приспособлениях как домкраты, прессы, подъёмники. Следовательно, гидромашины используются в строительстве и машиностроение. Это так называемые гидроприводы, которые используются в различных подвижных частях строительных машин (ковши, буры, манипуляторы).

Если сравнить гидропривод с его механическим аналогом, у первого можно выделить такие преимущества:

  1. Высокая мощность передаваемая на одну единицу веса элемента.
  2. Скорость работы. Запуск, реверс и полная остановка выигрывают в скорости выполнения у механических и электрических приводов.
  3. Надёжное предохранение от перегрузов всей системы.
  4. Возможность установить на гидропривод любое оборудование (ковш, дисковая пила, отбойный молоток и многое другое).

Однако когда речь идёт об использование гидропривода на больших расстояниях, он сильно уступает аналогам в КПД.

Насосы применяются в соответствие с их конструкциями. Центробежные насосы получили своё распространение в работе теплоэлектростанций, системах очистки сточных вод, химической и пищевой промышленности. Также они используются для перемещения сжиженных газов, реагентов и нефтепродуктов.

Возвратно-поступательные насосы, являются самым старейшим видом. Ещё в древности они получили своё распространение в водоснабжение. Сейчас они используются в тех же целях, плюс для перекачки взрывоопасных жидкостей, пищевой промышленности (перемещение молочной продукции внутри заводов), а также в системах подачи топлива для ДВС.

Шестерные насосы могут работать только с невысоким уровнем давления. Их используют в сельскохозяйственной промышленности, коммунальных отраслях, перекачке различных видов топлива (бензин, нефть, дизель, различные добавки и присадки, мазут). В химической промышленности их применяют для перемещения кислот, спиртов, растворителей и щелочей.

В последние годы, гидравлические машины получили широкое распространение в создание тренажёров для занятий спортом.

Гидротурбины используются на ГЭС. Однако только в соответствие с силой напора:

Насосы представляют собой гидравлические машины, предназначенные для перекачки жидкостей. Преобразуя механическую энергию приводного двигателя в механическую энергию движущейся жидкости, насосы поднимают жидкость на определенную высоту, перемещают ее на необходимое расстояние или заставляют циркулировать в какой-нибудь замкнутой системе. Для привода насоса используется электродвигатель, подключенный к электрической сети. Вода или другая рабочая жидкость всасывается насосом и перекачивается по напорному трубопроводу за счет преобразования энергии двигателя в энергию жидкости. Энергия жидкости после насоса всегда больше, чем перед насосом.

Насосы в основном устанавливаются в насосных станциях. В настоящее время область применения насосов очень широка и многообразна. Помимо водоснабжения водоотведения городов, промышленных предприятий и электростанций насосы применяются для орошения и осушения земли, гидроаккумулирования энергии, транспортирования материалов. Существуют питательные насосы котельных установок, тепловых электростанций, судовые насосы, специальные насосы для нефтяной, химической, бумажной, пищевой промышленности. Насосы используются при производстве строительных работ (намыв земляных сооружений, водопонижение, откачка воды из котлованов, подача бетона и строительных растворов к сооружениям и т.п.), при разработке месторождений и транспортирования полезных ископаемых гидравлическим способом, при гидроудалении отходов производственных предприятий.

Насосы являются одним из наиболее распространенных видов машин. В настоящее время насосы разделены на следующие группы: лопастные, объемные, струйные и эрлифты.

Лопастные насосы преобразуют энергию за счет динамического воздействия потока перекачиваемой жидкости и лопастей вращающегося колеса, которое и является основным рабочим органом насоса.

Объемные насосы работают по принципу вытеснения, который заключается в создании гидравлических систем, имеющих изменяющийся объем. Если объем заполнить перекачиваемой жидкостью, затем его уменьшить, то жидкость будет вытесняться в напорный трубопровод.

Струйные насосы работают по принципу смешения потока перекачиваемой жидкости, пара или газа, обладающей большим запасом кинетической энергии.

Насосы должны удовлетворять требованиям:

1) Надежность и долговечность работы;

2) Экономичность и удобство эксплуатации;

3) Изменение рабочих параметров в широких пределах при условии сохранения высокого КПД;

4) Минимальные габариты и вес;

5) Простота устройства;

6) Удобство монтажа и демонтажа.

Лопастные насосы разделяются на центробежные, осевые и вихревые.

Центробежные насосы разделяются:

1) По форме лопастей центробежных колес: с цилиндрическими лопастями (направленными по радиусу, загнутыми назад, вперед и S-образного профиля), с лопастями двойной кривизны (входная кромка выносится вперед).

2) По числу подводов жидкости: односторонние и двусторонние.

3) По числу ступеней: одноступенчатые и многоступенчатые.

Центробежным насосом называется гидравлическая машина, в которой механическая энергия вращательного движения преобразуется в энергию потока во вращающемся межлопастном канале.


Схема центробежного насоса:

1 – колесо, 2 – лопасти, 3 – вал, 4 – корпус, 5 – всасывающий патрубок, 6 – всасывающий трубопровод, 7 – напорный патрубок, 8 – напорный трубопровод.

Основным рабочим органом центробежного насоса является свободно вращающееся внутри корпуса колесо, посаженное на вал. Рабочее колесо состоит из двух дисков (переднего и заднего), отстающих на некотором расстоянии друг от друга. Между дисками находятся лопасти, плавно изогнутые в сторону, противоположную направлению вращения колеса. Внутренние поверхности дисков и боковые поверхности лопастей образуют межлопастные каналы колеса, которое заполнено перекачиваемой жидкостью.

При вращении колеса на каждый объем жидкости массой m, находящиеся в межлопастном канале на расстоянии от оси вала, будет действовать центробежная сила, определяемая выражением:




Где ώ – угловая скорость вращения вала. Под действием этой силы жидкость выбрасывается из рабочего колеса, в результате чего в центре колеса создается разрежение, а в периферийной его части – повышенное давление.

Жидкость подводится через отверстие в переднем диске рабочего колеса с помощью всасывающего патрубка и всасывающего трубопровода. Движение жидкости по всасывающему трубопроводу происходит вследствие разности давлений над свободной поверхностью жидкости в приемном бассейне (атмосферное) и в центральной области колеса (разряжение).

Для отвода жидкости корпус насоса имеет расширяющийся спиральный канал (в форме улитки), в который и поступает жидкость, выбрасываемая из рабочего колеса. Спиральный канал (отвод) переходит в короткий диффузор, образующий напорный патрубок, соединенный с напорным трубопроводом.

Анализ уравнения (1) показывает, что центробежная сила, а следовательно и напор, развиваемый насосом, тем больше, чем больше частота вращения и диаметр рабочего колеса. В качестве приводов центробежного насоса используются высокооборотные электродвигатели.

Основными параметрами насосов являются: напор, производительность, мощность, и коэффициент полезного действия.

Производительность – это количество жидкости, подаваемое насосом в единицу времени . Q = м 3 /ч, м 3 /с, л/с.

Напор – определяется как разность энергий жидкости на выходе из насоса и при входе в него. Напор, создаваемый насосом, измеряется в метрах. Напор можно рассматривать как высоту, на которую нужно поднять 1 кг (л) жидкости за счет энергии, сообщаемой ей насосом.

Мощность, затрачиваемая насосом, необходима для создания нужного напора и преодоления всех видов потерь, неизбежных при преобразовании подводимой к насосу механической энергии в энергию движения жидкости по всасывающему и напорному трубопроводу. Мощность измеряется в кВт. Различают мощность полезную (Nп) и мощность на валу электродвигателя (N).

Полезной мощностью насоса называется количество энергии, сообщаемой потоку жидкости, прошедшему через насос в течение 1 секунды. Мощность на валу электродвигателя всегда больше полезной мощности N> Nп

Это возникает вследствие потерь в процессе передачи энергии от насоса к жидкости (потери внутри насоса – гидравлические, объемные, механические).

Коэффициент полезного действия (КПД) учитывает все виды потерь, связанных с преобразованием механической энергии двигателя в энергию движущейся жидкости и выражается формулой:

КПД характеризует степень совершенства конструкции и экономичность работы насоса.

где ηг – гидравлический КПД,

ηм – механический КПД,

Гидравлический КПД представляет собой отношение действующего напора к теоретическому:

Механический КПД характеризует потери мощности на механическое трение в насосе, подшипниках, сальниках.

Объемный КПД – это потери производительности насоса при утечках жидкости на входе в насос или в атмосферу через зазоры в уплотнениях между рабочим колесом и корпусом, в сальниках насосов.

Представляет собой отношение действительной производительности насоса Q к теоретической Qт.

Величина КПД зависит от конструкции и степени износа насоса и в среднем для центробежных насосов составляет 0,6 – 0,7, для совершенных центробежных насосов с регулируемым электродвигателем – 0,93 – 0,96.

Тема 4

Тема 3

Тема 2

Тема 1

Лекция 1

Насосы представляют собой гидравлические машины, предназначенные для перекачки жидкостей. Преобразуя механическую энергию приводного двигателя в механическую энергию движущейся жидкости, насосы поднимают жидкость на определенную высоту, перемещают ее на необходимое расстояние или заставляют циркулировать в какой-нибудь замкнутой системе. Для привода насоса используется электродвигатель, подключенный к электрической сети. Вода или другая рабочая жидкость всасывается насосом и перекачивается по напорному трубопроводу за счет преобразования энергии двигателя в энергию жидкости. Энергия жидкости после насоса всегда больше, чем перед насосом.

Насосы в основном устанавливаются в насосных станциях. В настоящее время область применения насосов очень широка и многообразна. Помимо водоснабжения водоотведения городов, промышленных предприятий и электростанций насосы применяются для орошения и осушения земли, гидроаккумулирования энергии, транспортирования материалов. Существуют питательные насосы котельных установок, тепловых электростанций, судовые насосы, специальные насосы для нефтяной, химической, бумажной, пищевой промышленности. Насосы используются при производстве строительных работ (намыв земляных сооружений, водопонижение, откачка воды из котлованов, подача бетона и строительных растворов к сооружениям и т.п.), при разработке месторождений и транспортирования полезных ископаемых гидравлическим способом, при гидроудалении отходов производственных предприятий.

Насосы являются одним из наиболее распространенных видов машин. В настоящее время насосы разделены на следующие группы: лопастные, объемные, струйные и эрлифты.

Лопастные насосы преобразуют энергию за счет динамического воздействия потока перекачиваемой жидкости и лопастей вращающегося колеса, которое и является основным рабочим органом насоса.

Объемные насосы работают по принципу вытеснения, который заключается в создании гидравлических систем, имеющих изменяющийся объем. Если объем заполнить перекачиваемой жидкостью, затем его уменьшить, то жидкость будет вытесняться в напорный трубопровод.

Струйные насосы работают по принципу смешения потока перекачиваемой жидкости, пара или газа, обладающей большим запасом кинетической энергии.

Насосы должны удовлетворять требованиям:

1) Надежность и долговечность работы;

2) Экономичность и удобство эксплуатации;

3) Изменение рабочих параметров в широких пределах при условии сохранения высокого КПД;

4) Минимальные габариты и вес;

5) Простота устройства;

6) Удобство монтажа и демонтажа.

Лопастные насосы разделяются на центробежные, осевые и вихревые.

Центробежные насосы разделяются:

1) По форме лопастей центробежных колес: с цилиндрическими лопастями (направленными по радиусу, загнутыми назад, вперед и S-образного профиля), с лопастями двойной кривизны (входная кромка выносится вперед).

2) По числу подводов жидкости: односторонние и двусторонние.

3) По числу ступеней: одноступенчатые и многоступенчатые.

Центробежным насосом называется гидравлическая машина, в которой механическая энергия вращательного движения преобразуется в энергию потока во вращающемся межлопастном канале.


Схема центробежного насоса:

1 – колесо, 2 – лопасти, 3 – вал, 4 – корпус, 5 – всасывающий патрубок, 6 – всасывающий трубопровод, 7 – напорный патрубок, 8 – напорный трубопровод.

Основным рабочим органом центробежного насоса является свободно вращающееся внутри корпуса колесо, посаженное на вал. Рабочее колесо состоит из двух дисков (переднего и заднего), отстающих на некотором расстоянии друг от друга. Между дисками находятся лопасти, плавно изогнутые в сторону, противоположную направлению вращения колеса. Внутренние поверхности дисков и боковые поверхности лопастей образуют межлопастные каналы колеса, которое заполнено перекачиваемой жидкостью.

При вращении колеса на каждый объем жидкости массой m, находящиеся в межлопастном канале на расстоянии от оси вала, будет действовать центробежная сила, определяемая выражением:

Где ώ – угловая скорость вращения вала. Под действием этой силы жидкость выбрасывается из рабочего колеса, в результате чего в центре колеса создается разрежение, а в периферийной его части – повышенное давление.

Жидкость подводится через отверстие в переднем диске рабочего колеса с помощью всасывающего патрубка и всасывающего трубопровода. Движение жидкости по всасывающему трубопроводу происходит вследствие разности давлений над свободной поверхностью жидкости в приемном бассейне (атмосферное) и в центральной области колеса (разряжение).

Для отвода жидкости корпус насоса имеет расширяющийся спиральный канал (в форме улитки), в который и поступает жидкость, выбрасываемая из рабочего колеса. Спиральный канал (отвод) переходит в короткий диффузор, образующий напорный патрубок, соединенный с напорным трубопроводом.

Анализ уравнения (1) показывает, что центробежная сила, а следовательно и напор, развиваемый насосом, тем больше, чем больше частота вращения и диаметр рабочего колеса. В качестве приводов центробежного насоса используются высокооборотные электродвигатели.

Основными параметрами насосов являются: напор, производительность, мощность, и коэффициент полезного действия.

Производительность – это количество жидкости, подаваемое насосом в единицу времени . Q = м 3 /ч, м 3 /с, л/с.

Напор – определяется как разность энергий жидкости на выходе из насоса и при входе в него. Напор, создаваемый насосом, измеряется в метрах. Напор можно рассматривать как высоту, на которую нужно поднять 1 кг (л) жидкости за счет энергии, сообщаемой ей насосом.

Мощность, затрачиваемая насосом, необходима для создания нужного напора и преодоления всех видов потерь, неизбежных при преобразовании подводимой к насосу механической энергии в энергию движения жидкости по всасывающему и напорному трубопроводу. Мощность измеряется в кВт. Различают мощность полезную (Nп) и мощность на валу электродвигателя (N).

Полезной мощностью насоса называется количество энергии, сообщаемой потоку жидкости, прошедшему через насос в течение 1 секунды. Мощность на валу электродвигателя всегда больше полезной мощности N> Nп

Это возникает вследствие потерь в процессе передачи энергии от насоса к жидкости (потери внутри насоса – гидравлические, объемные, механические).

Коэффициент полезного действия (КПД) учитывает все виды потерь, связанных с преобразованием механической энергии двигателя в энергию движущейся жидкости и выражается формулой:

КПД характеризует степень совершенства конструкции и экономичность работы насоса.

где ηг – гидравлический КПД,

ηм – механический КПД,

Гидравлический КПД представляет собой отношение действующего напора к теоретическому:

Механический КПД характеризует потери мощности на механическое трение в насосе, подшипниках, сальниках.

Объемный КПД – это потери производительности насоса при утечках жидкости на входе в насос или в атмосферу через зазоры в уплотнениях между рабочим колесом и корпусом, в сальниках насосов.

Представляет собой отношение действительной производительности насоса Q к теоретической Qт.

Величина КПД зависит от конструкции и степени износа насоса и в среднем для центробежных насосов составляет 0,6 – 0,7, для совершенных центробежных насосов с регулируемым электродвигателем – 0,93 – 0,96.

Гидравлические машины - устройства для преобразования механической энергии в энергию потока и наоборот - для преобразования энергии движущейся жидкости в механическую энергию.
По функциональному назначению гидравлические машины подразделяют на две основные группы:

Насосы

гидравлические машины

Насосы являются одной из самых распространенных разновидностей машин, применяемых практически во всех отраслях машиностроения, строительства, промышленности и сельского хозяйства.
Их применяют в гидромеханических конструкциях многих механизмов и агрегатов, в трубопроводах разного назначения (нефтепроводы, газопроводы, транспортные трубопроводы и т. п.) , в системах водоснабжения, отопления, охлаждения, вентиляции, в котельных установках, бытовой технике и т. д.

Насос преобразует механическую энергию приводного двигателя (электрического, теплового двигателя, ручного привода и т. п.) в энергию потока рабочей жидкости, т. е. насос является источником питания гидравлического привода или гидросистемы.

  • насосы динамические;
  • насосы объемные.

К динамическим относятся лопастные насосы, электромагнитные (использующие магнитное поле для ускорения потока жидкости) , а также насосы, использующие силы трения и инерции (струйные, вихревые, лабиринтные, шнековые, червячные и т. п.) .

Особую группу широко распространенных динамических насосов составляют насосы лопастные, передающие энергию жидкости посредством вращающегося рабочего органа - лопастного колеса.
Передача энергии в таких насосах осуществляется при динамическом взаимодействии лопастей колеса с обтекающей их жидкостью.

К лопастным относятся насосы центробежные, осевые и диагональные.
Центробежными называют лопастные насосы с движением жидкости через рабочее колесо от центра к периферии, осевыми - лопастные насосы с движением жидкости через рабочее колесо вдоль его оси.
Примером осевого лопастного насоса может послужить водометный движитель судна, винт которого является рабочим колесом.

Объемные насосы предназначены для преобразования механической энергии приводного электродвигателя преимущественно в потенциальную энергию потока рабочей жидкости за счет увеличения ее давления.
К объемным относят насосы, принцип работы которых основан на увеличении внешнего давления на замкнутый объем жидкости со стороны ограничивающих замкнутый объем поверхностей, и периодическим вытеснением жидкости из замкнутого объема в выходной патрубок (напорную магистраль) .

Увеличение давления осуществляется за счет уменьшения замкнутого объема по пути переноса жидкости от входной (питающей) магистрали к напорной магистрали. При этом замкнутый объем попеременно сообщается то с входом (питающей магистралью) , то с выходом (напорной магистралью) насоса.

Примеры наиболее распространенных конструкций объемных насосов: поршневые, плунжерные, диафрагменные, роторные и шестеренные.
К объемным насосам также относятся некоторые специальные устройства, служащие для подъема и перемещения жидкостей:

  • гидравлические тараны, работа которых основана на принципе использования давления, получающегося при гидравлическом ударе;
  • эрлифты - устройства для подъема жидкостей в скважинах посредством нагнетания воздуха в скважины и создания разности объемных масс в столбе воздухонасыщенной поднимаемой жидкости и жидкости, окружающей этот воздухонасыщенный столб.

Применение насосов для хозяйственных нужд человека известно с древних времен. Первые конструкции этих машин использовали мускульный (ручной или с использованием животных) привод и предназначались для водозабора из скважин, водоемов и т. п. В настоящее время разработаны сотни разнообразных конструкций насосов, способных удовлетворить самые разнообразные потребности в машиностроении, медицине, технике, строительстве и других областях человеческой деятельности.

По создаваемому напору различают низконапорные (до 20 м) , средненапорные (20..60 м) и высоконапорные (свыше 60 м) насосы.
Кроме того, насосы классифицируют по мощности и подаче (микронасосы, мелкие, малые, средние, крупные) , по быстроходности (тихоходные, нормальные, быстроходные) , по конструктивным и некоторым другим параметрам.

Гидравлические двигатели

Гидравлический двигатель преобразует энергию потока рабочей жидкости, получаемой от насоса, в механическую энергию выходного звена (например, штока цилиндра или вала гидравлического мотора) , которые непосредственно или через механическую передачу приводят в действие рабочий орган машины.
Таким образом, двигатель является потребителем энергии жидкости в гидравлическом приводе.

Гидравлические двигатели, как правило, имеют "конструктивных близнецов" среди насосов, т. е. большая часть известных конструкций гидравлических насосов может быть использована в качестве гидродвигателя. Это означает, что практически любой насос может выполнять две функции - передавать энергию жидкости от механических устройств, или отбирать ее у движущейся жидкости, передавая механическим устройствам.
По этой причине гидродвигатели, как и гидронасосы, можно классифицировать на две основные группы - динамические (крыльчатки, турбины и т. п.) и объемные (по аналогу с объемными насосами) .
Несколько особняком стоят объемные гидравлические двигатели - гидроцилиндры , которые, впрочем, тоже можно использовать и в качестве насосов.

Основными рабочими параметрами, характеризующими гидравлические машины и режимы их работы, являются напор (или давление), подача (для насоса) или расход (для гидродвигателя), мощность (потребная и полезная), а также коэффициент полезного действия.

Читайте также: