Каково значение фотосинтеза в жизни живых организмов 6 класс по биологии ответы кратко

Обновлено: 02.07.2024

В процессе фотосинтеза главную роль играют: хромосомы; хлоропласты; хромопласты; лейкопласты.

Фотосинтез — это процесс синтеза органических веществ из неорганических за счет энергии света. В подавляющем большинстве случаев фотосинтез осуществляют растения с помощью таких клеточных органелл как хлоропласты, содержащих зеленый пигмент хлорофилл.

Если бы растения не были способны к синтезу органики, то почти всем остальным организмам на Земле нечем было бы питаться, так как животные, грибы и многие бактерии не могут синтезировать органические вещества из неорганических.

Они лишь поглощают готовые, расщепляют их на более простые, из которых снова собирают сложные, но уже характерные для своего тела.

Так обстоит дело, если говорить о фотосинтезе и его роли совсем кратко. Чтобы понять фотосинтез, нужно сказать больше: какие конкретно неорганические вещества используются, как происходит синтез?

Для фотосинтеза нужны два неорганических вещества — углекислый газ (CO2) и вода (H2O).

Первый поглощается из воздуха надземными частями растений в основном через устьица. Вода — из почвы, откуда доставляется в фотосинтезирующие клетки проводящей системой растений.

Также для фотосинтеза нужна энергия фотонов (hν), но их нельзя отнести к веществу.

В общей сложности в результате фотосинтеза образуется органическое вещество и кислород (O2). Обычно под органическим веществом чаще всего имеют в виду глюкозу (C6H12O6).

Органические соединения большей частью состоят из атомов углерода, водорода и кислорода. Именно они содержатся в углекислом газе и воде.

Однако при фотосинтезе происходит выделение кислорода. Его атомы берутся из воды.

Кратко и обобщенно уравнение реакции фотосинтеза принято записывать так:

6CO2 + 6H2O → C6H12O6 + 6O2

Но это уравнение не отражает сути фотосинтеза, не делает его понятным. Посмотрите, хотя уравнение сбалансированно, в нем общее количество атомов в свободном кислороде 12. Но мы сказали, что они берутся из воды, а там их только 6.

На самом деле фотосинтез протекает в две фазы. Первая называется световой, вторая — темновой. Такие названия обусловлены тем, что свет нужен только для световой фазы, темновая фаза независима от его наличия, но это не значит, что она идет в темноте.

Световая фаза протекает на мембранах тилакоидов хлоропласта, темновая — в строме хлоропласта.

В световую фазу связывания CO2 не происходит. Происходит лишь улавливание солнечной энергии хлорофилльными комплексами, запасание ее в АТФ, использование энергии на восстановление НАДФ до НАДФ*H2.

Поток энергии от возбужденного светом хлорофилла обеспечивается электронами, передающимися по электрон-транспортной цепи ферментов, встроенных в мембраны тилакоидов.

Водород для НАДФ берется из воды, которая под действием солнечного света разлагается на атомы кислорода, протоны водорода и электроны. Этот процесс называется фотолизом. Кислород из воды для фотосинтеза не нужен. Атомы кислорода из двух молекул воды соединяются с образованием молекулярного кислорода.

Уравнение реакции световой фазы фотосинтеза кратко выглядит так:

H2O + (АДФ+Ф) + НАДФ → АТФ + НАДФ*H2 + ½O2

Таким образом, выделение кислорода происходит в световую фазу фотосинтеза. Количество молекул АТФ, синтезированных из АДФ и фосфорной кислоты, приходящихся на фотолиз одной молекулы воды, может быть различным: одна или две.

Итак, из световой фазы в темновую поступают АТФ и НАДФ*H2.

Здесь энергия первого и восстановительная сила второго тратятся на связывание углекислого газа. Этот этап фотосинтеза невозможно объяснить просто и кратко, потому что он протекает не так, что шесть молекул CO2 объединяются с водородом, высвобождаемым из молекул НАДФ*H2, и образуется глюкоза:

6CO2 + 6НАДФ*H2 →С6H12O6 + 6НАДФ
(реакция идет с затратой энергии АТФ, которая распадается на АДФ и фосфорную кислоту).

Приведенная реакция – лишь упрощение для облегчения понимания.

На самом деле молекулы углекислого газа связываются по одной, присоединяются к уже готовому пятиуглеродному органическому веществу. Образуется неустойчивое шестиуглеродное органическое вещество, которое распадается на трехуглеродные молекулы углевода.

Часть этих молекул используется на ресинтез исходного пятиуглеродного вещества для связывания CO2. Такой ресинтез обеспечивается циклом Кальвина. Меньшая часть молекул углевода, включающего три атома углерода, выходит из цикла. Уже из них и других веществ синтезируются все остальные органические вещества (углеводы, жиры, белки).

То есть на самом деле из темновой фазы фотосинтеза выходят трехуглеродные сахара, а не глюкоза.

Фотосинтез и биосфера

Основным и практически неиссякаемым источ­ником энергии на поверхности Земли является энергия солнечного излучения, постоянным пото­ком поступающая из космоса благодаря протека­нию термоядерных реакций на ближайшем к нам светиле — Солнце.

Как показано на рис. 1, спектр поступающего на Землю солнечного излучения со­ответствует спектру излучения абсолютно черного тела, нагретого до 5900 К. Полный поток солнечно­го излучения (измеренный за пределами земной ат­мосферы), приходящийся на единицу поверхности, нормальной к направлению на Солнце, близок к 1400 Вт/м2. Значительная часть этой энергии прихо­дится на область видимого и ближнего инфракрас­ного излучения (0,3 — 1,0 мкм) — фотосинтетически активную радиацию, эффективно поглощаемую пигментами, участвующими в фотосинтезе расте­ний и фотосинтезирующих бактерий.

Какая бы часть спектра этого излучения ни по­глощалась на Земле, это в конечном счете приводит главным образом к нагреванию поверхности плане­ты и ее атмосферы, или же энергия вновь испуска­ется в космическое пространство. Какова же роль фотосинтеза, фотосинтезирующих организмов в улавливании этой энергии? Почему утверждают, что фотосинтез — это энергетическая основа биоло­гических процессов, энергетический движитель развития биосферы?

Почему говорят как о фотоавтотрофии (то есть о питании за счет света) биосфе­ры в целом, так и о фотоавтотрофии человечества, а жизнь на Земле называют космическим явлением прежде всего потому, что она существует и развивает­ся за счет энергии, поступающей к нам из космоса — от ближайшего космического светила?

Как известно, фотосинтез растений заключается в преобразовании и запасании солнечной энергии, в результате которого из простых веществ — угле­кислоты и воды — синтезируются углеводы и выде­ляется молекулярный кислород.

В общем виде этот процесс можно описать следующим уравнением (рис. 2).

Несмотря на кажущуюся простоту фотосинтеза, на Земле, пожалуй, нет более удивительного про­цесса, который смог бы в такой степени преобразо­вать нашу планету.

Биологическое значение фотосинтеза

Каждый зеленый листок – самая таинственная лаборатория из всех, какие существуют на Земле.

В нем ежесекундно осуществляется дерзновенная мечта биохимиков – создание живого из неживого. Только зеленые растения в процессе фотосинтеза способны образовывать органические вещества из неорганических. Начинается эта работа с пленения солнечного луча. Все другие организмы живут за счет вещества и энергии, приготовленной зелеными растениями. В органическом веществе аккумулируется химическая энергия, необходимая для осуществления всех процессов жизнедеятельности растений и животных, в том числе и человека.

Достоверно известно, что на Земле за год образуется до 450 млрд. т. органического вещества.

Современный газовый состав атмосферы – это результат длительного исторического развития земного шара.

Первичная атмосфера Земли состояла главным образом из водяных паров, азота и углекислого газа с небольшой примесью других газов (NH2, CH4, CO2, H2S) при почти полном отсутствии кислорода.

На определенном этапе развития живых систем появляются организмы способные улавливать солнечный свет и образовывать органические вещества из неорганических (появление фотосинтеза). В качестве побочного продукта фотосинтеза в земной атмосфере начал накапливаться кислород.

Это явилось предпосылкой для возникновения в ходе эволюции аэробного дыхания.

В процессе фотосинтеза поглощается СО2. Вовлечение СО2 в круговорот веществ приводит к снижению его содержания в атмосфере, и тем самым препятствует накоплению СО2 в различных средах.

Первоначально потребление кислорода организмами было невелико, поэтому он стал накапливаться в атмосфере. Кислород накапливался в атмосфере и в ее верхних слоях под действием ультрафиолетовых лучей превращается в озон.

По мере накопления озона происходило образование озонового слоя. Он как экран защищает поверхность земли от губительных ультрафиолетовых лучей.

В свою очередь образование озонового слоя предопределило выход организмов в наземно-воздушную среду, т.к. защитило их от жесткого космического излучения.

Поглощенные сотни миллионов лет назад земным растением солнечные лучи сохранились до наших дней в виде ископаемого энергетического топлива (каменный уголь, природный газ, торф).

Парниковые условия каменноугольного периода способствовали накоплению в ходе фотосинтеза большого количества органического вещества, а значит и энергии солнца в виде энергии химических связей.

Таким образом, фотосинтез предопределил образование биогенного вещества, которое человек использует как источник энергии.

Фотосинтез — это процесс преобразования углекислого газа в кислород под воздействием солнечной энергии. Хотя в более широком смысле этого слова подразумевается множество процессов, в результате которых происходит поглощение и преобразование квантов света.

И обладают этой способностью не только растения, но и многие микроорганизмы.

Так, большую часть кислорода вырабатывают фитопланктоны, обитающие в Мировом океане. Но и роль растений преуменьшать не стоит.

Этапы фотосинтеза

На самом деле, фотосинтез — очень сложный процесс. На первом его этапе идёт поглощение солнечной энергии и её передача другим молекулам, причастным к процессу. На втором этапе — разделение квантов света на заряды, в результате чего становится возможной передача электронов по фотосинтетической цепи.

Благодаря этому происходит создание АТФ и НАДФН. Оба этапа имеют общее название — светозависимая стадия фотосинтеза.

Энергия, что накапливается в результате поглощения квантов света, используется в дальнейшем для образования кислорода. Но наличие самого света для этого уже не требуется.

На третьем этапе происходят различные биохимические реакции, в результате которых из углекислого газа могут вырабатываться глюкоза, сахар, крахмал и т.д.

Значение фотосинтеза

Именно благодаря данному процессу Солнце является главным источником энергии на нашей планете. Многие организмы и вовсе живут лишь за счёт солнечной энергии. И они же, буквально, выдыхают её в окружающее пространство.

Это позволяет другим живым организмам пользоваться ей. К примеру, всем нам известно, что мощнейшими источниками энергии для человечества являются нефть, природный газ, торф и уголь. Но мало кто знает, что вся энергия, что выделяется при сжигании этих полезных ископаемых, была запасена в результате фотосинтеза.

Но важнейшим свойством фотосинтеза, разумеется, является поглощение углекислого газа и выработка кислорода.

Ведь именно благодаря этому и существует всё живое на нашей планете. Так что недооценивать важность этого процесса никак нельзя.

Самое главное значение фотосинтеза – это обеспечение энергией всех живых существ на планете, включая человека. В процессе фотосинтеза в зеленых частях растений под воздействием солнечных лучей начинает образовываться кислород и огромное количество энергии. Данная энергия используется растениями для собственных нужд только частично, а неизрасходованный потенциал накапливается. Потом растения идут на корм травоядным животным, получающим за счет этого необходимые питательные вещества, без которых их развитие будет невозможным. Затем травоядные животные становятся пищей для хищников, им также необходима энергия, без которой жизнь просто остановится.

Немного в стороне от этой пищевой цепочки находится человек, поэтому для него истинное значение фотосинтеза проявляется не сразу.

Значение фотосинтеза кроется не только в производстве энергии, но и в защите озонового слоя от разрушения.

о появления на нашей планете фотосинтезирующих клеток и организмов атмосфера Земли была лишена кислорода. С появлением фотосинтезирующих клеток она стала насыщаться кислородом. Постепенное наполнение атмосферы кислородом привело к появлению клеток с энергетическим аппаратом нового типа. Это были клетки, производящие энергию вследствие окисления органических соединений, главным образом углеводов и жиров, при участии атмосферного кислорода в качестве окислителя. В результате этого наступил следующий важный этап в развитии жизни на Земле - этап кислородной или аэробной, жизни. Первые клетки, способные использовать энергию солнечного света, возникли, очевидно, около 3 млрд. лет назад. Это были одноклеточные сине-зеленые водоросли. Окаменелые остатки таких клеток были найдены в слоях сланцев, относящихся к тому периоду в истории Земли, который называют архейской эрой. Потребовалось еще более 1 млрд. лет для насыщения атмосферы Земли кислородом и возникновения аэробных клеток. Очевидно, что планетарная роль растений и иных фотосинтезирующихорганизмов исключительно велика:

1) они трансформируют энергию солнечного света в энергию химических связей органических соединений, которая используется всеми остальными живыми существами нашей планеты;

2) они насыщают атмосферу Земли кислородом, который служит для окисления органических веществ и извлечения этим способом запасенной в них химической энергии аэробными клетками;

3) наконец, определенные виды растений в симбиозе с азотфиксирующими бактериями вводят газообразный азот атмосферы в состав молекул аммиака, его солей и органических азотсодержащих соединений. В почве есть и несимбиотические азотфиксирующие микроорганизмы. Из всего сказанного следует, что роль зеленых растений в планетарной жизни трудно переоценить. Сохранение и расширение зеленого покрова Земли имеет решающее значение для всех живых существ, населяющих нашу планету.

Естественно, что эта задача ложится на человека, на нас с вами, также несущих ответственность за сохранение жизни на Земле.

В результате фотосинтеза на Земле образуется 150 млрд. т. органического вещества и выделяется около 200 млрд. т свободного кислорода в год. Фотосинтез создал и поддерживает современный состав атмосферы, необходимый для жизни на Земле. Он препятствует увеличению концентрации CO2 в атмосфере, предотвращая перегрев Земли ( парниковый эффект ).

Созданная фотосинтезом атмосфера защищает живое от губительного коротковолнового УФ-излучения ( кислородно-озоновый экран атмосферы ). В урожай сельскохозяйственных растений переходит лишь 1-2% солнечной энергии, потери обусловлены неполным поглощением света. Поэтому имеется огромная перспектива повышения урожайности благодаря селекции сортов с высокой эффективностью фотосинтеза, созданию благоприятной для светопоглощения структуры посевов. В связи с этим особенно актуальными становятся разработка теоретических основ управления фотосинтезом, исследование фотосинтеза как целостного процесса.

1. Для растений - это источник глюкозы при помощи фотосинтеза.
2. Для экологии - это кислород в атмосфере и переработка CO2 (углекислого газа)

Фотосинтез обеспечивает энергией всех живых существ на планете, включая человека. В процессе фотосинтеза, в качестве побочного продукта, выделяется кислород, используемый живыми организмами для дыхания.

появления на нашей планете фотосинтезирующих клеток и организмов атмосфера Земли была лишена кислорода. С появлением фотосинтезирующих клеток она стала насыщаться кислородом. Постепенное наполнение атмосферы кислородом привело к появлению клеток с энергетическим аппаратом нового типа. Это были клетки, производящие энергию вследствие окисления органических соединений, главным образом углеводов и жиров, при участии атмосферного кислорода в качестве окислителя. В результате этого наступил следующий важный этап в развитии жизни на Земле - этап кислородной или аэробной, жизни. Первые клетки, способные использовать энергию солнечного света, возникли, очевидно, около 3 млрд. лет назад. Это были одноклеточные сине-зеленые водоросли. Окаменелые остатки таких клеток были найдены в слоях сланцев, относящихся к тому периоду в истории Земли, который называют архейской эрой. Потребовалось еще более 1 млрд. лет для насыщения атмосферы Земли кислородом и возникновения аэробных клеток. Очевидно, что планетарная роль растений и иных фотосинтезирующихорганизмов исключительно велика

1. Каково значение фотосинтеза в жизни живых организмов?

Самое главное значение фотосинтеза – это обеспечение энергией всех живых существ на планете, включая человека. В процессе фотосинтеза в зеленых частях растений под воздействием солнечных лучей начинает образовываться кислород и огромное количество энергии. Данная энергия используется растениями для собственных нужд только частично, а неизрасходованный потенциал накапливается. Потом растения идут на корм травоядным животным, получающим за счет этого необходимые питательные вещества, без которых их развитие будет невозможным. Затем травоядные животные становятся пищей для хищников, им также необходима энергия, без которой жизнь просто остановится.

Немного в стороне от этой пищевой цепочки находится человек, поэтому для него истинное значение фотосинтеза проявляется не сразу.

Значение фотосинтеза кроется не только в производстве энергии, но и в защите озонового слоя от разрушения.

Каково значение фотосинтеза в природе

Биология

Фотосинтез является уникальным процессом превращения неорганических веществ в органические с помощью энергии солнечного света. Это свойственно только растениям. Значение фотосинтеза в природе сложно переоценить, ведь именно он поддерживает жизнедеятельность всех организмов на планете. Чтобы понять суть процесса, стоит рассмотреть его подробнее.

Определение понятия

Фотосинтез представляет собой цепь уникальных сложных химико-физических реакций. Чтобы понять, каково значение фотосинтеза в природе, необходимо разобраться с его сутью. Все зеленые растения и некоторые виды бактерий обладают способностью поглощать лучи солнца и конвертировать их в электромагнитную энергию.

Значение фотосинтеза в природе

В тканях растения под воздействием солнечного света запускается ряд последовательных окислительно-восстановительных реакций. Водород и вода в них являются своеобразными восстановителями. Эти вещества отдают свои электроны окислителям — ацетату и двуокиси углерода. Конечными продуктами протекающих в листочках реакций являются восстановленные углеводные соединения и кислород, выделяемый в окружающую среду.

Кратко об истории открытия

В течение нескольких тысячелетий люди считали, что растение питается благодаря своей корневой системе. В XVI столетии натуралист из Нидерландов Ян ван Гельмонт решил провести интересный эксперимент с выращиванием саженца ивы в горшке. Взвесив почву до момента посадки деревца и после достижения им определенных размеров, он сделал вывод, что основным источником питательных веществ для растений является вода.

Эта гипотеза просуществовала практически 2 столетия. Ее несостоятельность была доказана в 1771 году английским химиком Джозефом Пристли. Поставленные им опыты наглядно доказали, что растения могут очистить воздух, который прежде был непригоден для дыхания. После дальнейших исследований ученые установили, что растительные организмы не только превращают двуокись углерода в кислород, но и используют углекислый газ вместе с водой и минеральными солями для питания.

Значение фотосинтеза

Роль кислорода

Благодаря работе Джозефа Пристли, люди поняли, почему воздух на планете можно использовать для дыхания. Миллиарды лет назад на Земле жизни не существовало, так как в те древнейшие времена в атмосфере не содержался свободный кислород. Однако ситуация изменилась после появления первых растений в ходе эволюции. Нет сомнений, что именно благодаря им на планете появился кислород.

Фотосинтез дал толчок для развития жизни и навсегда изменил облик Земли. Лишь в конце XVIII столетия человечество осознало, сколь велико значение фотосинтеза. По сути, жизнь людей зависит от состояния растительного мира. Зная это, необходимо сделать все возможное, чтобы растения продолжали процветать и обеспечивать все остальные живые существа кислородом.

Значение процесса в природе

Сегодня ученые хорошо знают, какие именно процессы протекают в зеленых листьях растений, и в чем состоит значение фотосинтеза. Именно благодаря этим реакциям регулируется соотношение кислорода и двуокиси углерода в атмосфере.

Растения как основа питания

Продукты фотосинтеза обеспечивают растения питанием. При этом они сами являются пищей для гетеротрофных живых существ. Однако важность фотосинтеза заключается не только в способности зеленых листьев поглощать двуокись углерода.

Значение фотосинтеза кратко

Растительные организмы способны конвертировать серные и азотистые соединения в другие вещества, которые входят в состав их тел.

В почве находятся ионы нитратов. Благодаря корневой системе они потребляются растениями. Затем их клеточные структуры конвертируют эти вещества в аминокислоты. Именно из этих элементов слагаются все протеины. Также растительные организмы в ходе реакций фотосинтеза способны создавать и компоненты жирных кислот. Они крайне важны для жизнедеятельности человека.

Получение урожая

Сельскохозяйственные предприятия сегодня активно используют знания о росте и развитии растительных организмов. Не секрет, что фотосинтез является основой процесса формирования хорошего урожая. При этом на его интенсивность влияет водный режим, а также качество минерального питания растительных организмов. Таким образом, для получения высокого урожая сельскохозяйственных культур, следует обеспечить выращиваемые растения всеми необходимыми для их жизни веществами.

Сбор урожая

Ученые доказали, что урожайность зависит от двух важных составляющих:

  • общей площади зеленых листочков растений;
  • длительности и интенсивности протекающих в них реакций.

Однако увеличение плотности посевов дает негативный результат. В такой ситуации большое количество листьев затеняются, ухудшается качество вентиляции растений. В результате урожайность падает.

Для биосферы планеты

Ученые приблизительно подсчитали, что обитающие в Мировом океане растения каждый год потребляют 20−140 миллиардов тонн двуокиси углерода, а затем превращают этот газ в органические вещества. Для выполнения этой работы они используют не более 0,2% энергии лучей солнца. Наземные растительные организмы также вносят вклад в поддержание соотношения углекислого газа и кислорода в атмосфере. В среднем ими ежегодно потребляется около 20 миллиардов тонн двуокиси углерода.

Фотосинтез для биосферы планеты

Эти цифры красноречиво говорят о биологическом смысле фотосинтеза. Благодаря зеленым растениям живые существа биосферы получают необходимый для их жизни кислород. Некоторые исследователи считают, что с увеличением концентрации двуокиси углерода в атмосфере, интенсивность фотосинтеза возрастает. Однако на сегодняшний день эта гипотеза не доказана. Кроме этого, человечество активно использует продукты фотосинтеза, которые были созданы миллионы лет назад. Речь идет о различных видах полезных ископаемых:

  • природном газе;
  • нефти;
  • торфе;
  • каменном угле и т. д.

Людям необходимо обратить самое пристальное внимание на экологическую обстановку на планете. Человечество все активнее вмешивается в жизнь планеты, и хрупкий баланс может быть нарушен в любой момент. Учащимся младших и старших классов стоит напоминать, какое важное значение имеет для жизни человечества природа.

Читайте также: