Каков механизм электропроводности металлов кратко

Обновлено: 04.07.2024

Классическая теория электропроводности металлов зародилась в начале ХХ века. ЕЕ основоположником стал немецкий физик Карл Рикке. Он опытным путем установил, что прохождение заряда через металл не сопряжено с переносом атомов проводника, в отличие от жидких электролитов. Однако это открытие не объяснило, что именно является носителем электрических импульсов в структуре металла.


Ответить на это вопрос позволили опыты ученых Стюарта и Толмена, проведенные в 1916 году. Им удалось установить, что за перенос электричества в металлах отвечают мельчайшие заряженные частицы - электроны. Это открытие легло в основу классической электронной теории электропроводности металлов. С этого момента началась новая эпоха исследований металлических проводников. Благодаря полученным результатам мы сегодня имеем возможность пользоваться бытовыми приборами, производственным оборудованием, станками и многими другими устройствами.

Как отличается электропроводность разных металлов?

Электронная теория электропроводности металлов получила развитие в исследованиях Паулю Друде. Он сумел открыть такое свойство как сопротивление, которое наблюдается при прохождении электрического тока через проводник. В дальнейшем это позволит классифицировать разные вещества по уровню проводимости. Из полученных результатов легко понять, какой металл подойдет для изготовления того или иного кабеля. Это очень важный момент, так как неправильно подобранный материал может стать причиной возгорания в результате перегрева от прохождения тока избыточного напряжения.


Наибольшей электропроводностью обладает металл серебро. При температуре +20 градусов по Цельсию она составляет 63,3*104 сантиметров-1. Но изготавливать проводку из серебра очень дорого, так как это довольно редкий металл, который используется в основном для производства ювелирных и декоративных украшений или инвестиционных монет.

Серебро

Металл, обладающий самой высокой электропроводностью среди всех элементов неблагородной группы - медь. Ее показатель составляет 57*104 сантиметров-1 при температуре +20 градусов по Цельсию. Медь является одним из наиболее распространенных проводников, которые используются в бытовых и производственных целях. Она хорошо выдерживает постоянные электрические нагрузки, отличается долговечностью и надежностью. Высокая температура плавления позволяет без проблем работать долгое время в нагретом состоянии.

Медь

По распространенности с медью может конкурировать только алюминий, который занимает четвертое место по электропроводности после золота. Он используется в сетях с невысоким напряжением, так как имеет почти вдвое меньшую температуру плавления, чем медь, и не способен выдерживать предельные нагрузки. С дальнейшим распределением мест можно ознакомиться, взглянув на таблицу электропроводности металлов.

Алюминий

Стоит отметить, что любой сплав обладает гораздо меньшей проводимостью, чем чистое вещество. Это связано со слиянием структурной сетки и как следствие нарушением нормального функционирования электронов. Например, при производстве медного провода используется материал с содержанием примесей не более 0,1%, а для некоторых видов кабеля этот показатель еще строже - не более 0,05%. Все приведенные показатели являются удельной электропроводностью металлов, которая рассчитывается как отношение между плотностью тока и величиной электрического поля в проводнике.

Классическая теория электропроводности металлов

Основные положения теории электропроводности металлов содержат шесть пунктов. Первый: высокий уровень электропроводности связан с наличием большого числа свободных электронов. Второй: электрический ток возникает путем внешнего воздействия на металл, при котором электроны из беспорядочного движения переходят в упорядоченное.


Третий: сила тока, проходящего через металлический проводник, рассчитывается по закону Ома. Четвертый: различное число элементарных частиц в кристаллической решетке приводит к неодинаковому сопротивлению металлов. Пятый: электрический ток в цепи возникает мгновенно после начала воздействия на электроны. Шестой: с увеличением внутренней температуры металла растет и уровень его сопротивления.


Природа электропроводности металлов объясняется вторым пунктом положений. В спокойном состоянии все свободные электроны хаотическим образом вращаются вокруг ядра. В этот момент металл не способен самостоятельно воспроизводить электрические заряды. Но стоит лишь подключить внешний источник воздействия, как электроны мгновенно выстраиваются в структурированной последовательности и становятся носителями электрического тока. С повышением температуры электропроводность металлов снижается.

Это связано с тем, что слабеют молекулярные связи в кристаллической решетке, элементарные частицы начинают вращаться в еще более хаотичном порядке, поэтому построение электронов в цепь усложняется. Поэтому необходимо принимать меры по недопущению перегрева проводников, так как это негативно сказывается на их эксплуатационных свойствах. Механизм электропроводности металлов невозможно изменить ввиду действующих законов физики. Но можно нивелировать негативные внешние и внутренние воздействия, которые мешают нормальному протеканию процесса.

Металлы с высокой электопроводностью

Электропроводность щелочных металлов находится на высоком уровне, так как их электроны слабо привязаны к ядру и легко выстраиваются в нужной последовательности. Но эта группа отличается невысокими температурами плавления и огромной химической активностью, что в большинстве случаев не позволяет использовать их для изготовления проводов.


Металлы с высокой электропроводностью в открытом виде очень опасны для человека. Прикосновение к оголенному проводу приведет к получению электрического ожога и воздействию мощного разряда на все внутренние органы. Зачастую это влечет мгновенную смерть. Поэтому для безопасности людей используются специальные изоляционные материалы.


В зависимости от сферы применения они могут быть твердыми, жидкими и газообразными. Но все типы предназначены для одной функции - изоляции электрического тока внутри цепи, чтобы он не мог оказывать воздействие на внешний мир. Электропроводность металлов используется практически во всех сферах современной жизни человека, поэтому обеспечение безопасности является первоочередной задачей.

В кристаллической решетке металлов имеются так называемые "свободные" электроны. Это те электроны, которые находятся на высоких орбитах (высоких энергетических уровнях) и слабо связаны кулоновскими силами с ядром. Атомы металла в решетке обмениваются этими электронами, они свободно покидают один и примыкают к другому, тем не менее они не могут покинуть весь кристалл, т. к. это приведет к увеличению кулоновского притяжения во много раз. таким образом электроны образуют так называемый "электронный газ" совокупность элементарных частиц, равномерно распределенных по всему кристаллу металла. Если к этому газу приложить даже очень слабую разность потенциалов, она повлечет за собой движение всех свободных электронов от отрицательного заряда к положительному. Это и есть электрический ток.


В 10 классе известно, что вещество, являющееся проводником, должно содержать много высокоподвижных носителей электрического заряда. Наилучшими проводниками в нормальных условиях являются металлы. Кратко рассмотрим механизм электронной проводимости металлов.

Структура кристаллической решетки металла

Вещества, обладающие металлической проводимостью, как правило, имеют во внешней электронной оболочке малое количество электронов, которые относительно слабо связаны ядром и внутренними электронными оболочками. Это и определяет особенности металлической кристаллической решетки.

В кристалле металла ионы с внутренними электронными оболочками образуют узлы решетки, как и в любом другом кристалле. А электронные облака внешних валентных электронов перекрывают друг друга так, что они оказываются общими не только для двух ионов (как это бывает в ковалентной связи), а сразу для нескольких ионов. В результате электроны могут свободно перемещаться между всеми этими ионами, попадая в поле действия более далеких ионов, и перемещаясь уже между ними.

строение металлической кристаллической решетки

Рис. 1. строение металлической кристаллической решетки.

Проводимость металлов

Такое строение кристаллической решетки приводит к тому, что электроны очень легко способны перемещаться под действием внешнего электрического поля. То есть, металлы, имеют много свободных легких электронов и обладают большой проводимостью.

Доказательством существования свободных электронов явились опыты, проведенные в 1916г Т. Стюартом и Р.Толменом (позже выяснилось, что такие же опыты ставились и ранее Л. Мандельштамом и Н.Папалекси, но результат их не был опубликован).

Опыт Мандельштама и Папалекси

Рис. 2. Опыт Мандельштама и Папалекси.

Теории проводимости

В 1900г П.Друде, основываясь на положениях молекулярно-кинетической теории, и рассматривая электроны в металле, как идеальный газ, создал классическую электронную теорию проводимости металлов. Первоначально эта теория не учитывала распределение скоростей электронов, учет этого распределения был выполнен в 1904г Х.Лоренцем.

Теория Друде-Лоренца смогла объяснить законы Ома, Джоуля-Ленца, механизм проводимости и зависимости сопротивления от температуры. Однако, со временем стало появляться все больше данных, необъяснимых в рамках классичепской теории. В частности, имелись расхождения по температурному коэффициенту сопротивления, по значениям теплоемкости. И уж совсем необъяснимым было явление сверхпродоимости, открытое в 1911г.

Все эти расхождения имеют квантовый характер, и поэтому объясняются в рамках более совершенной квантовой теории проводимости твердых тел (зонной теории проводимости).

Зонная теория проводимости

Рис. 3. Зонная теория проводимости.

Что мы узнали?

Высокая проводимость металлов обуславливается особенностями кристаллической решетки, в которой электронные облака соседних атомов сильно перекрываются друг с другом, поэтому электроны могут легко перемещаться между атомами, обеспечивая низкое электрическое сопротивление. Первоначально была разработана классическая теория проводимости Друде-Лоренца. В настоящее время она сменилась зонной теорией проводимости.

Теория Друде была разработана в 1900 году, через три года после открытия электрона. Затем теория была доработана Лоренцом, и сейчас она является классической и актуальной теорией проводимости металлов.

Электронная теория Друде-Лоренца

Согласно теории, носителями тока в металлах являются свободные электроны.

Друде предположил, что электроны в металле подчиняются и могут быть описаны уравнениями молекулярно-кинетической теории. Другими словами, свободные электроны в металле подчиняются законам МКТ и образуют "электронный газ".

Двигаясь в металле, электроны соударяются между собой и с кристаллической решеткой (это и есть проявление электрического сопротивления проводника). Между соударениями электроны, по аналогии с длиной свободного пробега молекул идеального газа, успевают преодолеть средний путь λ .

Без действия электрического поля, ускоряющего электроны, кристаллическая решетка и электронный газ стремятся к состоянию теплового равновесия.

Приведем основные положения теории Друде:

  1. Взаимодействие электрона с другими электронами и ионами не учитывается между столкновениями.
  2. Столкновения являются мгновенными событиями, внезапно меняющими скорость электрона.
  3. Вероятность для электрона испытать столкновение за единицу времени равна 1 τ .
  4. Состояние термодинамического равновесия достигается благодаря столкновениям.

Несмотря на множество допущений, теория Друде-Лорецна хорошо объясняет эффект Холла, явление удельной проводимости и теплопроводность металлов. Именно поэтому она актуальна по сей день, хотя ответы на многие вопросы (например, почему в металле существуют свободные ионы и электроны) смогла дать только квантовая теория твердого тела.

В рамках теории Друде объясняется сопротивление металлов. Оно обусловлено соударениями электронов с узлами кристаллической решетки.

Выделение тепла, согласно закону Джоуля-Ленца, также происходит по причине соударения электронов с ионами решетки.

Теплопередача в металлах также осуществляется электронами, а не кристаллической решеткой.

Терия Друде не объясняет многих явлений, как например сверхпроводимость, и не применима в сильных магнитных полях, в слабых магнитных полях может терять применимость из-за квантовых явлений.

Среднюю скорость электронов можно вычислить по формуле для идеального газа:

Здесь k - постоянная Больцмана, T - температура металла, m - масса электрона.

При включении внешнего электрического поля, на хаотичное движение частиц "электронного газа" накладывается упорядоченное движение электронов под действием сил поля, когда электроны начинают упорядоченно двигаться со средней скоростью u . Величину этой скорости можно оценить из соотношения:

где j - плотность тока, n - концентрация свободных электронов, q - заряд электрона.

При больших плотностях тока рассчеты дают следующий результат: средняя скорость хаотичного движения электронов во много раз ( ≈ 10 8 ) больше скорости упорядоченного движения под действием поля. При вычислении суммарной скорости полагают, что

Формула Друде

Формула Друде выводится из кинетического уравнения Больцмана и имеет вид:

Здесь m * - эффективная масса электрона, τ - время релаксации, то есть время, за которое электрон "забывает" о том, в какую сторону двигался после соударения.

Друде вывел закон Ома для токов в металле:

Опыт Толмена и Стюарта

В 1916 году опыт Толмена и Стюарта дал прямое доказательство тому, что носителями тока в металлах являются электроны.

Суть опыта была в следующем.

Опыт Толмена и Стюарта

Проводящая катушка с проводом длиной L вращалась вокруг своей оси с большой скоростью, а ее концы были замкнуты на гальванометр. Когда катушку резко тормозили, свободные электроны в металле продолжали двигаться по инерции, и гальванометр регистрировал импульс тока.

Считая, что свободные электроны подчиняются законам механики Ньютона, можно записать, что при остановке проводника электрон приобретает ускорение v ' (в катушке направлено вдоль проводов). При этом на электрон действует сила, направленная противоположно ускорению.

Под воздействием этой силы электрон ведет себя так, как если бы на него действовало поле E = - m v ' q . Эдс, возникающую в катушке при торможении можно записать, как:

ε = ∫ L E d l = - m v ' q ∫ L d l = - m v ' q L

Считая, что ускорение одинаково в каждом витке, можно записать закон Ома для катушки, а затем вычислить заряд, проходящий в ней за время d t :

d q = I d t = - m L d v q R d t d t = - m L d v q R

Заряд, прошедший от момента начала торможения до остановки:

q = - m L q R ∫ v 0 0 d v = - m L v 0 q R

Опыт Толмена и Стюарта получил хорошее согласование с теорией, полученное экспериментально отношение q m соответствовало отношению заряда электрона к его массе.

При T = 300 К вычислите среднюю скорость теплового движения свободных электронов.

Читайте также: