Изоляторы и шины распределительных устройств кратко

Обновлено: 03.07.2024

Изоляторы предназначены для крепления токоведущих частей и для изоляции их от земли и других частей установки, находящихся под иным потенциалом. Поэтому изоляторы должны обладать достаточной электрической и механической прочностью, быть теплостойкими и не бояться сырости.

Изоляторы, применяемые для крепления и изоляции жестких шин в распределительных устройствах электрических станций и подстанций, по своему назначению и конструктивному выполнению подразделяется на опорные и проходные. Проходные изоляторы используются при проходе шин через стены и перекрытия внутри помещений, а также при выходе шин из здания. Опорные и проходные изоляторы получили название станционные.

В открытых распределительных устройствах для крепления сборных шин и ошиновки применяются линейные изоляторы, последние подразделяются на штыревые и подвесные.

Станционные и линейные изоляторы изготавливаются из фарфора как из материала, наиболее полно отвечающего указанным выше требованиям.

Для крепления изолятора на опоре (стальная конструкция), стенке, а также для крепления к изолятору шин или токоведущих частей аппаратов изолятор имеет металлическую арматуру, т.е. металлические части, закрепленные на фарфоре.

У станционных изоляторов арматуру закрепляют на фарфоре при помощи различного рода цементирующих замазок. Фарфоровый корпус изоляторов с внешней поверхности покрывают глазурью с целью улучшения электрических и механических качеств изолятора.

В зависимости от рода установки различают станционные изоляторы для внутренних и наружных установок. Последние имеют конструктивные формы, обеспечивающие надёжную работу их под дождём и в загрязнённом пылью состоянии.

В климатическом исполнении изоляторы изготавливают для районов умеренного (У), холодного (ХЛ), тропического (Т) климата.

Категории размещения изоляторов для работы в помещении- 2,3, а для работы на открытом воздухе-1.

В зависимости от районов с различной степенью загрязнённости изоляторы для наружных установок выпускают с нормальной (категория А), усиленной (Б) и особо усиленной (В) внешней изоляцией, различающейся длинами пути утечки при прочих условиях.

Общие сведения

Изоляторы предназначены для крепления токоведущих частей и для изоляции их от земли и других частей установки, находящихся под иным потенциалом. Поэтому изоляторы должны обладать достаточной электрической и механической прочностью, быть теплостойкими и не бояться сырости.

Изоляторы, применяемые для крепления и изоляции жестких шин в распределительных устройствах электрических станций и подстанций, по своему назначению и конструктивному выполнению подразделяется на опорные и проходные. Проходные изоляторы используются при проходе шин через стены и перекрытия внутри помещений, а также при выходе шин из здания. Опорные и проходные изоляторы получили название станционные.

В открытых распределительных устройствах для крепления сборных шин и ошиновки применяются линейные изоляторы, последние подразделяются на штыревые и подвесные.

Станционные и линейные изоляторы изготавливаются из фарфора как из материала, наиболее полно отвечающего указанным выше требованиям.

Для крепления изолятора на опоре (стальная конструкция), стенке, а также для крепления к изолятору шин или токоведущих частей аппаратов изолятор имеет металлическую арматуру, т.е. металлические части, закрепленные на фарфоре.

У станционных изоляторов арматуру закрепляют на фарфоре при помощи различного рода цементирующих замазок. Фарфоровый корпус изоляторов с внешней поверхности покрывают глазурью с целью улучшения электрических и механических качеств изолятора.

В зависимости от рода установки различают станционные изоляторы для внутренних и наружных установок. Последние имеют конструктивные формы, обеспечивающие надёжную работу их под дождём и в загрязнённом пылью состоянии.

В климатическом исполнении изоляторы изготавливают для районов умеренного (У), холодного (ХЛ), тропического (Т) климата.

Категории размещения изоляторов для работы в помещении- 2,3, а для работы на открытом воздухе-1.

В зависимости от районов с различной степенью загрязнённости изоляторы для наружных установок выпускают с нормальной (категория А), усиленной (Б) и особо усиленной (В) внешней изоляцией, различающейся длинами пути утечки при прочих условиях.

Обязательным условием для передачи электрической энергии является проводниковый материал, необходимый для протекания тока. Но для исключения возможности попадания потенциала на несущие конструкции и другие элементы устанавливаются электрические изоляторы. В современной электротехнике невозможно представить себе работу каких-либо силовых устройств без изоляторов.

Что из себя представляют электрические изоляторы?

Электрические изоляторы представляют собой диэлектрический элемент электроустановки, конструктивно выполняемый из изоляционного материала и армирующих деталей. Диэлектрик предназначен для электрического отделения, а металлические конструкции позволяют зафиксировать как сам изолятор, так и проводники на нем. В качестве диэлектрического материала используется стекло, полимер или керамика.

Назначение

Электрические изоляторы предназначены для крепления шин, проводов, тралеи и прочих токоведущих элементов к корпусу электроустановки, консолям опор и прочим конструкциям. Помимо этого они изолируют проводники при прохождении через стены, позволяют отделить электроустановки друг от друга и прочие несущие функции.

В зависимости от места установки их подразделяют на внутренней и наружной. Также немаловажное значение играет класс напряжения, на который рассчитан тот или иной изолятор. Из-за чего будет отличаться его конструктивное исполнение и определенные технические характеристики, определяющие возможность их применения в тех или иных электроустановках [ 1 ].

Основные технические характеристики

В соответствии с требованиями нормативных документов, для электрических изоляторов регламентируются такие характеристики:

Перекрытие изолятора

  • Сухоразрядное напряжение — это такая величина, при которой произойдет электрический разряд в условиях сухого состояния поверхности. Перекрытие изолятора
  • Мокроразрядное напряжение – определяет такую же величину, как и предыдущий параметр, но при условии попадания дождя на поверхность. При этом рассматривается такой вариант, когда направление струй располагается под углом 45°.

При таком потоке струй под углом 45°, которые обозначены на рисунке 2 буквой А, обеспечивается максимальное обтекание поверхности Б, и, как следствие, обеспечивается минимальное сопротивление электрическому току – от 9,5 до 10,5 кОм*см. Этот параметр всегда ниже сухоразрядного.

  • Напряжение пробоя – представляет собой такую величину, при которой произойдет пробой между двумя полюсами. В зависимости от конструкции, полюса могут быть представлены стержнем и шапкой либо шиной и фланцем.
  • Механическая прочность – проверяется нагрузкой на изгиб, разрыв или срез головки. При этом конструкцию жестко закрепляют и прикладывают к ней усилие, плавно повышаемое до такого уровня высочайшего напряжения в материале, которое приводит к разрушению.
  • Термическая устойчивость – испытывается посредством попеременного нагревания и резкого охлаждения. Состоит из двух-трех циклов, в зависимости от материала и конструкции. После чего прикладывается электрический потенциал, создающий множественные разряды.

Проверка технических характеристик.

Следует отметить, что испытательные процедуры не являются обязательными для всех изоляторов, выпускаемых на заводе. Электрическим, термическим и механическим воздействиям подвергаются только 0,5% от партии. Обязательной для всех изоляторов является проверка напряжением перекрытия в течении трех минут, при котором на изоляторе возникают искровые разряды.

У подвесных изоляторов обязательно проверяется механическая характеристика. Для этого в течении минуты к нему прикладывается механическая нагрузка, которую регламентируют заводские или государственные нормы.

Такие испытания обеспечивают нормальную работу электрических изоляторов при номинальных токах и номинальных напряжениях в сети. А также, достаточный уровень надежности. Кроме этого, некоторые модели подвергаются периодической проверке в ходе эксплуатации. По результатам периодических осмотров и испытаний они могут проходить очистку, выбраковку и замену.

Типовая конструкция

Для начала разберем пример типовой конструкции на эскизе штыревого изолятора.

Изолятор в разрезе

Рис. 3. Изолятор в разрезе

Как видите на рисунке 3, в конструкции предусмотрены ребра А и Б. Которые позволяют увеличить электрическую прочность за счет удлинения пути для тока утечки по поверхности. В связи с различными углами уклона ребер обеспечивается возможность защиты от выпадающих осадков. Так ребра А имеют меньший уклон, поэтому они наиболее актуальны для твердых осадков – снега, грязи и т.д. Потому что влага может подлизываться под низ и значительно сокращать величину разрядного напряжения.

В отличии от них, юбки Б позволяют полностью исключить возможность попадания влаги при дождливой погоде. Это обеспечивает постоянный запас сопротивления, которое и гарантирует величину напряжения пробоя. Помимо этого, юбки Б не боятся намерзания гололеда и могут обеспечивать нормальную работу высоковольтных линий в случае сложной метеорологической ситуации.

Для крепления головки стержня предусмотрена резьба В, которая позволяет закрепить конструкцию на консоли или армирующих крюках. В верхней части находится желоб Г для фиксации провода. Дополнительно провод увязывается проволокой для более надежного крепления воздушных ЛЭП.

Конструкция проходного изолятора

Рис. 4. Конструкция проходного изолятора

Проходной изолятор имеет немного иную конструкцию, так как его задача не только изолировать токоведущую шину от стены, но и обеспечить нормальное протекание тока внутри самого изолятора. Посмотрите, шина обжимается с обеих сторон алюминиевой крышкой для ее надежного закрепления снаружи. Внутри механическое крепление осуществляется за счет герметика, который помимо этого предотвращает попадание загрязнителей и агрессивных веществ. Также для удобства крепления проводов или шин может устанавливаться дополнительный лепесток на самой крышке, как показано на рисунке 4.

Защитная оболочка из кремнийорганической резины препятствует электрическому пробою по поверхности от шины до фланца. Изоляция от пробоя внутренних элементов выполняется посредством стеклопластиковой трубы, которая помещается внутрь ребристой рубашки. Более детальную информацию о параметрах можно почерпнуть из обозначения модели.

Обозначения изоляторов

В маркировке каждого изделия содержится информация о его типе, материале и прочих характеристиках. Посмотрите пример маркировки для изолятора НСПКр 120 – 3/0,6 – Б.

  • Первая буква Н указывает на назначение модели, в данном случае Н — натяжной. Также может быть К – консольный, Ф – фиксаторный, П – подвесной.
  • С – обозначает, что это стержневой изолятор.
  • П – изоляционный материал, в данном случае П – полимер.
  • К – наружное покрытие, в данном случае кремнийорганическая резина.
  • р – индекс, обозначающий, что защитная оболочка ребристая цельнолитая.
  • 120 – показатель нормированного разрушающего усилия в кН.
  • 3 – класс напряжения проводов ВЛ, для которого применяется.
  • 0,6 – обозначает длину пути тока утечки, измеряемую в метрах.
  • Б — обозначает вид зацепления.

Классификация

Для обеспечения надежного электроснабжения и соблюдения максимального уровня безопасности в каждом конкретном случае в электроустановках должны применяться изоляторы соответствующего типа и конструкции. В зависимости от критерия выделяют несколько параметров их классификации.

По назначению

В зависимости от назначения выделяют такие виды изоляторов:

Пример аппаратных изоляторов

  • Стационарные – применяют для механического крепления токоведущих стержней или ошиновки в распределительных устройствах. В зависимости от назначения стационарные изоляторы дополнительно подразделяются на опорные и проходные. Так опорные изоляторы выступают в роли основания, на которое крепятся шины в ячейках или несущих конструкциях. Проходные изоляторы позволяют провести токоведущий элемент сквозь стену или перекрытие помещения.
  • Аппаратные – имеют схожее назначение со стационарными, но применительно к каким-либо аппаратам. К примеру, аппаратные изоляторы нашли широкое применение в выпрямительных установках, силовых приборах, комплектных подстанциях, установках аппаратов высокого напряжения и прочих агрегатах. Посмотрите на рисунок 5, здесь представлен пример его использования, где он имеет обозначение АИ. Рис. 5. Пример аппаратных изоляторов
  • Линейные – используются для наружной установки под высоковольтные линии или ошиновку открытых распредустройств. Отличительной чертой линейных изоляторов является наличие широких ребер или юбок, предназначенных для увеличения пути поверхностного пробоя в случае выпадения осадков.

По материалу исполнения

В зависимости от применяемого диэлектрика выделяют такие виды изоляторов:

Изоляторы для электротехнических установок

Изоляторы для электротехнических установок

Токоведущие части электрических установок и отдельных аппаратов должны быть надежно изолированы одни от других и от земли. Для выполнения этих функций и крепления токоведущих частей используют различные изоляторы , которые подразделяются на станционные , аппаратные и линейные .

Станционные и аппаратные изоляторы применяют для крепления и изоляции шин в распределительных устройствах электрических станций и подстанций или соответственно токоведущих частей аппаратов. Эти изоляторы, в свою очередь, подразделяются на опорные и проходные . Последние устанавливают при проходе шин через стены и перекрытия внутри помещений, а также при выводе их из зданий или применяют для вывода токоведущих частей из корпусов аппаратов.

Линейные изоляторы служат для крепления проводов воздушных электрических линий и шин открытых распределительных устройств.

Конструктивно и по назначению изоляторы подразделяются на штыревые, подвесные, опорные и проходные.

Штыревые изоляторы состоят из одного или двух фарфоровых элементов и армируются на металлических штырях, закрепляемых в траверсах опор. Все штыревые изоляторы обеспечивают жесткое крепление проводов на опорах.

Линейные подвесные изоляторы обеспечивают нежесткую связь проводов с опорами ЛЭП. Тарельчатые подвесные изоляторы соединяются в гирлянды. Кроме тарельчатых, находят применение стержневые линейные изоляторы, позволяющие повысить электрическую прочность благодаря тому, что они не подвержены пробою.

Опорные изоляторы служат для поддержания шин и контактных деталей РУ и электрических аппаратов.

Опорно-штыревые изоляторы состоят из одного, двух или трех фарфоровых элементов, жестко соединенных друг с другом и закрепленных на чугунном штыре. Применяются в качестве изоляционных опор в ОРУ, в связи с чем имеют выступающие крылья для защиты от атмосферных осадков.

Опорно-стержневые изоляторы тоже предназначены для работы в наружных установках. Такой изолятор представляет собой сплошной фарфоровый стержень с выступающими крыльями, на торцевых частях которого закреплены чугунные колпаки для соединения изоляторов в колонки и для крепления их на аппаратах и в РУ.

Проходные изоляторы применяются для вывода проводников ВН из баков трансформаторов, масляных и воздушных выключателей, а также для изоляции проводов, проходящих через стены зданий. Они состоят из фарфорового элемента, через внутреннюю полость которого пропущен токоведущий металлический стержень или группа шин.

Разновидностью проходных изоляторов являются вводы . Токоведущей частью ввода служит медная труба, основная внутренняя изоляция — керамическая, жидкая или бумажно-масляная, из бакелита или других твердых органических материалов.

Изоляторы для электротехнических установок

Изоляторы должны удовлетворять следующим требованиям : обеспечивать достаточную электрическую прочность, определяемую напряженностью электрического поля (кВ/м), при которой материал изолятора теряет свойства диэлектрика, обладать достаточной механической прочностью, дающей возможность противостоять динамическим усилиям, которые возникают между отдельными токоведущими частями при коротком замыкании в цепи, обеспечивать неизменность своих свойств под влиянием окружающей среды (дождь, снег и т. п.), обладать достаточной теплостойкостью, то есть не изменять своих электрических свойств при изменении температуры в определенных пределах, иметь поверхность, устойчивую против воздействия электрических разрядов.

К электрическим характеристикам изоляторов относятся : номинальное и пробивное напряжения (минимальное напряжение, при котором происходит пробой изолятора), разрядные и выдерживаемые напряжения промышленной частоты в сухом состоянии (сухо-разрядное, при котором происходит перекрытие по поверхности изолятора без потери изоляционных качеств) и под дождем (мокро-разрядное, по смоченной поверхности изолятора), импульсные 50 %-ные разрядные напряжения обеих полярностей.

К основным механическим характеристикам изоляторов относятся: минимальная (номинальная) разрушающая нагрузка (в ньютонах), приложенная к головке изолятора в направлении, перпендикулярном оси, а также размеры и масса.

Линейные изоляторы

Линейные изоляторы предназначены для изоляции и крепления проводов на воздушных линиях и в распределительных устройствах электрических станций и подстанций. Изготавливаются они из фарфора или закаленного стекла. По конструкции изоляторы разделяют на штыревые и подвесные.

Штыревые изоляторы применяются на воздуш ных линиях напряжением до 1 кВ и на ВЛ 6-35 кВ (35 кВ - редко и только для проводов малых сечений). На номинальное напряжение 6-10 кВ и ниже изоляторы изготавливают одноэлементными, а на 20-35 кВ - двухэлементными.

Подвесной изолятор тарельчатого типа наиболее распространен на воздушных линиях напряжением 35 кВ и выше. Подвесные изоляторы состоят из фарфоровой или стеклянной изолирующей части и металлических деталей – шапки и стержня, соединяемых с изолирующей частью посредством цементной связки.

Для воздушных линий в районах с загрязненной атмосферой разработаны конструкции изоляторов грязестойкого исполнения с повышенными разрядными характеристиками и увеличенной длиной пути утечки.

Изоляторы для электротехнических установок

Подвесные изоляторы собирают в гирлянды , которые бывают поддерживающими и натяжными. Первые монтируют на промежуточных опорах, вторые – на анкерных. Число изоляторов в гирлянде зависит от напряжения линии. Например, в поддерживающих гирляндах воздушных линий с металлическими и железобетонными опорами 35 кВ должно быть 3 изолятора, 110 кВ – 6 – 8, 220 кВ – 10 - 14 и т. д..

Штыревые изоляторы крепятся на опорах при помощи крюков или штырей. Если требуется повышенная надежность, то на анкерные опоры устанавливают не один, а два и даже три штыревых изолятора.

Станционные и аппаратные изоляторы , как и линейные, в большинстве случаев изготовляют из фарфора, который наиболее полно отвечает предъявляемым требованиям. Ряд деталей аппаратов, выполняющих функции изоляции, особенно находящихся внутри кожухов и в некоторых случаях залитых изоляционным маслом, изготавливают из бакелита, гетинакса и текстолита.

Станционные и аппаратные изоляторы

Для крепления изолятора к основанию и шин или токоведущих частей аппаратов к изолятору используют металлическую арматуру, то есть металлические части, закрепленные на фарфоре. Арматуру закрепляют на фарфоре чаще всего при помощи различного рода цементирующих замазок с коэффициентом объемного теплового ресширения, близким к коэффициенту фарфора. В целях улучшения качества изоляторов их фарфоровый корпус с внешней стороны покрывают глазурью.

В зависимости от рода установки используют изоляторы для внутренней или наружной установки . Изоляторы для наружной установки имеют более развитую поверхность, благодаря которой увеличивается микроразрядное напряжение, что обеспечивает надежную работу под дождем, а также в загрязненном состоянии.

Изоляторы на разные номинальные напряжения отличаются активной высотой фарфора, а на разные разрушающие механические усилия - диаметром.

Опорные изоляторы можно разделить на опорно-стержневые и опорно-штыревые . Опорные-стержневые изоляторы имеют сплошной или полный фарфоровый стержень с выступающими ребрами.

Изоляторы для электротехнических установок

Арматура изоляторов , рассчитанных на значительную механическую нагрузку, состоит из овальных или квадратных фланцев с отверстиями для болтов снизу и металлических головок с нарезными отверстиями для крепления проводника сверху.

Изоляторы, рассчитанные на меньшую механическую нагрузку, не имеют фланцев и головок. У них предусмотрены металлические фасонные вкладыши с резьбовыми отверстиями, укрепленные в углублениях фарфорового стержня. Эти изоляторы благодаря внутренней заделке арматуры имеют меньшие размеры и массу.

Изоляторы для внутренней установки на напряжение до 35 кВ серии ОФ имеют коническое фарфоровое тело с одним или двумя небольшими ребрами. Опорно-стержневые изоляторы для наружной установки серии ОНС отличаются от рассмотренных более развитыми ребрами. Их изготавливают для напряжений 10 - 110 кВ.

Опорно-штыревые изоляторы

Опорно-штыревые изоляторы серии ОНШ предназначены для наружной установки. Они имеют фарфоровое тело с далеко выступающими ребрами (крыльями) для защиты от дождя. Изолятор укрепляют на основании при помощи чугунного штыря с фланцем. Сверху предусмотрен чугунный колпак с нарезными отверстиями для крепления токоведущих частей.

Проходные изоляторы для внутренней установки на напряжение до 35 кВ имеют полый фарфоровый корпус с небольшими ребрами. Для крепления изолятора в перекрытии (стене) на средней его части предусмотрен фланец, а на торцах для крепления проводника - металлические колпаки. Проходные изоляторы с номинальным током до 2000 А снабжены стержнями прямоугольного сечения.

Фланцы и колпаки у изоляторов с большим номинальным током (обычно более 1000 А) изготавливают из немагнитных материалов - чугуна специальных марок, силумина - для избежания дополнительных потерь из-за индуктированных токов.

Проходные изоляторы, одна часть которых работает на открытом воздухе, а другая - в закрытом помещении или в масле, как, например, проходные изоляторы трансформаторов и масляных выключателей , делают несимметричными. Часть фарфорового корпуса, работающая на воздухе, имеет более развитые ребра.

Опорные изоляторы предназначены для крепления токоведущих частей и изоляции их друг от друга и от заземленных частей в электрических аппаратах, распределительных устройствах электрических подстанций и комплектных распределительных устройствах. Опорный изолятор (рис. 1, а, б) состоит из фарфорового корпуса 1, в верхней и нижней торцовых частях которого заармирована фасонная гайка 2 с резьбовыми отверстиями для крепления. Опорные изоляторы различают по напряжению, механической прочности (разрушающим усилием на изгиб), климатическим исполнениям и категориям размещения.

p065_1_01

Рис. 1. Изоляторы

а - опорный ИО-10-375-IУЗ, б - опорный ИОР-10-375-IУ2, в - проходной ИП-10/630-750-IУ2; 1 - фарфоровый корпус, 2 - гайка, 3 - цементная армировка, 4 - металлический колпачок, 5 - чугунный фланец, 6 - токоведущая шина


ИП-10/630


ИО-10

В обозначении опорных изоляторов буквы и цифры означают: И — изолятор, О — опорный, Р -ребристый; 6 или 10 — номинальное напряжение, кВ, 375, 750, 2000 или 3000 — разрушающее усилие на изгиб, даН; I, II или III — исполнение конструкции (в зависимости от числа болтов, крепящих шины и сам изолятор); У, ХЛ и Т — климатическое исполнение (У — для умеренного, ХЛ — холодного и Т — влажного тропического климата); 1 — 5 — категорию размещения (1 — для работы на открытом воздухе, 2 -5 — в закрытых помещениях). Например, опорный изолятор с разрушающим усилием 375 даН, на номинальное напряжение 10 кВ, исполнения I (по одному крепящему болту), для умеренного климата и размещения в закрытом помещении обозначают ИО-10-375- I УЗ.

Проходные изоляторы (рис. 1, в) предназначены для прохождения токопроводящих стержней или шин через заземляемые перегородки и конструкции в распределительных устройствах, корпуса аппаратов, а также через стены и перекрытия. Проходной изолятор состоит из фарфорового корпуса 7, верхнего и нижнего колпачков 4, чугунного фланца 5 и медной или алюминиевой токоведущей шины 6. Колпачки и фланец скрепляют с фарфоровым корпусом цементирующим составом или механическим способом. В чугунном фланце имеются отверстия для крепления его к стене, металлическим конструкциям или плитам. Сечение токоведущей шины выбирают в зависимости от рабочего тока.
Проходные изоляторы (ИП), так же как и опорные, различают по номинальному напряжению (6 или 10 кВ), номинальному току (250, 400, 630, 1000 А и более) и разрушающим усилиям (375, 750 даН и более), исполнению отверстий в токоведущей шине (I, II, III), климатическим исполнениям (У, ХЛ, Т) и категориям размещения (1 — 5).

Шинные изоляторы SM


Изоляторы шинные служат для крепления токоведущих шин внутри силовых шкафов и сборок с целью фиксации и изоляции токоведущих частей от корпуса и панелей сборки, с последующим подключением силовых проводников для распределения электроэнергии внутри щита.
Изолятор крепится с одной стороны с помощью болта к монтажной пластине или корпусу, с другой стороны к изолятору крепится токоведущая шина. Каждая шина устанавливается минимум на двух изоляторах (на концах шины), а так же возможна установка промежуточных изоляторов (в зависимости от схемы монтажа и длины шины).


Шины и изоляторы

Шины. В распределительных устройствах и трансформаторных подстанциях оборудование и аппаратура соединяются между собой металлическими проводниками — шинами, которые электрически связывают оборудование и аппаратуру в единую электрическую установку. При этом в трехфазных электроустановках для каждой фазы прокладывается отдельная шина, а в распределительных устройствах напряжением до 1 кВ дополнительно прокладывается четвертая — нулевая шина. Шины, объединяющие все оборудование и аппаратуру распределительных устройств, называют сборными. Они служат для приема электроэнергии от источников питания и последующего распределения ее между потребителями. Для удобства эксплуатации сборные шины обычно разделяют на секции, соединенные между собой выключателями или разъединителями (рубильниками). Оборудование и аппаратуру к сборным шинам присоединяют с помощью ответвительных шин.

В качестве шин обычно применяют голые проводники прямоугольного, трубчатого, круглого, а также коробчатого профиля. Изготовляют шины главным образом из алюминия, реже — из стали и меди. Сечение сборных шин, как правило, больше ответвительных, так как через них проходит весь поток электроэнергии. В некоторых случаях сборные шины выполняют из пакетов, состоящих из нескольких полос с воздушными зазорами между ними.

Шины устанавливают на расположенные вдоль них опорные изоляторы и закрепляют болтами или специальными шинодержателями. Соединение шин между собой производят обычно болтами, сжимами или сваркой. Болтовые соединения требуют при эксплуатации регулярного контроля, поэтому предпочтительнее соединение шин сваркой, особенно алюминиевых. Шины разных фаз могут располагаться в вертикальной, горизонтальной или наклонной плоскостях; прямоугольные шины могут устанавливаться на изоляторах как плашмя, так и на ребро.

Рекламные предложения на основе ваших интересов:
Дополнительные материалы по теме:

Смонтированные шины окрашивают:
фазу А — в желтый цвет, фазу В-—в зеленый, фазу С — в красный. Нулевую шину окрашивают в черный цвет (при заземленной нейтрали трансформатора).

В наружных установках высокого напряжения шины выполняются обычно из гибких воздушных проводов таких же, как и для воздушных линий. Иногда применяют жесткую ошиновку из медных или дюралюминиевых труб.

Изоляторы. Изоляторы, применяемые при монтаже трансформаторных подстанций, предназначены для крепления главным образом токопроводящих шин и других элементов электроустановок и для изолирования их от заземленных частей ТП. Конструкция и размеры изоляторов зависят от их назначения, величины расчетных механических нагрузок, напряжения установки и условий эксплуатации. В трансформаторных подстанциях применяют главным образом опорные и проходные изоляторы, изготовленные обычно из фарфора. Их устанавливают как внутри помещений, так и в наружных установках.


Рис. 1. Изоляторы:
а и б — опорные с овальным фланцем и малогабаритный, в — проходной; 1 — металлический колпачок, 2 — фарфоровая часть, 3—металлический фланец, 4 — армировочная цементная замазка, 5 — металлическая армировка, 6 — плоский токоведущий стержень

Опорные изоляторы для напряжения 6—10 кВ, как правило, с нижней стороны снабжены металлическими фланцами, которые служат для крепления изоляторов на конструкции. На верхней части устанавливают металлические колпачки для крепления шин и других деталей. Фланцы и колпачки закрепляют на фарфоровой части изолятора цементной армировочной замазкой.

Для уменьшения расстояний применяют малогабаритные опорные изоляторы, которые вместо фланцев и колпачков имеют сверху и снизу заделанные внутрь изолятора фасонные гайки с резьбовыми отверстиями для крепления.

Такую же конструкцию (но меньших размеров) имеют опорные изоляторы, применяемые для крепления шин в распределительных устройствах напряжением до 1 кВ.

Опорные изоляторы для наружной установки имеют наружную поверхность сложной формы (с ребрами) для удлинения пути поверхностного пробоя напряжения.

Проходные изоляторы напряжением 6— 10 кВ применяют для прокладки токоведущих стержней или шин через перегородки и стенки в помещениях РУ 6—10 кВ, в силовых и измерительных трансформаторах, камерах распределительных устройств, масляных выключателях и других аппаратах. Изготовляют их также из фарфора. На средней части изоляторов обычно располагают чугунные фланцы овальной или квадратной формы с отверстиями для крепежных болтов. Фланцы соединяют с изолятором цементной замазкой. Токопроводящие стержни или шины закрепляют в изоляторе при помощи металлических шайб с отверстиями. Шайбы устанавлиивают на торцах фарфоровой части изоляторов в специальном углублении. Поверхность изоляторов для наружной установки выполняют (так же, как и опорных) сложной формы.

Обозначают изоляторы буквами (О — опорный, Ф — фарфоровый, Н — для наружной установки, П — проходной, К — проходной изолятор для КРУ ) и цифрами, показывающими номинальное напряжение (кВ) и разрушающую нагрузку (Н).

Для проходных изоляторов указывают еще номинальный ток (А), а марку опорного изолятора дополняют буквами, обозначающими форму фланцев: ов-—овальная, кр — круглая (например ПН-10/400-650, ОФ-6-375ов).

Читайте также: