История создания химических волокон кратко

Обновлено: 05.07.2024

ВложениеРазмер
lugancova_tatyana.doc 141.5 КБ

Предварительный просмотр:

Министерство образования и науки

Муниципальное образовательное учреждение

Средняя общеобразовательная школа № 40

учащаяся 10 класса

Луганцова Татьяна Ивановна

учитель по химии

Юшко Елизавета Петровна.

  1. Введение……………………………………………………………стр.2-3
  2. Причины появления химических волокон……………………….стр.4
  3. Виды химических волокон………………………………………..стр.5-8
  4. Производство химических волокон………………………. …. стр.9-10
  5. Представители химических волокон, их характеристика и использование……………………………………………………..стр.11-16
  6. Проблемы, связанные с производством химических волокон……………………………………………………………. стр.17
  7. Заключение…………………………………………………………стр.18
  8. Используемая литература………………………………………….стр.19

Актуальность данной работы объясняется тем, что в современной жизни с все увеличивающимся народонаселением разные виды волокон находили и находят все большее применение. А развитие химических технологий дает возможность создавать новые волокна с заранее заданными свойствами. Целью данной работы является:

  1. познакомиться с причинами появления химических волокон, их классификацией и способами производства.
  2. анализировать и прогнозировать области использования разных видов волокон на основе их свойств.

В соответствии с целью исследования были поставлены следующие основные задачи:

  1. выявление причины появления химических волокон.
  2. определение важнейших этапов в производстве химических волокон.
  3. ознакомление с главными представителями химических волокон, их характеристикой и использованием.
  4. обозначить проблемы производства химических волокон.

Причины появления химических волокон.

За последние 100 лет население Земли удвоилось. Но еще больше возросли потребности людей. Выработка природных волокон – шерсти, хлопка, натурального шелка, льна, конопли – стала заметно отставать от спроса: она увеличивается на 25%, а спрос – на 100%. Устранить это несоответствие помогла химия. Ежегодно на заводах производятся миллионы километров искусственного шелка и других химических волокон из природной целлюлозы или из угля, известняка, поваренной соли и воды. Сегодня доля химических волокон в общей их выработке составляет уже более 28%. Огромное значение химических волокон очевидно. В самом деле, если затраты труда на изготовление синтетического полиамидного шелка принять за 100%, то для искусственного вискозного шелка они составят 60%, для шерсти 450%, а для натурального шелка еще больше – 25000%! Шерсть на овце за 3 месяца отрастает в среднем на 30 мм. А на заводе химического волокна прядильная машина за 1 минуту вытягивает до 5000 м нити!

Виды химических волокон.

В России принята следующая классификация химических волокон в зависимости от вида исходного сырья:

  1. искусственное волокно (из природных полимеров): гидратцеллюлозные, ацетилцеллюлозные, белковые
  2. синтетическое волокно (из синтетических полимеров): карбоцепные, гетероцепные

Гидратцеллюлозные волокна - волокна, получаемые из хлопковой или древесной целлюлозы по вискозному или медноаммиачному способу.

К группе белковых волокон относятся казеиновое и зеиновое волокна. Белковые волокна обладают мягкостью, хорошими теплоизоляционными свойствами, по показателям растяжимости и гигроскопичности приближаются к шерстяным.

Гетероцепные соединения представляют класс веществ, весьма разнообразных по строению и многочисленных по числу представителей. Помимо большого числа природных соединений этого типа, уже в настоящее время известно очень много гетероцепных синтетических соединений, отличающихся рядом интересных свойств и нашедших практическое применение.

К гетероцепным волокнам относятся:

полиамидные волокна - синтетические волокна, формуемые из расплавов или растворов полиамидов. К таким волокнам относятся капрон, анид, этант. Их поперечное сечение зависит от формы отверстия фильеры, через которую продавливаются полимеры. Обычно для производства полиамидных волокон используют линейные алифатические полиамиды с молекулярной массой от 15 000 до 30 000 (чаще всего поликапроамид и олигексаметиленадипинамид). С конца 60-х гг. 20 в. налажен выпуск полиамидных волокон из ароматических полиамидов, обладающих высокой термостойкостью. Технологический процесс получения полиамидных волокон включает три основных этапа: синтез полимера, формование волокна и его текстильную обработку. Полиамидные волокна характеризуются высокой прочностью при растяжении, отличной стойкостью к истиранию и ударным нагрузкам. Устойчивы к действию многих химических реагентов, хорошо противостоят биохимическим воздействиям, окрашиваются многими красителями. Максимальная рабочая температура волокон из алифатических полиамидов 80 -150°С, волокон из ароматических полиамидов – 350 - 600°С. Полиамидные волокна растворяются в концентрированных минеральных кислотах, феноле, крезоле, трихлорэтане, хлороформе и др. Полиамидные волокна малогигроскопичны, что является причиной их повышенной электризуемости. Они плохо устойчивы к термоокислительным воздействиям и действию света, особенно ультрафиолетовых лучей. Для устранения этих недостатков в полиамиды вводят различные стабилизаторы. Полиамидные волокна отличаются высоким относительным разрывным усилием, стойки к истиранию, многократному изгибу, обладают высокой химической стойкостью, морозоустойчивостью, устойчивостью к действию микроорганизмов. полиэфирные волокна - синтетические волокна, формуемые из расплава полиэтилентерефталата. К полиэфирным волокнам относится лавсан. В поперечном сечении волокно лавсана имеет форму круга. Превосходят по термостойкости большинство натуральных и химических волокон: при 180°С они сохраняют прочность на 50%. Загораются полиэфирные волокна с трудом и гаснут после удаления источника огня; при контакте с искрой и электродугой не обугливаются. Полиэфирные волокна сравнительно атмосферостойки. Они растворяются в фенолах, частично (с разрушением) - в концентрированной серной и азотной кислотах; полностью разрушаются при кипячении в концентрированных щелочах. Обработка паром при 100°С из-за частичного гидролиза полимера вызывает снижение прочности волокна (0,12% за 1 ч). Полиэфирные волокна устойчивы к действию ацетона, четырёххлористого углерода, дихлорэтана и др. растворителей, микроорганизмов, моли, плесени, коврового жучка. Устойчивость к истиранию и сопротивление многократным изгибам полиэфирных волокон ниже, чем у полиамидных волокон, а ударная прочность выше. Прочность при растяжении полиэфирных волокон выше, чем у других типов химических волокон. Недостатки полиэфирных волокон - трудность крашения обычными методами, сильная электризуемость, склонность к пиллингу, жёсткость изделий - во многом устраняются химической модификацией полиэтилентерефталата, например диметилизофталатом, диметиладипинатом (эти соединения вводят в реакционную смесь на стадии синтеза полиэтилентерефталата). полиуретановые волокна - спандекс, синтетические волокна, формуемые из растворов или расплавов полиуретанов или методом химического формования (полиуретан образуется из диизоцианата и диамина непосредственно в процессе волокнообразования). По механическим показателям полиуретановые волокна резко выделяются среди др. видов химических и натуральных волокон и во многом сходны с резиновыми нитями. Для них характерны высокое удлинение, низкий модуль упругости, способность к упругому восстановлению в исходное состояние за очень короткое время. При 120° С, особенно в растянутом состоянии, происходит значительная потеря прочности полиуретановых волокон. Поэтому чистку и крашение изделий из полиуретановых волокон проводят при температурах не выше 90°С. Под действием света полиуретановые волокна желтеют (этого в значительной степени можно избежать применением светостабилизаторов), а их механические свойства изменяются незначительно. Полиуретановые волокна довольно устойчивы к действию гидролитических агентов во время отделки, стирки, крашения; стойки в маслах, хлорсодержащих органических растворителях, кислотах, щелочах. Полиуретановые волокна перерабатывают в чистом виде или в смеси с натуральными или с др. видами химических волокон. Последние идут главным образом на оплётку полиуретановой нити, которая предохраняет стержневую нить от действия света. Для получения тканей используется пряжа, состоящая из 5 - 20% полиуретановых волокон и 80 - 95% нерастяжимых волокон. Карбоцепные волокна состоят из молекул, которые содержат в главной цепи только атомы углерода, относятся полиакрилонитрильные, поливинилхлоридные, поливинилспиртовые и полиолефиновые. Карбоцепные волокна благодаря своим свойствам в настоящее время получили большое распространение при изготовлении технических изделий. К полиакрилонитрильным волокнам относится нитрон, по внешнему виду напоминающий шерсть. Поверхность волокна гладкая с гантелеобразным поперечным сечением. Нитрон отличается высоким относительным разрывным усилием, которое в мокром состоянии не меняется, и упругостью. Нитрон не повреждается молью и микроорганизмами, обладает высокой стойкостью к ядерным излучениям. По стойкости к истиранию нитрон уступает полиамидным и полиэфирным волокнам. Кроме того он характеризуется низкой гигроскопичностью, сильной электризуемостью, низкой теплопроводностью и высокой светостойкостью. Поливинилхлоридные волокна - синтетические волокна, формуемые из растворов поливинилхлорида, перхлорвиниловой смолы или сополимеров винилхлорида. Формование осуществляют по сухому или мокрому методу. К поливинилхлоридным волокнам относится хлорин, который по сравнению с другими синтетическими волокнами и хлопком характеризуется меньшими относительным разрывным усилием, упругостью, стойкостью к истиранию, гигроскопичностью, свето- и термостойкостью. Поливинилхлоридные волокна обладают высокой химической стойкостью, очень низкой тепло- и электропроводностью, негорючи, устойчивы к действию микроорганизмов. Для поливинилхлоридные волокна, не подвергнутых термофиксации, характерна высокая усадка (в кипящей воде до 55%). Поливинилспиртовые волокна - синтетические волокна, формуемые из растворов поливинилового спирта главным образом по мокрому методу. Поливинилспиртовые волокна в зависимости от технологии производства могут иметь различные механические свойства. Как правило, они обладают высокой прочностью и устойчивостью к истиранию и изгибу. Может быть получено поливинилспиртовое волокно с наибольшей среди других синтетических волокон гигроскопичностью. В группу поливинилспиртовых волокон входят винол и милан. Винол отличается от всех синтетических волокон повышенной гигроскопичностью, для него характерны высокая стойкость к истиранию и низкая теплопроводность. Милан обладает антимикробными свойствами. Поливинилспиртовые волокна обладают отличной устойчивостью к действию света, микроорганизмов, пота, различных реагентов (кислот, щелочей, окислителей умеренных концентраций, малополярных растворителей, нефтепродуктов). Полиолефиновые волокна - волокна, получаемые главным образом из полипропилена, полиэтилена, реже из поли-4-метил-1-пентена. Формуют из расплавов полимеров экструзионным методом. Достоинства полиолефиновых волокон - высокая эластичность и низкая стоимость благодаря доступности сырья; недостатки - низкая светостойкость и относительно невысокая температура плавления.

Производство химических волокон.

Представители химических волокон, их характеристика и использование.

ХИМИЧЕСКИЕ ВОЛОКНА

Задача создания удобной одежды, защищающей человека от внешней среды, возникла уже на самых ранних стадиях развития человеческого общества. Можно выделить по крайней мере три этапа решения этой задачи, принципиально отличающихся характером сырья, применяемого для изготовления одежды. На первом этапе одежду изготовляли из шкур животных и материалов, получаемых из стеблей растений (прообраза современных тканей); на втором были использованы материалы из природных волокон (хлопок, шерсть, лен, натуральный шелк). Мы являемся современниками третьего этапа, когда в качестве сырья для получения тканей, трикотажа, нетканых текстильных материалов, а также для производства разнообразных изделий технического назначения (канаты, сети, приводные и привязные ремни, резинотехнические изделия, фильтровальные материалы и многое другое) во все возрастающих количествах наряду с природными волокнами, а очень часто и вместо них, используют химические волокна.

ЭТАПЫ РАЗВИТИЯ ПРОИЗВОДСТВА, ОСНОВНЫЕ ТИПЫ И СПОСОБЫ ПОЛУЧЕНИЯ ХИМИЧЕСКИХ ВОЛОКОН

Что же такое химические волокна? Когда у человека возникла мысль о возможности замены природного текстильного сырья на материалы, создаваемые в условиях промышленного производства? Каковы основные признаки химических волокон, способы их получения и свойства? Для ответа на эти вопросы придется использовать понятия химии, и прежде всего химии высокомолекулярных соединений.

Итак, ответим на первый вопрос. Химическими волокнами называют волокна, при получении которых используют химические или физико-химические процессы переработки природных и синтетических высокомолекулярных соединений (полимеров). В зависимости от происхождения полимера химические волокна разделяют на две основные группы: искусственные волокна (если используемый полимер имеет природное происхождение) и синтетические (если волокнообразующий полимер получают в результате химического синтеза из низкомолекулярных соединений-мономеров). В свою очередь, особенности химического строения волокнообразующих полимеров позволяют разделить химические волокна на два основных класса: карбоцепные волокна, основная цепь макромолекулы полимера в которых построена только из атомов углерода, и гетероцепные волокна, у которых в основной полимерной цепи наряду с углерод-углеродными связями имеются также связи между атомами углерода и так называемыми гетероатомами (например, атомами азота или кислорода). Наконец, внутри класса гетероцепных волокон можно выделить волокна, отличающиеся типом связи между элементарными звеньями макромолекулы волокнообразующего полимера, - полиамидные со связями , полиэфирные со связями и некоторые другие.

Впервые мысль о том, что человеком может быть создан процесс, подобный процессу получения натурального шелка, при котором в организме гусеницы шелкопряда вырабатывается вязкая жидкость, затвердевающая на воздухе с образованием тонкой прочной нити, была высказана французским ученым Р. Реомюром еще в 1734 году. Однако прошло около полутора столетий, прежде чем эта идея нашла свое практическое воплощение.

На первом этапе развития промышленности химических волокон в качестве волокнообразующих полимеров были использованы целлюлоза, составляющая основу большинства растительных организмов, и ее производные (табл. 1).

Производство первого в мире химического (искусственного) волокна было организовано во Франции в г. Безансоне в 1890 году и основано на переработке раствора эфира целлюлозы (нитрата целлюлозы), применяемого в промышленности при получении бездымного пороха и некоторых видов пластмасс. Однако вследствие пожаро- и взрывоопасности производства, невысокой прочности волокна (так называемого нитрошелка) эта технология не получила дальнейшего развития.

Гигантский шаг, определивший направление развития промышленности химических волокон на многие десятилетия, был сделан в 1891 году с появлением патента, закрепившего принципы технологии получения искусственного целлюлозного волокна, основу которой составляло получение растворимого в водном растворе NaOH эфира целлюлозы - ксантогената целлюлозы и последующее формование волокна из концентрированного вязкого раствора ксантогената целлюлозы в осадительную ванну, содержащую серную кислоту и ее соли. В этой ванне происходит разложение ксантогената целлюлозы и регенерация целлюлозы. Химические реакции, протекающие при получении вискозного волокна, представлены в (1).

[C6H7O2(OH)3]n + CS2 + NaHSO4 .

Последним из группы искусственных волокон появилось волокно из стабильного сложного эфира целлюлозы и уксусной кислоты - ацетата целлюлозы. В отличие от процесса формования вискозного волокна, в котором образование нитей происходит в результате осаждения полимера из струек раствора ("мокрый" способ формования), формование ацетатных нитей происходит в результате испарения из струек раствора легко летучего растворителя, например, ацетона ("сухой" способ формования).

Производство первого синтетического волокна - волокна из поливинилхлорида (см. табл. 1) было организовано лишь в начале 30-х годов. Ничто тогда не предвещало поистине триумфального завоевания рынка текстильных волокон и изделий из них волокнами, относящимися к этому классу. Действительно, период с первого десятилетия и до середины нашего века был временем постоянного заметного увеличения производства искусственных волокон, мировой объем производства которых к концу 70-х годов превысил 3 млн. т в год. Только в конце 80-х - начале 90-х годов проявилась тенденция к некоторому снижению этой величины.

Как можно оценить этот объем производства? Велик он или мал? И почему таким мощным оказалось развитие промышленности синтетических волокон? Ответ на первую часть этого вопроса дают данные табл. 2.

Очевидно, что в настоящее время потребности как собственно текстильной промышленности, так и других отраслей, использующих ткани и изделия из волокон, пряжи, нитей, не покрываются производимыми природными волокнами. Сырьем для этих отраслей во все большей степени становятся химические волокна. Эти волокна, в особенности синтетические, уже не являются простыми заменителями природных, а очень часто превосходят их по свойствам, обеспечивая возможность создания материалов с новыми потребительскими свойствами (повышенными прочностью и эластичностью, несминаемостью, устойчивостью к действию химических реагентов и высоких температур и др.).

Следует, однако, подчеркнуть, что в общем объеме производства химических волокон доля искусственных волокон составляет сейчас менее 15%. Первой и основной причиной резкого снижения доли искусственных волокон в общем объеме производства химических волокон является необходимость использования в технологическом процессе получения основного искусственного волокна токсичного и взрывоопасного сероуглерода и возможность выделения этого вещества, а также сероводорода, в атмосферу, а высокотоксичных цинксодержащих соединений - в водные бассейны.

В то же время необходимо отметить, что из существующих видов химических волокон только искусственные, и прежде всего вискозные, благодаря их высокой гидрофильности и низкой электризуемости, обеспечивают возможность получения материалов с высокими гигиеническими характеристиками (ткани и трикотаж из вискозных нитей и пряжи и из смесей вискозных и синтетических полиамидных и полиэфирных волокон). Поэтому, несмотря на весьма динамичное развитие производства синтетических волокон, реальной альтернативы искусственным волокнам на основе целлюлозы нет. Вместе с тем совершенно очевидно, что дальнейшее развитие промышленности вискозных волокон может быть обеспечено только при условии успешного решения технологических и экологических проблем, что позволит снизить вредность этого производства.

Что же послужило основой мощного рывка в производстве синтетических волокон? Такой основой явилась разработка методов синтеза волокнообразующих полиамидов по реакции поликонденсации по уравнению (2) (США, полиамид 6.6) и по реакции полимеризации гетероциклических мономеров по уравнению (3) (Германия, полиамид 6), а затем и полиэфиров (Англия) - уравнение (4), и способов получения из этих полимеров волокон принципиально новым для того времени методом формования из расплава:

В настоящее время на долю именно этих волокон, в особенности полиэфирных, приходится основной объем производства синтетических волокон (табл. 3).

Поистине неоценимым преимуществом технологического процесса получения полиамидных и полиэфирных волокон является возможность их формования из расплава полимера, что исключает необходимость применения (а следовательно, и регенерации) растворителей, а также обеспечивает высокие скорости формования.

Практически одновременно с появлением полиэфирных волокон был разработан процесс производства еще одного синтетического волокна - полиакрилонитрильного. В отличие от формования полиамидных и полиэфирных волокон формование волокон из сополимеров акрилонитрила осуществляется из раствора по мокрому способу. Пожалуй, трудно найти другой тип волокнообразующего полимера или сополимера, для получения волокна из которого применяют такие разнообразные по строению растворители, как концентрированная азотная кислота, концентрированный водный раствор роданида натрия (NaSCN), диметилформамид , диметилсульфоксид и др. По своим характеристикам полиакрилонитрильные волокна являются ближайшими аналогами шерсти.

Однако представления об ассортименте выпускаемых многотоннажных химических волокон будут далеко не полными, если они будут базироваться только на информации, содержащейся в табл. 1, поскольку этот перечень относится лишь к первым этапам становления и развития промышленности химических волокон. Так, весьма заметное место в современном ассортименте синтетических волокон занимают полипропиленовые волокна и нити, объем производства которых в последние годы быстро возрастал и составил около 3 млн. т в год. Производство полипропиленовых волокон стало возможным только после разработки метода синтеза стереорегулярных полимеров и, в частности, полипропилена, из высоковязкого расплава которого может быть сформовано волокно. Основное количество выпускаемых полипропиленовых волокон используется в техническом секторе для изготовления канатов, фильтровальных материалов, тарных тканей.

Все большее внимание привлекают эластомерные волокна (спандекс, лайкра), получаемые при переработке синтетических гетероцепных полимеров, относящихся к классу полиуретанов, синтезируемых, например, из гексаметилендиизоцианата и бутандиола-1,4:

Характерной особенностью этих волокон являются высокие, полностью обратимые деформации, что позволяет использовать их для изготовления эластичной и немнущейся спортивной одежды, купальных костюмов, колготок и т.п.

НЕКОТОРЫЕ ПРОБЛЕМЫ И ПЕРСПЕКТИВЫ СОВЕРШЕНСТВОВАНИЯ И РАЗВИТИЯ ПРОИЗВОДСТВА ХИМИЧЕСКИХ ВОЛОКОН

Рассматривая современную ситуацию в области производства химических волокон, можно утверждать, что в ближайшее время основной ассортимент этих волокон сохранится, а новые виды волокон широкого назначения вряд ли появятся. В то же время в технологии целого ряда уже существующих волокон происходят весьма существенные изменения. К таким изменениям принципиального характера для волокон, формуемых из расплава, следует прежде всего отнести переход к высокоскоростному формованию.

Дело в том, что нити, получаемые при обычно использовавшихся скоростях формования (800 - 1200 м/мин), фактически представляют собой полуфабрикат и не могут быть непосредственно применены для получения изделий. Для доведения этих нитей до состояния, пригодного к текстильной переработке, должно быть использовано дополнительное технологическое оборудование. При формовании на высоких скоростях (4 - 6 тыс. м/мин) готовые к текстильной переработке нити получают в результате одностадийного процесса непосредственно на машине формования.

Химические нити, получаемые в процессе формования, представляют собой пучок из нескольких, а иногда из нескольких десятков отдельных нитей - так называемых элементарных нитей диаметром 12 - 20 мкм (исключение составляют только мононити, применяемые, например, для изготовления тонких колготок). Тонина таких нитей соизмерима с тониной волокон хлопка или шерсти и существенно больше, чем у наиболее тонких нитей природного происхождения, например, натурального шелка. Ниже приведены данные о диаметре различных типов текстильных нитей.

Высокоскоростное формование привело к появлению принципиально нового типа "микронитей" или "микроволокон" с диаметром элементарных нитей 6 - 9 мкм, то есть тоньше, чем у натурального шелка. Применение микронитей позволяет изготавливать ткани с высочайшей плотностью переплетения (20 - 30 тыс. нитей на 1 см2 поверхности ткани), имеющие шелкоподобный вид, красиво драпирующиеся, обладающие уникальным комплексом свойств - непродуваемостью, водоотталкивающими свойствами, легкостью испарения влаги из пододежного пространства. Такое сочетание свойств делает эти ткани поистине незаменимым материалом для спортивной одежды.

Одной из важнейших проблем производства химических волокон является создание волокон и нитей, применяемых для изготовления материалов, используемых в экстремальных условиях и прежде всего при высоких механических нагрузках и повышенной температуре. Такие материалы определяют развитие многих направлений современной техники (изделия авиационной, космической и электропромышленности, защитная противобаллистическая и негорючая спецодежда и др.).

Какие принципы используются при решении этой проблемы? Для ответа на вопрос необходимо хотя бы схематически рассмотреть, от каких основных факторов зависят прочность и термостойкость волокон. В процессе формования химических волокон, а в ряде случаев на последующей стадии технологического процесса - при вытягивании - происходит формирование их структуры. При этом за счет упорядоченного расположения отдельных участков макромолекул возникают элементы кристаллической высокоупорядоченной структуры (кристаллиты), происходит их ориентация параллельно оси волокна, а также ориентация промежуточных участков макромолекул, образующих аморфную (менее упорядоченную) фазу. Прочностные свойства химических волокон и нитей определяются прежде всего степенью совершенства их структуры (соотношением кристаллической и аморфной фазы, степенью ориентации макромолекул и их агрегатов вдоль оси волокна и т.п.). Эти показатели, в свою очередь, зависят не только от условий получения волокна (формования, вытягивания), но и от особенностей химического строения полимера. Добиться высокой кристалличности и степени ориентации, обеспечивающих повышение прочности и, соответственно, возможность использования волокна в изделиях, к прочностным характеристикам которых предъявляются особенно жесткие требования, можно, применяя для получения волокна жесткоцепные полимеры. К этой группе относятся, в частности, полимеры, содержащие в основной цепи ароматические группировки (табл. 4).

Высокопрочные волокна могут быть получены также из гибкоцепных полимеров, например полиэтилена. В этом случае предпосылками создания необходимой структуры являются как характеристики самого полимера (используется сверхвысокомолекулярный, то есть с очень большой длиной полимерной цепи полиэтилен), так и условия формования (формование осуществляется не из расплава, как при получении обычных полиэтиленовых волокон, а из геля - высококонцентрированного раствора с очень высокой вязкостью). По прочностным характеристикам высокопрочные синтетические волокна превосходят большинство волокон чисто текстильного назначения в несколько (а иногда и в десятки) раз:

Для этих волокон характерно также высокое значение начального модуля (модуля упругости), что гарантирует сохранение размеров изделий даже при значительных механических нагрузках.

Понятие термостойкости включает прежде всего устойчивость химических связей в макромолекуле полимера в условиях воздействия повышенной температуры. К наиболее устойчивым к термическому воздействию структурам, обеспечивающим достаточно высокую термостойкость волокна (выше 400?С), относятся полностью ароматические макромолекулы или макромолекулы, содержащие конденсированные ароматические и гетероциклические группировки (табл. 4).

Высокопрочные и термостойкие волокна заметно отличаются от описанных выше химических волокон по химическому строению (табл. 4). И именно эти особенности строения определяют свойства волокон и основные, достаточно специфические области их применения. Так, высокопрочные волокна используют при получении шинного корда, для защиты оптиковолоконных кабелей, изготовления пуленепробиваемой защитной одежды, в качестве замены асбеста в тормозных колодках и др., термостойкие волокна - для армирования связующих в композитах, применяемых в авиастроении, изготовления спецодежды (например, для пожарных), при создании фильтрующих материалов для очистки горячих газов.

Объемы производства этих волокон значительно меньше, чем многотоннажных химических волокон (табл. 2), однако их роль в создании современных материалов, обеспечивающих технический прогресс различных отраслей народного хозяйства, поистине неоценима.

Представленный в статье материал ни в коей мере не претендует на полноту освещения всех проблем, связанных с получением и свойствами химических волокон и перспективами развития этой отрасли химической промышленности. Более детальная информация о технологических процессах производства отдельных видов химических волокон и их свойствах содержится в [1, 2].

Суммируя вышеизложенное, можно отметить, что наиболее характерными чертами развития промышленности химических волокон на современном этапе является устойчивый рост общего объема их производства за счет увеличения выпуска синтетических и прежде всего полиэфирных волокон, а также изменение и расширение ассортимента выпускаемой продукции, в том числе волокон специального назначения. Можно предположить, что будущее в промышленности химических волокон за предприятиями с гибкой технологией, способными быстро откликаться на изменяющиеся требования потребителей.

1. Юркевич В.В., Пакшвер А.Б. Технология производства химических волокон. М.: Химия, 1987. 304 с.

2. Перепелкин К.Е. Структура и свойства волокон. М.: Химия, 1985. 208 с.

Леонид Семенович Гальбрайх, доктор химических наук, профессор, заслуженный деятель науки России, заведующий кафедрой технологии химических волокон Московской государственной текстильной академии, автор четырех монографий и свыше 300 работ в отечественных и зарубежных научных журналах.

Производство синтетических волокон

Для получения синтетических материй применяется сырье разного состава – целлюлозы, стекловолокна, металлов, волокна из нефтепродуктов и т.д.

Синтетические ткани имеют короткую историю по сравнению с натуральными материями, которые производились и использовались людьми еще тысячи лет назад до нашей эры.

Первые мысли о том, как получить нить аналогичную нити шелкопряда, пришла ученому из Франции Реомюру еще в 1734 году. В 1890 году также во Франции в городе Безансоне было открыто производство по переработке нитрата целлюлозы, в результате чего получили первое в мире синтетическое волокно.

С 1891 года технология производства вискозного претерпевает изменения. Благодаря разработкам английских ученых Кросса и Бивана началось промышленное производство вискозного полотна, и уже к 20 веку выпуск расширился до промышленных объемов.

Конец 19 века и вплоть до 40-50 гг. 20 столетия шла разработка и совершенствование способов производства волокон из синтетических материалов из растворов натуральных полимеров. Но следует заметить, что объемы производства данных вида материала были незначительны.

1940-70 годы дали толчок развитию синтеза волокнообразующих полимеров и мономеров, а также началу разработки способов изготовления волокон из расплавов искусственных полимеров. Основное производство этих волокон находилось в странах с развитой промышленностью. В это же время появились так называемые классические искусственные волокна. На этом этапе развития волокна играют роль дополнительных волокон, которые частично заменяют натуральные волокна. Начинается разработка модифицированных волокон.

Следующий этап развития химических волокон с 1970 г. по 1990 г. характеризуется расширением производства волокон данного вида. Модифицированные волокна улучшают свои потребительские свойства. В это же время искусственные волокна становятся самостоятельным видом продукции, их используют во многих сферах промышленности, в том числе и в смесовых материях. Началась разработка волокон из синтетических материалов третьего поколения, отличающихся абсолютно иными свойствами. Новый вид волокнистых материалов отличается сверхпрочностью, сверхмодульностью, термостойкостью, невозгораемостью, устойчивостью к воздействию химических соединений, эластомерностью и т.д.

С 1990 годов и до наших дней продолжается разработка новых технологий производства синтетических волокон. Появились новые методы модифицирования, создаются многотоннажные волокна, так называемые волокна четвертого поколения, в том числе на основе растительного сырья, новейшие полимеры и мономеры, созданные на основе биохимического синтеза. В это же время проходят исследования новых методов производства полимеров, а также волокон на основе процессов биомиметики и генной инженерии.

Все синтетические материи имеют свои преимущества и недостатки, каждая из них предназначена для получения определенных изделий. Но разнообразие материй на основе химических волокон поражает своим разнообразием.

Издавна, для производства тканей люди использовали те волокна, которые давала им природа. Вначале, это были волокна диких растений, затем волокна конопли, льна, а также шерсть животных. С развитием земледелия люди начали выращивать хлопчатник, дающий очень прочное волокно.

Но природное сырьё имеет свои недостатки, натуральные волокна слишком короткие, требуют сложной технологической обработки. И, люди стали искать сырьё, из которого можно было бы дешёвым способом получать ткань тёплую, как шерсть, лёгкую и красивую как шёлк, практичную, как хлопок.

Сегодня химические волокна можно представить в виде следующей схемы:

Сейчас в лабораториях синтезируются всё новые и новые виды химических волокон, и ни одному специалисту не под силу перечислить их необъятное множество. Учёным удалось заменить даже шерстяное волокно – оно называется нитрон.

  1. Производство химических волокон включает 5 этапов:
  2. Получение и предварительная обработка сырья.
  3. Приготовление прядильного раствора или расплава.
  4. Формование нитей.
  5. Отделка.
  6. Текстильная переработка.

Хлопковые и лубяные волокна содержат целлюлозу. Было разработано несколько способов получения раствора целлюлозы, продавливания его сквозь узкое отверстие (фильеру) и удаления растворителя, после чего получались нити, похожие на шёлковые. В качестве растворителей использовали уксусную кислоту, щелочной раствор гидрооксида меди, едкий натр и сероуглерод. Полученные нити называются соответственно:

При формовании из раствора по мокрому способу струйки попадают в раствор осадительной ванны, где происходит выделение полимера в идее тончайших нитей.

Большую группу нитей, выходящих из фильер, вытягивают, скручивают вместе и наматывают в виде комплексной нити на патрон. Количество отверстий в фильере при производстве комплексных текстильных нитей может быть от 12 до 100.

При производстве штапельных волокон в фильере может быть до 15000 отверстий. Из каждой фильеры получают жгутик волокон. Жгуты соединяются в ленту, которая после отжима и сушки режется на пучки волокон любой заданной длины. Штапельные волокна перерабатываются в пряжу в чистом виде или в смеси с натуральными волокнами.

Синтетические волокна вырабатывают из полимерных материалов. Волокнообразующие полимеры синтезируют из продуктов переработки нефти:

  • бензола
  • фенола
  • аммиака и т.д.

Изменяя состав исходного сырья и способы его переработки, синтетическим волокнам можно придавать уникальные свойства, которых нет у натуральных волокон. Синтетические волокна получают в основном из расплава, например, волокна из полиэфира, полиамида, продавливаемого через фильеры.

В зависимости от вида химического сырья и условий его формирования можно вырабатывать волокна с самыми различными, заранее намеченными свойствами. Например, чем сильнее тянуть струйку в момент выхода её из фильеры, тем прочнее получается волокно. Иногда химические волокна даже превосходят стальную проволоку такой же толщины.

Среди новых, уже появившихся волокон, можно отметить волокна – хамелеоны, свойства которых меняются в соответствии с изменениями окружающей среды. Разработаны полые волокна, в которые заливается жидкость, содержащая цветные магнетики. С помощью магнитной указки можно изменять рисунок ткани из таких волокон.

С 1972 года запущено производство арамидных волокон, которые разделяют по двум группам. Арамидные волокна одной группы (номэкс, конэкс, фенилон) используют там, где необходима стойкость к пламени, и термическим воздействиям. Вторая группа (кевлар, терлон) имеет высокую механическую прочность в сочетании с малой массой.

Высокую механическую прочность и хорошую устойчивость к химическим реагентам имеют керамические волокна, основной вид которых состоит из смеси оксида кремния и оксида алюминия. Керамические волокна можно использовать при температуре около1250°С. Они отличаются высокой химической стойкостью, а устойчивость к радиации позволяет применять их в космонавтике.

Читайте также: