История создания перфокарты кратко

Обновлено: 05.07.2024

Технологии хранения данных активно совершенствуются со времен появления первых компьютеров. Еще вчера мы пользовались 1,44-мегабайтными дискетами, а сегодня в продаже можно найти 256-гигабатные флеш-накопители. А ведь это далеко не предел. Пока инженеры трудятся над созданием новых, более прогрессивных носителей информации, мы вспоминаем, как повлияли на компьютерную индустрию перфокарты, магнитные ленты и форматы CD и DVD.

С древнейших времен люди искали способы записи и хранения различной информации. Сначала они рисовали на скалах и глине. Затем появился пергамент, а позже — бумага. В XX веке с появлением первых компьютеров хранить информацию стало легче, но эволюция носителей информации лишь ускорилась. Казалось бы, еще вчера мы записывали нужные нам файлы на дискеты. А сегодня мы уже пользуемся 256-гигабайтными флешками! В общем, развитие технологий хранения информации не стоит на месте. Поэтому в этот раз мы вспоминаем, с чего же началась история компьютерных носителей информации, и расскажем о том, каких результатов добилась индустрия к концу XX века.

В таком виде сохраняли информацию в былые времена

Станок Жаккара. Перфокарты

История носителей информации берет свое начало в начале XIX века. Причем в роли прародителя запоминающих устройств выступает — кто бы мог подумать! — ткацкий станок. Автором первого изобретения в области хранения данных стал французский изобретатель Жозеф Мари Жаккар. Долгое время он работал со станками в качестве подмастерья, ткача и наладчика, поэтому богатый опыт значительно помог ему в дальнейшей изобретательской деятельности. Итак, в чем же заключалась инновационная идея Жаккара? Несмотря на то, что производство ткани в то время являлось довольно сложным процессом, по своей сути оно представляло собой постоянное повторение одних и тех же действий. Жаккар пришел к выводу, что этот процесс можно автоматизировать.

Жозеф Мари Жаккар — создатель ткацкого станка, использующего перфокарты

Французский изобретатель придумал такую систему, которая использовала в своей работе специальные твердые пластины с отверстиями. Они и являлись первыми в мире перфокартами. Прежде подобные пластины использовались в станках Вокансона и Бушона, однако эти устройства были слишком дороги в производстве и по этой причине так и не прижились. В своей же разработке Жаккар учел все недостатки этих аппаратов. В пластинах было увеличено количество рядов отверстий, что обеспечило обработку большего числа нитей, а, следовательно, и повышение производительности станка. Кроме этого, был значительно упрощен процесс подачи пластин в считывающее устройство — набор щупов, связанных со стержнями нитей. При проходе пластины щупы проваливались в отверстия, поднимая вверх соответствующие нити и образуя основные перекрытия в ткани. Таким образом, определенная комбинация отверстий на пластине позволяла создать ткань с нужным узором.

Ткацкий станок Жаккара

Первый автоматизированный станок Жаккар создал в 1801 году и на протяжении еще нескольких лет дорабатывал его. За свои достижения изобретатель получил пенсию в 3000 франков и одобрение Наполеона. Однако ни сам Жаккар, ни французский император не имели ни малейшего понятия, насколько важным станет это изобретение в будущем.

В 30-х годах XIX века на разработанные Жаккаром перфокарты обратил внимание английский математик Чарльз Бэббидж. В то время ученый ум трудился над созданием аналитической машины и решил использовать в ее конструкции перфокарты. Для этого англичанин даже совершил путешествие во Францию с целью подробно изучить станки Жаккара. Увы, но из-за низкого уровня технологий и недостатка финансовых средств аналитическая машина Бэббиджа так и не увидела свет. Тем не менее, ее конструкция стала впоследствии прообразом современных компьютеров.

Кроме этого, перфокарты использовались в табуляторе, разработанном в 1890 году Германом Холлеритом. Табулятор являлся механизмом для обработки статистических данных и использовался на благо Бюро переписи населения США. Кстати, созданная Холлеритом компания Tabulating Machine Company в конечном итоге была переименована в International Business Machines (IBM). На протяжении нескольких десятков лет IBM развивала и продвигала технологию перфокарт. В середине XX века они использовались повсеместно, получив особенно широкое распространение в компьютерной технике и различных станках. Закат эпохи перфокарт пришелся на 1980-е годы, когда на смену им пришли более совершенные магнитные носители информации. Интересно, что отдел исследования перфокарт компании IBM существовал вплоть до 2000-х годов. Например, в 2002 году в IBM изучали создание перфокарты размером с почтовую марку, которая могла бы содержать до 25 миллионов страниц информации.

Магнитные диски

Магнитная лента использовалась в компьютере UNIVAC-I

Впервые магнитная лента была применена в коммерческом компьютере UNIVAC-I, выпущенном в 1951 году. Кстати, его первый экземпляр попал в то же самое Бюро переписи населения США. Магнитная пленка, используемая в UNIVAC-I, была намного более емкой, нежели перфокарты. Ее объем равнялся емкости десяти тысяч перфокарт, то есть он составлял примерно 1 Мбайт.

Развитие технологии магнитных лент продолжалось до 1980-х годов. В течение этого времени подобные накопители использовались в основном в мейнфреймах и мини-компьютерах. Ну а с 80-х годов магнитная лента использовалась лишь для резервного хранения данных. Этому способствовало то, что ленточные картриджи оставались надежным и очень дешевым носителем информации. Но даже несмотря на эти преимущества, к концу 2000-х годов специалисты предрекали конец эпохи магнитных лент — цены на жесткие диски продолжали падать. Вдобавок они предлагали высокую плотность записи. Начиная с 2008 года, рынок ленточных накопителей уменьшался примерно на 14% в год, и даже ярые сторонники технологии признавали, что у нее нет шансов на выживание. Однако ситуация резко изменилась в 2011 году. В Таиланде произошло наводнение, продолжавшееся, по официальным данным, 175 дней. В результате наводнения было затоплено несколько индустриальных зон, где были расположены заводы по производству жестких дисков таких компаний, как Seagate, Western Digital и Toshiba. Как итог, цены на продукцию возросли на 60%, а объемы производства упали. Так магнитная лента получила вторую жизнь.

Магнитная лента IBM

Стоит отметить, что ленточные накопители, как правило, используются в тех сферах, где необходимо хранить очень большое количество информации. Например, в каких-либо крупных исследованиях. Так, магнитную ленту используют для записи результатов исследований на Большом адронном коллайдере. О преимуществах технологии в свое время рассказывал Альберто Пейс (Alberto Pace) — глава подразделения обработки и хранения данных CERN. Он отметил, что магнитная лента имеет четыре основных преимущества над жесткими дисками. Прежде всего, это скорость. Несмотря на то, что специализированному роботу требуется до 40 секунд, чтобы выбрать нужную кассету и вставить ее в считыватель, чтение данных из ленты происходит в четыре раза быстрее, чем с жесткого диска. Еще одним преимуществом магнитной ленты, по словам Пейса, является ее надежность. Если она рвётся, то ее можно легко склеить. В этом случае теряется лишь несколько сотен мегабайт данных. Когда выходит из строя жесткий диск, теряются абсолютно все данные. Глава подразделения CERN привел некоторые статистические данные, касающиеся надежности устройств. Так, в среднем за год в CERN из 100 петабайт данных, хранящихся на магнитных лентах, теряется лишь несколько сотен мегабайт. На жестких дисках располагается около 50 петабайт информации, и каждый год организация теряет до нескольких сотен терабайт в результате неисправностей HDD. Третьим преимуществом магнитной ленты является ее энергоэффективность, а точнее, экономичность. Сами ленты хранятся в неактивном состоянии, следовательно, они не потребляют энергию. Наконец, четвертое — это безопасность. Если злоумышленники получат доступ к жестким дискам, то они смогут уничтожить всю информацию за считанные минуты. В случае с магнитными лентами на это может уйти не один год.

Хранилище магнитных лент в CERN

Еще на два преимущества ленточных накопителей указал Эвангелос Элефтеро — руководитель отдела технологий хранения данных исследовательской лаборатории IBM в Цюрихе. Он отметил, что магнитные ленты все еще дешевле, чем жесткие диски. 1 Гбайт HDD стоит примерно 10 центов, тогда как стоимость аналогичной емкости магнитной ленты оценивается в 4 цента. Также Элефтеро обратил внимание на долговечность лент. Такой накопитель будет служить верой и правдой даже через 30 лет, в то время как рабочий цикл жесткого диска составляет всего 5 лет.

Тем не менее, стоит понимать, что магнитные ленты уже никогда не будут использоваться как единственная система хранения данных. Они занимают важное место в иерархической структуре хранения информации, но не являются (и не будут) ее основным звеном.

Дискеты

По своей конструкции дискета представляла собой диск из полимерных материалов, на который наносилось магнитное покрытие. Пластиковый кожух имел несколько отверстий. Центральное предназначалось для шпинделя дисковода, малое отверстие являлось индексным, то есть позволяло определить начало сектора. Наконец, через прямоугольное отверстие с закругленными углами магнитные головки дисковода работали непосредственно с диском.

Окунёмся в историю форматов хранения данных. Взглянем на то, как они рождались, развивались и умирали. Начну рассказ с перфокарт.

Перфокарты начали повсеместно использоваться в конце XIX века и оставались массовым инструментом вплоть до 60-х годов XX-го. Однако мало кто знает, что их история началась задолго до появления компьютера.

Одним из наиболее важных музыкальных инструментов средневековья были колокола. Однако традиционная звонница не особенно проста в управлении. Сложности с большим количество верёвок, прикрепленных к языкам инструмента, испытывали даже обученные звонари.

Фото — Oliver Raupach — CC BY-SA — Карильон в Олимпийском парке Мюнхена

Для решения этой проблемы появились карильоны — механические звонницы. Педальный механизм приводил в движение сложную систему рычагов, позволяя управлять инструментом усилиями одного человека.

Фото — Uwe Aranas — CC BY-SA — Барабан карильона на колокольне города Брюгге

В XIV веке для дальнейшего удобства карильоны начали автоматизировать. Они получили металлический цилиндр с зубьями, двигавший рычаги в нужной последовательности по мере вращения. Этот прорыв положил основу Европейской традиции механических инструментов. В частности, по схожему принципу работают шарманки.

Со временем этот принцип барабанной автоматизации начал проникать и в другие сферы деятельности человека. В частности, его вариация нашла применение в текстильной промышленности. Текстильщик Базиль Бушон в XVIII веке автоматизировал ткацкий станок для вышивки сложных рисунков на китайских шелковых платьях.

Фото — Dogcow — CC BY-SA — Автоматизированный станок Базиля Бушона

Модель, созданная Бушоном, не была идеальна — для движения перфоленты требовался отдельный оператор. Но у технологии имелся потенциал. Поэтому, когда в начале XIX века такие станки оптимизировал другой француз — Жозеф Мари Жакар — они приобрели популярность. Жаккардовы устройства распространились по всей Европе. При этом перфокарты используются в текстильном производстве и по сей день.

Именно Жаккардовым станком вдохновлялся Чарлз Бэббидж при проектировании своей знаменитой аналитической машины — перфокарты показались ему идеальным методом ввода данных.

Предполагалось использование перфокарт трёх типов — с входными данными, информацией о планируемой арифметической операции, и инструкциями для выгрузки информации из оперативной памяти.

Однако при жизни Бэббиджа полноценный прототип не был реализован, сохранились лишь перфокарты, предположенные для демонстрации.

Фото — Alan Levine — CC BY — Карты Чарльза Беббиджа

В массовое пользование перфокарты вошли значительно позже, с изобретением табуляторов — электромеханических машин для авторизации обработки данных. Их потенциал в сферах статистики и бухгалтерского учёта стал гарантией коммерческого успеха и поспособствовал росту IBM.

Правительство США закупило ряд таких машин для проведения переписи населения в 1890 году. Эксперимент оказался удачным и их примеру последовало множество стран. Например, в 1897 году табуляторы использовались в единственной в истории переписи Российской Империи.

Используемые во время переписи населения перфокарты имели всего 24 колонки в ширину и создавались из непрочной бумаги. Более того, они умели хранить лишь примитивную информацию из опросников, например, в каком поле при ответе на вопрос человек поставил галочку. Со временем этого оказалось недостаточно и появилась необходимость в кодировках, которые бы позволили хранить на перфокартах больше информации.

Первый стандарт перфокарты для вычислительных систем, стал самым массовым — это был IBM-80. Такие карты имели 80 колонок и позволяли с помощью комбинаций прокалываний кодировать символы латинского алфавита и цифры. Со временем в стандарт были добавлены комбинации для знаков пунктуации и специальных символов. Используемая кодировка называлась EBCDIC (Extended Binary Code Decimal Interchange Code).

Фото — Gwern — PD — Пробитая перфокарта стандарта IBM-80

Для удобства пользователей мейнфреймов IBM также изготавливался мобильный вариант этих карт, состоявший из 40 колонок.

Фото — George Shuklin — CC BY-SA — Пробитая отечественная перфокарта

В Советском Союзе использовались кириллические перфокарты, изготовленные по ГОСТ 10859-64. Стандарт был введён в 1964 году, и в 1969 году обновлён для кодирования 7-битных данных.

Перфокарты — это лучше, чем ничего. Но особенности формата создают целый ряд проблем. Обращаться с программами, написанными на перфокартах, было попросту неудобно.

Для одной программы зачастую требовались десятки, сотни или даже тысячи перфокарт. Если ветер разбросал стопку карт по комнате, несчастным программистам приходилось вручную восстанавливать их порядок. Конечно, существовали машины автоматической сортировки перфокарт — вроде IBM 82 — но они были дорогими. Их в основном использовали в больших компьютерных центрах для распределения задач по важности.

Фото — waelder — CC BY-SA — Сортировщик перфокарт IBM 82

Из-за большого количества неудобств от этого формата хранения данных отказались. Перфокарты заменила магнитная лента, которая до сих пор используется в дата-центрах. О ней поговорим в следующей части.



Перфока́рта (перфорационная карта, перфорированная карта, от лат. perforoпробиваю и лат. chartaлист из папируса; бумага) — носитель информации, предназначенный для использования в системах автоматической обработки данных. Сделанная из тонкого картона, перфокарта представляет информацию наличием или отсутствием отверстий в определённых позициях карты.

Содержание

История

Применение в компьютерной технике

Компьютеры первого поколения, в 20—50-е годы XX столетия, использовали перфокарты в качестве основного носителя при хранении и обработке данных. Затем, в течение 70-х — начале 80-х, они использовались только для хранения данных и постепенно были замещены гибкими магнитными дисками большого размера. В настоящее время перфокарты не используются нигде, кроме устаревших систем, однако оставили свой след в компьютерной технике: отображаемый по умолчанию текстовый видеорежим дисплеев подавляющего большинства компьютерных устройств содержит по горизонтали 80 знакомест, ровно столько, сколько их было на стандартной перфокарте.

Главным преимуществом перфокарт было удобство манипуляции данными — в любом месте колоды можно было добавить карты, удалить, заменить одни карты другими (т.е. фактически выполнять многие функции, позже реализованные в интерактивных текстовых редакторах).

Двоичный и текстовый режим



Заполненная перфокарта в текстовом режиме (строка "С*10,05 ОПРЕДЕЛЕНИЕ АДРЕСА АКТИВНОЙ РЕАЛИЗАЦИИ ПАРАМЕТРА ЗАДАЧИ")

При работе с перфокартами в двоичном режиме перфокарта рассматривается как двумерный битовый массив; допустимы любые комбинации пробивок. Например, в системах IBM 701 машинное слово состояло из 36 бит; при записи данных на перфокарты в одной строке пробивок записывалось 2 машинных слова (последние 8 колонок не использовались), всего на одну перфокарту можно было записать 24 машинных слова.

Для удобства работы с текстовыми данными вдоль верхнего края перфокарты часто печатались те же символы в обычном человекочитаемом виде.

Пример кода


ПЕРФОКАРТЫ

Перфокарта (от лат. perforo — пробиваю и лат. charta — лист из папируса; бумага) — носитель информации, предназначенный для использования в системах автоматической обработки данных. Сделанная из тонкого картона, перфокарта представляет информацию наличием или отсутствием отверстий в определённых позициях карты (ВИКИПЕДИЯ, перфокарта).

Поскольку правильность результатов, полученных компьютером, зависела от строгого соблюдения определенной последовательности введения перфокарт, вероятность ошибок была велика. Если, например, незадачливый оператор случайно ронял колоду карт и порядок их расположения нарушался, то решение задачи становилось невозможным. Со временем на оборотной стороне перфокарт начали ставить порядковые номера, чтобы облегчить восстановление колоды в исходном порядке.

Краткая история
1725 год

Базиль Бошо (Basile Bouchon) впервые предложил новый способ управления ткацким станком с помощью перфорированной бумажной лентой.

Ткацкий станок Б.Бошон


Ткацкий станок Б.Бошон на выставке в Париже в Музее искусств и ремесел

1728 год

Жан-Батист Фалькон (Jean-Baptiste Falcon) внес улучшение в ткацкий станок Бошо: управление станком с помощью рулона бумажной перфорированной лентой заменил набором отдельных карт, прикрепленных друг к другу. Это позволяло быстро вносить измения в программу.

1801 год

Жаккард усовершенствовал ткацкие станки (Бошо-Фалькон), которые работали не стабильно и для управления станком требовалось несколько человек. Станки Жаккарда считаются первым промышленным применением полуавтоматических машин для управления узорами на тканях. Перфокарты были соединены друг с другом и походили на широкую перфоленту больших размеров.

В 1801 году, Жаккард выставил свои изобретения на промышленной выставке в Париже. Использованная новая технология в ткацких станках была объявлена государственной собственностью в 1806 году.

Перфокарты Жаккарда


Карты Жакаррда

1832 год



Перфорационная таблица С.Н.Корсакова

1834 год

В аналитической машине Бэббиджа для ввода инструкций (программы) использовались перфокарты.

Перфокарты Бэббиджа


Перфокарты Бэббиджа для аналитической машины

1884 год

Перфокарта представляла собой кусок картона около 90 мм на 215 мм (размер соответствовал размеру долларовой купюры того времени) с круглыми отверстиями.

Первый комплекс оборудования не имел специального перфоратора (устройства для подготовки информации на перфокартах), а использовал пробойник кондуктора в поездах. Карточки сортировались электрическим способом, но подача, выемка и перемещение в сортировочный ящик осуществлялись вручную. Применение данной системы резко ускорило процесс обработки статистики. Первая система Холлерита позволяла только подсчитывать количество карточек с определенными комбинациями пробивок. Сами карточки для каждого применения были различных размеров, зоны пробивок могли размещаться в различных частях карты.

Применение специального перфоратора-пантографа позволило улучшить процесс пробивки карт и повысить скорость работы примерно до 500 карт в день.

Перфоратор-пантограф


Перфоратор-пантограф

Требование суммирования данных, пробитых на карточках, отразилось в новом интегрирующем (суммирующем) перфораторе Холлерита.



Перфокарта, 1885

Размер карт, расположение и размер круглых пробивок было приведено к одному стандарту, который оставался единым для большинства машин.

1906 год

Джеймс Пауэрс (James Powers) предложил механические перфораторы с электрическим мотором.

Интересные факты

Пауэрс закончил Техническую школу в Одессе и какое-то время работал в механической мастерской Одесского Университета.
Прибыв в Америку в восемнадцатилетнем возрасте, Пауэрс осел в Бруклине и работал в таких широкоизвестных фирмах (в США конца 19 века), как Carrin Machine Company, Western Electric и Bergman’s Electrical Works.
В 1890 г. Джеймс Пауэрс поступил на работу в Бюро Переписей в качестве техника по перфорационным машинам (Холлерита).
Пауэрс проявил себя в Бюро Переписей талантливым изобретателем, внесшим много усовершенствований в машины Холлерита. В частности ручной рычаг в устройстве автоматической сортировки Холлерита был заменен на ножную педаль, освободившую руки оператора, а в 1906 г. циферблатные счетчики были заменены печатающими на бумагу.



Перфоратор Пауэрса, 1910 год

Машина, изображенная сверху, построена по принципу пишущей машинки с 240 клавишами, покрашенными в разные цвета (хотя на перфокарте 288 позиций). Присутствовала автоматическая подача перфокарт. Операция пробивки осуществлялась одновременно для всей перфокарты, а не по отдельным отверстиям, что позволяло вовремя исправлять ошибки без перебивки карт.

1928 год

Фирма IBM ввела новую карту с прямоугольными пробивками, 12 строк и 80 колонок, размер карты 7-3/8 дюймов 3-1/4inch (187,325 по 82,55 мм), толщина карты 0,007 дюйма (0,178 мм). Первоначально углы были острые.



Подготовка перфокарт на перфораторе

1964 год

Появились перфокарты со скругленные углами.


Для удобства работы с текстовыми данными появились перфораторы, печатающие на верхнем поле перфокарты текст, пробиваемый на карте. Это позволяло визуально контролировать информацию подготовленную на перфокарте.



В Советском союзе оставались перфокарты с острыми углами

1985 год

Фирма IBM закрыла свою последнюю фабрику по выпуску перфокарт - этот носитель информации практически вышел из употребления.

Привет, Geektimes! Обычно в нашем блоге мы рассказываем про новые продукты и технологии компании OCZ. Однако сегодня речь пойдет о том, как эволюционировали технологии хранения данных на протяжении всей истории их существования, которая насчитывает уже более 200 лет.



Наш рассказ начинается, конечно же, с перфокарт. Многие ошибочно считают, что перфокарты являются открытием XX века, однако, это не так. Первые перфокарты появились ещё в начале XIX века и использовались в ткацком станке, созданном французским изобретателем Жозефом Мари Жаккаром.


Итак, что же придумал Жаккар. В XIX веке производство ткани представляло собой довольно трудоемкий процесс, однако по своей сути это было постоянное повторение одних и тех же действий. Имея за спиной огромный опыт работы в качестве наладчика станков, Жаккар подумал, почему бы этот процесс не автоматизировать.

Плодом его работы стала система, использующая огромные твердые пластины, в которых были проделаны несколько рядов отверстий. Эти пластины и были первыми в мире перфокартами. Справедливости ради нужно отметить, что Жаккар все же не был в этой области новатором. Французские ткачи-изобретатели Базиль Бушон и Жак Вокансон также пытались использовать продырявленные ленты в своих ткацких станках, но не смогли завершить начатое.


Принцип работы Жаккардовой машины заключался в том, что на вход в считывающее устройство, которое представляло собой набор щупов, связанных со стержнями нитей, подавались перфокарты. При проходе перфорированной ленты через считывающее устройство щупы проваливались в отверстия, поднимая вверх соответствующие нити. Так определенная комбинация дыр в перфокарте позволяла получить нужный узор на ткани.


Перфокарты также занимали центральное место в изобретениях американского инженера Германа Холлерита, который в 1890 году создал табулятор – устройство, предназначенное для обработки буквенных и числовых символов, записанных на перфокарту, и вывода результата на бумажную ленту. На первых порах табулятор Холлерита использовало Бюро переписи населения США, а несколько позже систему взяли на вооружение в железнодорожном управлении и правительстве. К слову, в 1896 году Холлерит основал компанию Tabulating Machine Company, которая в 1911 году стала частью конгломерата C-T-R, который в свою очередь в 1924 году был переименован в IBM.


Основным преимуществом перфокарт была простота и удобство манипуляции данными. В любом месте колоды можно было добавить или удалить карты, а также легко заменить одни карты другими. Но были и свои минусы, которые с течением времени начали перевешивать плюсы. Прежде всего, это малая ёмкость. Как правило, перфокарта вмещала в себе всего лишь 80 символов. Это значит, что для хранения 1 Мбайта данных потребовалось бы порядка 10 тысяч перфокарт. Также для перфокарт была характерна низкая скорость чтения и записи. Даже самые быстрые считывающие устройства не обрабатывали более тысячи перфокарт в минуту, что соответствует примерно 1,6 Кбайт/мин. И, конечно, надёжность. Повредить изготовленную из тонкого картона перфокарту или проделать лишнее отверстие было проще простого.


Пик развития перфокарт пришелся на середину XX века, а закат эпохи наступил в 1980-х годах, когда им на смену пришли более совершенные магнитные носители информации.

Первая магнитная пленка была создана в 1928 году немецким ученым Фрицем Пфлюмером. Такая пленка представляла собой тонкую бумагу, на которую был нанесен тонкий слой оксида железа. В том же году Пфлюмер показал прибор, предназначенный для магнитной записи на такую ленту. При записи информации на пленку оказывалось воздействие магнитным полем, и на её поверхности сохранялась намагниченность.



Первым коммерческим компьютером, который комплектовался магнитной лентой, был UNIVAC-I, выпущенный в 1951 году. В сравнении с перфокартами, магнитная плёнка UNIVAC-I была намного более вместительной – в нее можно было уместить порядка 1 Мбайта данных.


В качестве основного хранилища данных магнитные ленты использовались до 1980-х годов. В этот период они устанавливались в мейнфреймы и мини-компьютеры. С приходом жестких дисков магнитной ленте была отведена роль резервного хранилища данных. В 2000-х годах неоднократно высказывались мнения, что в скором времени магнитные пленки окончательно уйдут на покой. Начиная с 2008 года рынок ленточных накопителей уменьшался в среднем на 14% в год. Однако ситуация кардинально поменялась в 2011 году, когда Таиланд, где были расположены огромные производственные мощности производителей жестких дисков, сильно пострадал от наводнения. Из-за стихийного бедствия объемы производства HDD значительно упали, а цены на продукцию выросли на 20-60%. В результате магнитная лента обрела вторую жизнь.


Рынок ленточных накопителей поддерживается ещё тем фактом, что такие запоминающие устройства до сих пор обходятся дешевле, чем современные жесткие диски. По словам Эвангелоса Элефтеро, руководителя отдела технологий хранения данных исследовательской лаборатории IBM в Цюрихе, 1 Гбайт магнитной ленты стоит примерно 4 цента, тогда как 1 Гбайт дискового пространства на HDD обходится как минимум в 2,5 раза дороже – 10 центов. По этой причине выбор в пользу магнитной плёнки делают, к примеру, крупные исследовательские лаборатории, где существует необходимость хранить огромные объемы информации. К примеру, для хранения результатов на Большом адронном коллайдере используется именно магнитная лента. Для хранения 28 петабайтов данных на жестких дисках организации CERN, ответственной за создание и работу коллайдера, пришлось бы раскошелиться более чем на 38 миллионов долларов. В то время как хранение такого же объема информации на магнитной ленте обошлось им всего лишь в 1,5 миллиона.


По словам главы подразделения обработки и хранения данных CERN Альберто Пейса, помимо дешевизны, у магнитной ленты есть ещё несколько преимуществ перед жесткими дисками. Во-первых, это надежность. В случае разрыва ленты её всегда можно склеить, потеряв при этом лишь несколько сотен мегабайт даных. А при поломке жесткого диска, скорее всего, будет утеряна вся информация. Во-вторых, это скорость доступа. Роботу, который выбирает нужную кассету и вставляет её в считыватель, требуется около 40 секунд для выполнения этой операции. Но даже это примерно в 4 раза быстрее, чем если бы данные приходилось считывать с жесткого диска. В-третьих, срок службы магнитных лент достигает 30 и более лет, тогда как жесткие диски могут работать на протяжении всего 5 лет.


Альберто Пейс выделил ещё один значимый плюс магнитных лент – их безопасность. В теории злоумышленники могут получить доступ к жестким дискам, тогда как онлайн-доступ к магнитной плёнке получить невозможно.


На самом деле первые дискеты вовсе не пользовались популярностью. Причина этого заключается в том, что стоимость дисководов, которые требовались для чтения дискет, едва ли не превышала стоимость целого компьютера.


И вот в 1976 году появился формат 5,25 дюймов. Нужно отметить, что этот стандарт разрабатывался основанной Шугартом компанией Shugart Associates в тесном сотрудничестве с организацией Wang Laboratories, которая планировала использовать уменьшенный формат в своих настольных компьютерах. Почему же 5,25"? Когда Ан Вэнг из Wang Laboratories вместе с Джимом Адкиссоном и Доном Массаро из Shugart Associates обсуждали будущий форм-фактор в баре, их внимание привлекла обычная салфетка. Так и родилась идея создать дискету с такими размерами. Она получила название mini-floppy.


Привычный 3,5-дюймовый формат дискета получила в 1981 году. Создателем формата выступила компания Sony. Первые 3,5" дискеты имели объем 720 Кбайт, но вскоре появились модели, вмещающие 1,44 Мбайт информации. Но к середине 90-х годов даже этого объема уже было недостаточно. Тем не менее дискеты ещё долго удерживались на рынке носителей информации, и лишь с появлением по доступной цене накопителей на основе флэш-памяти начали сдавать свои позиции.


Читайте также: