История создания гис кратко

Обновлено: 02.07.2024

Одна из наиболее интересных черт раннего развития ГИС, особенно в шестидесятые годы, заключается в том, что первые инициативные проекты и исследования сами были географически распределены по многим точкам, причем эти работы осуществлялись независимо, часто без упоминания и даже с игнорированием себе подобных.
Возникновение и бурное развитие ГИС было предопределено богатейшим опытом топографического и, особенно, тематического картографирования, успешными попытками автоматизировать картосоставительский процесс, а также революционным достижениями в области компьютерных технологий, информатики и компьютерной графики.

Содержание

Введение 3
1 Развитие ГИС 4
2 Периоды ГИС 8
3 История ГИС в США 13
4 История ГИС в Европе 16
Заключение 18
Список использованных источников 19

Вложенные файлы: 1 файл

итог.docx

Одна из наиболее интересных черт раннего развития ГИС, особенно в шестидесятые годы, заключается в том, что первые инициативные проекты и исследования сами были географически распределены по многим точкам, причем эти работы осуществлялись независимо, часто без упоминания и даже с игнорированием себе подобных.

Возникновение и бурное развитие ГИС было предопределено богатейшим опытом топографического и, особенно, тематического картографирования, успешными попытками автоматизировать картосоставительский процесс, а также революционным достижениями в области компьютерных технологий, информатики и компьютерной графики.

Особо следует отметить идеи и опыт комплексного тематического картографирования, убедительно продемонстрировавшего эффект системного использования разнохарактерных данных для извлечения новых знаний о географических объектах. Комплексность и интегративность до сих пор остается важнейшим свойством ГИС, привлекающим пользователей.

Интересно, что один из первых удачных опытов использования принципа комплексирования (совмещения и наложения) пространственной данных с помощью согласованного набора карт датируется XVIII веком.

Французский картограф Луи-Александр Бертье использовал прозрачные слои, накладываемые на базовую карту для показа перемещения войск в сражении под Йорктауном.

Совсем кратко историю ГИС можно описать несколькими предложениями. Геоинформационные системы - явление относительно новое, хотя основами подобных систем были география и картография, появившиеся сотни лет назад. Первые географические информационные системы разработаны в 50—60-х годах, первоначально в гражданском секторе. В 70—80-х годах развилась сильная и активная ГИС-индустрия с явным лидерством США. А в 1990 г. были опубликованы первые работы по истории ГИС.

Начало развития ГИС относится к концу 60-х годов, но только в последние 6-7 лет эта технология получила бурное распространение. Основной причиной такого скачка, несомненно, является развитие вычислительной техники.

Колоссальные объемы текстовой и графической информации, модельные расчеты, качественная графика, которыми оперируют ГИС, требуют значительных машинных ресурсов. До недавнего времени ЭВМ, имеющие характеристики, приемлемые для ГИС, стоили очень дорого, и подобную покупку могли позволить себе лишь большие организации, такие, как мэрии крупных городов.

В 1990 году для приобретения небольших ГИС требовалось 500 тыс. USD, более типичные затраты на программное и аппаратное обеспечение составляли 1 млн. USD. Сегодня в связи со значительным снижением цен на вычислительную технику машины с высоким быстродействием стали доступны гораздо большему кругу потенциальных покупателей. Значительно увеличилось также число поставщиков на рынке ГИС, проводится большое количество ГИС-ориентированных конференций, огромная работа ведется членами профессиональных ассоциаций, таких, как URISA и AM/FM International.

Существует несколько причин растущей популярности ГИС. Среди них - развитие некоторых родственных областей, постоянное совершенствование диалога между машиной и пользователем, благодаря которому овладеть работой с ГИС можно путем минимального обучения.

Все расширяющийся круг пользователей; ГИС открыл новые возможности для обмена накопленной информацией. Некоторые системы, например, такие, как ATLAS GIS комплектуются по желанию заказчика готовыми базами данных. Все это приводит к тому, что в настоящее время покупателями ГИС становятся небольшие города и области, отдельные отрасли промышленности, здравоохранение, образование и т. п.

Небольшие учебные и справочно- информационные ГИС хотят иметь вузы, и даже частные лица, чья деятельность связана с управлением. Исследование рынка ГИС, проведенное в 1993 году Denver-based Research Corporation и охватившее 386 респондентов как небольших городов, так я городов с 3,5 миллионным населением показало, что около 40% североамериканских городов и поселков уже закупили ГИС.

Среди тех, кто еще не приобрел ее, 15% намерены совершить покупку в течение ближайших 12 месяцев, еще 45% через 2-3 года.

Современный крупный город в условиях перехода к рыночным отношениям, децентрализации управления, повышения ответственности местных органов власти за конечный результат хозяйственной деятельности и социальный уровень жизни граждан не может нормально функционировать без четко налаженной системы всестороннего учета, анализа и опенки городских территорий.

Зарубежный и отечественный опыт последних 10-15 лет показал, что приоритетными и наиболее жизнедеятельными информационными системами являются ГИС, которые служат информационным базисом для решения следующих задач:

  • принятие решений управленческого уровня;
  • научно-обоснованное перспективное и оперативное планирование развития города и его отдельных территорий;
  • оптимальное проектирование объектов промышленного и гражданского назначения на территории города;
  • разработка генерального плана города и контроль за его реализацией;
  • изучение состояния экологических, социально-экономических, природно-ресурсных условий территории и их экономическая оценка;
  • совершенствование учета и рационального использования городских земель и недвижимости (зданий и сооружений);
  • получение достоверной информации о местоположении и эксплуатации инженерных сетей городского коммунального хозяйства;
  • сбор горно-геологических данных, сведений о техногенных процессах и природных запасах недр многоцелевого применения;
  • проведение налогообложения, взимание платежей за использование природных ресурсов, недвижимости, за загрязнение окружающей среды;
  • охрана прав пользователей, собственников, других потребителей региональных ресурсов.

Опыт длительной эксплуатации ГИС показал широкое применение накопленной информации в узковедомственных и потребительских сферах - транспорт, ценообразование, туризм, купля-продажа, справочные услуги и пр.

Таким образом, ГИС по назначению и по своим функциям является многоцелевой и ориентирована на обеспечение данными о городской среде широкого круга организаций и граждан.

К потенциальным потребителям геоинформации можно отнести:

  1. городские структуры распорядительной и исполнительной власти;
  2. планирующие органы;
  3. налоговые инспекции;
  4. юридические и правоохранительные органы;
  5. архитектурно-планировочные и земельные службы города;
  6. эксплуатирующие организации (коммуникации, транспорт, здания и сооружения);
  7. научно-исследовательские и проектные институты;
  8. строительные организации;
  9. торговые организации, биржи всех назначений;
  10. инспекции и контрольные органы социально-экономического и технического надзоров;
  11. иностранных партнеров и инвеститоров;
  12. коммерческие образования, предпринимателей, частных лиц.

Создание и функционирование ГИС сопряжено с целым рядом специфических задач организационно- правового, научно-технического, технологического и финансово-экономического характера, решение которых невозможно перенести из существующих методов информационного обеспечения.

Проблема усугубляется еще и тем, что в нашей стране службы управления городом до настоящего времени не занимались созданием кадастров и ГИС и не имеют необходимого опыта работы, а научные организации не обладают достаточным заделом научных разработок, способных обеспечить производство современной научно-методической базой.

Сказывается и слабая обеспеченность вычислительной техникой и программным обеспечением. Однако потери, прямо или косвенно связанные с отсутствием упорядоченной и достоверной информации, о городской территории, уже сегодня превосходят необходимые затраты на создание ГИС.

С дальнейшим развитием рыночных отношений отсутствие такой информации будет приводить к все более ощутимым потерям, а решение таких задач, как регулирование земельных вопросов, градостроительство, определение налоговых ставок, охрана окружающей среды, сделает весьма проблематичным.

О значимости ГИС можно судить по тому вниманию, которое уделяется им в большинстве развитых стран. Во многих из них образованы национальные и региональные организации, в задачи которых входят развитие исследований, связанных с ГИС и автоматизированной картографией, разработка предложений в сфере национального и городского планирования информации, координация программ получения, обработки и распространения этой информации, создание сетей ГИС.

Для этих целей разработана правовая база, производится мощное аппаратное и программное обеспечение, налажена подготовка и переквалификация необходимого класса специалистов. К примеру, в штате Калифорния (США) вопросами ГИС в 1991 году было занято 72 специализированных отдела по планированию, определяющих деятельность множества сторон жизни штата.

Ресурсами информационной системы являются: земля, воздух, вода, движимое и недвижимое имущество, рабочая сила, средства (деньги), материалы, концепции и технологии.

Назначение системы — повышение уровня жизни людей на конкретной территории. Ежегодный оборот таких отделов в 1991 г. достиг 2,5 млрд. USD.

Широко используются ГИС в области кадастра. Кадастр — это упорядоченная совокупность сведений о правовом, природном, хозяйственном и экономическом положениях физических объектов и явлений среды во времени в структурном, организационном, функциональном я информационном аспектах.

В Российской Федерации в составе Федеральной службы геодезии и картографии создан центр ГИС и цифровой картографии (РОСГЕОИНФОРМ) и пять функциональных региональных центров.

Обогащение рынка вычислительной техники, необходимость в управлении географической информацией неизбежно приведет к широкому применению ГИС на территории такой крупной страны как Россия.

В истории развития геоинформационных систем можно выделить четыре периода :

  1. Пионерный период - поздние 1950-е - ранние 1970-е гг.

Исследование принципиальных возможностей, пограничных областей знаний и технологий, наработка эмпирического опыта, первые крупные проекты и теоретические работы.

  1. Период государственных инициатив - ранние 1970-е - ранние 1980-е гг.

Развитие крупных геоинформационных проектов поддерживаемых государством, формирование государственных институтов в области ГИС, снижение роли и влияния отдельных исследователей и небольших групп.

  1. Период коммерческого развития - ранние 1980-е - настоящее время.

Широкий рынок разнообразных программных средств, развитие настольных ГИС, расширение области их применения за счет интеграции с базами непространственных данных, появление сетевых приложений, появление значительного числа непрофессиональных пользователей, системы, поддерживающие индивидуальные наборы данных на отдельных компьютерах, открывают путь системам, поддерживающим корпоративные и распределенные базы геоданных.

  1. Пользовательский период - поздние 1980-е - настоящее время.

Повышенная конкуренция среди коммерческих производителей геоинформационных технологий услуг дает преимущества пользователям ГИС, доступность и "открытость" программных средств позволяет использовать и даже модифицировать программы, появление пользовательских "клубов", телеконференций, территориально разобщенных, но связанных единой тематикой пользовательских групп, возросшая потребность в геоданных, начало формирования мировой геоинформационной инфраструктуры.

Пионерный период (поздние 1950-е - ранние 1970-е гг.) развивался на фоне успехов компьютерных технологий: появление электронных вычислительных машин (ЭВМ) в 50-х годах, цифрователей, плоттеров, графических дисплеев и других периферийных устройств в 60-х при одновременном, часто независимом друг от друга, создании программных алгоритмов и процедур графического отображения информации на дисплеях и с помощью плоттеров, формальных методов пространственного анализа, программных средств управления базами данных.

Большое влияние в этот период оказывают теоретические работы в области георафии и пространственных взаимосвязей, а также становление количественных методов в географии в США, Канаде, Англии, Швеции (работы У.Гаррисона (William Garrison), Т.Хагерстранда (Torsten Hagerstrand), Г.Маккарти (Harold McCarty), Я.Макхарга (Ian McHarg).

Первый безусловный крупный успех становления геоинформатики и ГИС - это разработка и создание Географической Информационной Системы Канады (Canada Geographic Information System, CGIS). Начав свою историю в 60-х годах, эта крупномасштабная ГИС поддерживается и развивается по сей день.

За последние пять десятилетий ГИС превратилась из концепции в науку. Феноменальная эволюция ГИС от элементарного инструмента до современной, мощной ИТ-платформы для понимания и планирования нашего мира отмечена несколькими ключевыми вехами.

Истоки ГИС

Зарождение геоинформационных систем (ГИС) началось в 1960-х годах с появлением компьютеров и концепции количественной географии. ГИС изначально родилась в научном сообществе. Позже Национальный центр географической информации и анализа, возглавляемый Майклом Гудчайлдом, формализовал исследования по ключевым темам географической информатики, таким как пространственный анализ и визуализация. Эти усилия способствовали количественной революции в мире географической науки и заложили основу для ГИС.

Первая ГИС

Новаторская работа Роджера Томлинсона по созданию географической информационной системы Канады привела к появлению первой компьютеризированной ГИС в мире в 1963 году. Правительство Канады поручило Томлинсону создать систему по учёту природных ресурсов страны. Он предполагал использовать компьютеры для объединения данных о природных ресурсах из всех провинций. Под руководством Томлинсона была создана автоматизированная вычислительная система для хранения и обработки больших объемов данных, что позволило Канаде начать свою национальную программу управления землепользованием. Эта система получила имя "Канадская ГИС"

Гарвардская лаборатория

В 1964 году в Северо-Западном университете Говард Фишер создал одну из первых картографических программ, известную как SYMAP. В 1965 году он основал Гарвардскую лабораторию компьютерной графики и пространственного анализа. В лаборатории создавались и совершенствовались первые компьютерные программы для создания карт, также Гарвардская лаборатория стала исследовательским центром пространственного анализа и визуализации. Многие из ранних концепций ГИС и ее приложений были разработаны в лаборатории талантливым коллективом географов, програмистами и другими специалистами из разных областей.

Основание Esri

В 1969 году Джек Дэнджермонд - член Гарвардской лаборатории и его жена Лора основали Институт исследования систем окружающей среды (Esri). Консалтинговая компания Esri применяла компьютерное картографирование и пространственный анализ, чтобы помочь ответственным за землеустройство и управляющим земельными ресурсами принимать обоснованные решения. Ранние работы компании продемонстрировали преимущества геоинформационного подхода в решении многих задач. Esri также вела разработку многих методов ГИС-картографирования и пространственного анализа, которые используются до сих пор. Результаты этих работ вызвали широкий интерес к программным компонентам и рабочим процессам компании, которые теперь являются стандартными для ГИС.

Коммерциализация ГИС

По мере того, как вычисления техника становились все более мощной, Esri совершенствовала свои программные инструменты. Работа над проектами, которые решали реальные проблемы, побудила компанию к исследованиям и разработке ГИС инструментов, которые могли бы использоваться широко. Работа Esri получила признание научного сообщества как новый способ пространственного анализа и планирования. Для более эффективного анализа растущего числа проектов Esri разработала ARC/INFO - первый коммерческий ГИС-продукт. ARC/INFO была выпущена в 1981 году и послужила трансформации Esri в компанию-разработчика программного обеспечения.

ГИС сегодня

ГИС дает людям возможность создавать свои собственные слои данных на интерактивных картах, чтобы помочь решить реальные проблемы. ГИС также превратилась в средство для обмена данными и совместной работы практически в любой области человеческой деятельности. Сегодня сотни тысяч организаций по всему миру делятся своей работой и ежедневно создают миллиарды карт, чтобы рассказывать истории, находить закономерности и строить прогнозы.


ГИС - направлена на обнаружение смысла в данных и получение идей. Геоинформационные системы быстро развиваются и обеспечивают совершенно новую основу и процесс для понимания.


Будущее ГИС

Благодаря переходу на сетевые и облачные вычисления, интеграции с информацией в режиме реального времени через Интернет вещей - ГИС стала платформой, подходящей почти для любой области человеческой деятельности - нервной системой планеты. Поскольку наш мир сталкивается с проблемами, связанными с ростом населения, утратой природы и загрязнением окружающей среды, ГИС будет играть все более важную роль в том, как мы понимаем и решаем эти проблемы. ГИС будет служить средством для обмена решениями с использованием общего языка картографирования.

foto1
foto2
foto3
foto4
foto5

На сайте есть все что нужно знать о ГИС

Все о ГИС специального назначения

Сайт для тех кто хочет все знать о ГИС

Сайт для тех кто изучает ГИС

Сайт для тех кто участвует в развитии ГИС

Главное меню

Статистика


Вы здесь: Главная История ГИС

История развития ГИС


В современной литературе по геоинформационным технологиям авторы выделяют три основных периода развития программно-аппаратных средств ГИС: пионерный, государственных инициатив, пользовательский (коммерческий).

Пионерный период: конец 50-х – начало 70-х годов прошлого столтия. В этот период в сфере информационных технологий выполняются работы по изучению новых возможностей картографии с использованием электронной вычислительной техники. Данный период характеризуется развитием картографии в связи с бурным развитием компьютерных технологий: создание и использование электронных вычислительных машин в 50-х гг, принтеров, крупных графических дисплеев, анализаторов поверхности и других периферийных устройств.

Важные значения имели научные и теоритические работы в области географии и картографи

и по оценке пространственных взаимосвязей между геообъектами, а также изучение количественных методов в географии в странах - США, Канаде, Англии, Швеции (работы У. Гаррисона (William Garrison), Т. Хагерстранда (Torsten Hagerstrand), Г. Маккарти (Harold McCarty), Я. Макхарга (Ian McHarg).

ГИС Канады предназначалась:

в первую очередь, для изучения и анализа большого количества данных, которые имелись в Канадской службой земельного учета (Canada Land Inventory);

во вторую очередь, для получении статистических данных о земле в целях дальнейшего применения этих данных при разработки планов землеустройства больших земельных площадей предназначенных в основном для сельского и лесного хозяйства.

Для решения данных задач перед разработчиками ГИС требовалось создать классификацию земельных территорий, которые культивируются сельскохозяйственной, рекреационной, экологической, лесохозяйственной отрасли, и отобразить использования этих земель, с учетом их принадлежности к пользователям и владельцам.

На данном этапе от разработчиков требовалось найти решение ввода в систему исходных картографических и тематических геоданных. В связи с этим требовалось разработать и исследовать совершенно новую технологию которая бы позволяла пользователям работать с большими массивами картографических и пользовательских данных. При этом пользователи должны были иметь возможность управлять данными и проводить расчеты.

Работа с широкоформатными планами (земельными и гидрографичскими) проводилась с использованием специально спроектированным и созданным сканирующим прибором (устройством).

Гарвардская лаборатория компьютерной графики и пространственного

анализа (Harvard Laboratory for Computer Graphics & Spatial Analysis) Массачусетского технологического института с 60 годов, также занималась исследованиями в области ГИС и имела большие концептуальные и практические наработки в области развития геоинформационных технологий, что позволило их использовать до 80-х годов прошлого столетия. Программные продукты ГИС Гарвардской лаборатории получили широкое распространение в мире и помогли заложить платформу для развития различных ГИС приложений. В этот период в лаборатории Дана Томлин (Dana Tomlin) разработала основы картографической алгебры, параллельно разработала и обосновала возможность применения программных средств Map Analysis Package – MAP, PMAP, aMAP. Созданный учеными и исследователями Гарвардской лаборатории OSU-MAP является свободно распространяемым программным продуктом ГИС.

Упорство и большие результаты в исследовании ГИС позволили Гавардской лаборатории быть лидером области информационной картографирования и предложенные ими картографические модели данных, картографический метод исследований, картографические способы работы с картографической и пользовательской информации находят применения и в настоящее время при разработка современных ГИС.

Период государственных инициатив: характерен для периода с 70-х годов по начало 80-х годов. Данный период характеризуется созданием и развитием крупных геоинформационных проектов под покровительством государства, что соответствует названию периода.

Увеличивается количество государственных институтов в области геоинформационных технологий, при снижении роли и заслуг отдельных исследователей и небольших групп.

В США, в научных кругах того времени, активно обсуждались вопросы применения ГИС при обработки и представления данных Национальных переписей населения (U.S. Census Data).


В связи с этим перед Национальным бюро переписи США (U.S. Census Bureau) ставиться вопрос о разработке совершенно нового подхода к переписи населения, с учетом географического проживания граждан страны.

Результатом работы является перепись населения США в 1970 г, которая была проведена с учетом применения геоинформационной системы.

Для этого специалисты разработали специальный формат представления картографических данных DIME (Dual Independent Map Encoding), который включил прямоугольные координаты перекрёстков, разбивающих улицы на отдельные области картографических полей. Алгоритмы обработки и представления картографических данных были взяты с ГИС Канады и Гарвардской лаборатории и представлены в виде программного продукта POLYVRT, позволяющий провести перевод (конвертирование) адресов граждан в координаты, представленным графическим сегментом улицы.

Разработка и апробация результатов при государственной поддержки и обновление DIME-файлов позволило увеличить рост исследовательских работ в области использования ГИС, которые основывалась на базах данных уличных сетей.

По мимо применения ГИС в землепользовании и переписи населения исследуются вопросы работы систем навигации с картографической поддержкой при управлении городском транспортом и в других целях, где необходима точна привязка объекта к картографическим данным.

Использование ГИС при переписи населения в США позволили создать атласы нескольких крупных городов США и упрощенных электронных карт для торговых и транспортных компаний.

Пользовательский (коммерческий) период: Начиная с 1981 года и по настоящее время.

Для этого периода характерно массовая коммерческая эксплуатация программных продуктов и приложений ГИС.

Использование ГИС и баз данных с учетом применения сетевых технологий, систем навигации позволило выпустить на пользовательский рынок большое количество программных продуктов ГИС поддерживающих индивидуальную работу с картографическими данными на ПЭВМ и при применении в государственных и коммерческих организациях. Бурное развитее средств вычисления и персональных ЭВМ сделало доступными программные и аппаратные средства, сетевые информационные ресурсы широкому кругу специалистов-прикладников.

Ярким примером, является разработка программного продукта ГИС ARC/INFO исследовательского института экологических систем (Environmental Systems Research Institute, ESRI Inc).


В программе ARC/INFO были применены правила раздельного представления геометрической (картографической) и атрибутивной информации, при этом хранение и работа с атрибутивной информацией осуществлялась в виде таблиц (INFO), а для хранения и работы с графическими объектами в виде дуг (ARC).

Разработчикам ARC/INFO удалось создать первый программный продукт с ГИС который эффективно применяется на ПЭВМ и доступен для разных технических платформ и операционных систем.

Еще одним примером отличной коммерческой реализации в области производства аппаратно-программных средств для ГИС стал и до сих пор является Intergraph Corp. Успехи фирмы в области применения ГИС были связаны были связаны с реализацией в интересах вооруженных сил США систем управления ракетами в реальном времени. Заслугой фирмы Intergraph Corp. Является также создание системы интерактивного картографирования для управления территориями.

В настоящее время период пользовательского (коммерческого) развития ГИС очень активно продолжается. Общемировой объем продаж в области ГИС оценивается более 9 млрд долларов США в год. ГИС-технологии являются незаменимыми инструментами проводимых исследований в области в различных областях деятельности человека.

За уникальную способность ГИС работать с данными о географической поверхности даже стали использоваться при изучении космического пространства.


Геоинформационные системы (также ГИС — географическая информационная система) — системы, предназначенные для сбора, хранения, анализа и графической визуализации пространственных данных и связанной с ними информации о представленных в ГИС объектах. Другими словами, это инструменты, позволяющие пользователям искать, анализировать и редактировать цифровые карты, а также дополнительную информацию об объектах, например высоту здания, адрес, количество жильцов.

По территориальному охвату различают глобальные ГИС (global GIS), субконтинентальные ГИС, национальные ГИС, зачастую имеющие статус государственных, региональные ГИС (regional GIS), субрегиональные ГИС и локальные, или местные ГИС (local GIS).

ГИС различаются предметной областью информационного моделирования, к примеру, городские ГИС, или муниципальные ГИС, МГИС (urban GIS), природоохранные ГИС (environmental GIS) и т. п. ; среди них особое наименование, как особо широко распространённые, получили земельные информационные системы. Проблемная ориентация ГИС определяется решаемыми в ней задачами (научными и прикладными), среди них инвентаризация ресурсов (в том числе кадастр), анализ, оценка, мониторинг, управление и планирование, поддержка принятия решений. Интегрированные ГИС, ИГИС (integrated GIS, IGIS) совмещают функциональные возможности ГИС и систем цифровой обработки изображений (данных дистанционного зондирования) в единой интегрированной среде.

Содержание

История ГИС

Начальный период (поздние 1950е — ранние 1970е гг.)

Исследование принципиальных возможностей, пограничных областей знаний и технологий, наработка эмпирического опыта, первые крупные проекты и теоретические работы.

  • Появление электронных вычислительных машин (ЭВМ) в 50-х годах.
  • Появление цифрователей, плоттеров, графических дисплеев и других периферийных устройств в 60-х.
  • Создание программных алгоритмов и процедур графического отображения информации на дисплеях и с помощью плоттеров.
  • Создание формальных методов пространственного анализа.
  • Создание программных средств управления базами данных.

Период государственных инициатив (нач. 1970е — нач. 1980е гг.)

Государственная поддержка ГИС стимулировала развитие экспериментальных работ в области ГИС, основанных на использовании баз данных по уличным сетям:

  • Автоматизированные системы навигации.
  • Системы вывоза городских отходов и мусора.
  • Движение транспортных средств в чрезвычайных ситуациях и т. д.

Период коммерческого развития (ранние 1980е — настоящее время)

Широкий рынок разнообразных программных средств, развитие настольных ГИС, расширение области их применения за счет интеграции с базами непространственных данных, появление сетевых приложений, появление значительного числа непрофессиональных пользователей, системы, поддерживающие индивидуальные наборы данных на отдельных компьютерах, открывают путь системам, поддерживающим корпоративные и распределенные базы геоданных.

Пользовательский период (поздние 1980е — настоящее время)

Структура ГИС

  1. Данные (пространственные данные):
    • позиционные (географические): местоположение объекта на земной поверхности.
    • непозиционные (атрибутивные): описательные.
  2. Аппаратное обеспечение (ЭВМ, сети, накопители, сканер, дигитайзеры и т. д.).
  3. Программное обеспечение (ПО).
  4. Технологии (методы, порядок действий и т. д.).

Вопросы на которые может ответить ГИС

  1. Что находится в…? (определяется место).
  2. Где это находится? (пространственный анализ).
  3. Что изменилось начиная с…? (определить временные изменения на определенной площади).
  4. Какие пространственные структуры существуют?
  5. Что если? (моделирование, что произойдет, если добавить новую дорогу).

ГИС в России

Наибольшее распространение в России из зарубежных систем имеют: программный продукт ArcGIS компании ESRI, семейство продуктов GeoMedia корпорации Intergraph и MapInfo Professional компании Pitney Bowes MapInfo.

Из отечественных разработок широкое распространение получила программа ГИС Карта 2008 компании ЗАО КБ "Панорама".

Используются также и другие программные продукты отечественной и зарубежной разработки: ГИС ИНТЕГРО, MGE корпорации Intergraph (использует MicroStation в качестве графического ядра), IndorGIS, STAR-APIC, ДубльГИС, Mappl, ГеоГраф ГИС и пр.


Однозначное краткое определение этому явлению дать достаточно сложно. Географическая информационная система (ГИС) - это возможность нового взгляда на окружающий нас мир. Если обойтись без обобщений и образов, то ГИС - это современная компьютерная технология для картирования и анализа объектов реального мира, также событий, происходящих на нашей планете. Эта технология объединяет традиционные операции работы с базами данных, такими как запрос и статистический анализ, с преимуществами полноценной визуализации и географического (пространственного) анализа, которые предоставляет карта. Эти возможности отличают ГИС от других информационных систем и обеспечивают уникальные возможности для ее применения в широком спектре задач, связанных с анализом и прогнозом явлений и событий окружающего мира, с осмыслением и выделением главных факторов и причин, а также их возможных последствий, с планированием стратегических решений и текущих последствий предпринимаемых действий. Создание карт и географический анализ не являются чем-то абсолютно новым. Однако технология ГИС предоставляет новый, более соответствующий современности, более эффективный, удобный и быстрый подход к анализу проблем и решению задач, стоящих перед человечеством в целом, и конкретной организацией или группой людей, в частности. Она автоматизирует процедуру анализа и прогноза. До начала применения ГИС лишь немногие обладали искусством обобщения и полноценного анализа географической информации с целью обоснованного принятия оптимальных решений, основанных на современных подходах и средствах. В настоящее время ГИС - это многомиллионная индустрия, в которую вовлечены сотни тысяч людей во всем мире. ГИС изучают в школах, колледжах и университетах. Эту технологию применяют практически во всех сферах человеческой деятельности - будь то анализ таких глобальных проблем как перенаселение, загрязнение территории, сокращение лесных угодий, природные катастрофы, так и решение частных задач, таких как поиск наилучшего маршрута между пунктами, подбор оптимального расположения нового офиса, поиск дома по его адресу, прокладка трубопровода на местности, различные муниципальные задачи. По территориальному охвату различают глобальные ГИС (global GIS), субконтинентальные ГИС, национальные ГИС, зачастую имеющие статус государственных, региональные ГИС (regional GIS), субрегиональные ГИС и локальные, или местные ГИС (local GIS).

ГИС различаются предметной областью информационного моделирования, к примеру, городские ГИС, или муниципальные ГИС, МГИС (urban GIS), природоохранные ГИС (environmental GIS) и т. п.; среди них особое наименование, как особо широко распространённые, получили земельные информационные системы. Проблемная ориентация ГИС определяется решаемыми в ней задачами (научными и прикладными), среди них инвентаризация ресурсов (в том числе кадастр), анализ, оценка, мониторинг, управление и планирование, поддержка принятия решений. Интегрированные ГИС, ИГИС (integrated GIS, IGIS) совмещают функциональные возможности ГИС и систем цифровой обработки изображений (данных дистанционного зондирования) в единой интегрированной среде.

Содержание

История ГИС

Начальный период (поздние 1950е — ранние 1970е гг.)

Исследование принципиальных возможностей, пограничных областей знаний и технологий, наработка эмпирического опыта, первые крупные проекты и теоретические работы.

  • Появление электронных вычислительных машин (ЭВМ) в 50-х годах.
  • Появление цифрователей, плоттеров, графических дисплеев и других периферийных устройств в 60-х.
  • Создание программных алгоритмов и процедур графического отображения информации на дисплеях и с помощью плоттеров.
  • Создание формальных методов пространственного анализа.
  • Создание программных средств управления базами данных.

Период государственных инициатив (нач. 1970е — нач. 1980е гг.)

Государственная поддержка ГИС стимулировала развитие экспериментальных работ в области ГИС, основанных на использовании баз данных по уличным сетям:

  • Автоматизированные системы навигации.
  • Системы вывоза городских отходов и мусора.
  • Движение транспортных средств в чрезвычайных ситуациях и т. д.

Период коммерческого развития (ранние 1980е — настоящее время)

Широкий рынок разнообразных программных средств, развитие настольных ГИС, расширение области их применения за счет интеграции с базами непространственных данных, появление сетевых приложений, появление значительного числа непрофессиональных пользователей, системы, поддерживающие индивидуальные наборы данных на отдельных компьютерах, открывают путь системам, поддерживающим корпоративные и распределенные базы геоданных.

Пользовательский период (поздние 1980е — настоящее время)

Принцип работы ГИС

ГИС хранит информацию о реальном мире в виде набора тематических слоев, которые объединены на основе географического положения. Этот простой, но очень гибкий подход доказал свою ценность при решении разнообразных реальных задач: для отслеживания передвижения транспортных средств и материалов, детального отображения реальной обстановки и планируемых мероприятий, моделирования глобальной циркуляции атмосферы. Любая географическая информация содержит сведения о пространственном положении, будь то привязка к географическим или другим координатам, или ссылки на адрес, почтовый индекс, избирательный округ или округ переписи населения, идентификатор земельного или лесного участка, название дороги и т.п. При использовании подобных ссылок для автоматического определения местоположения или местоположений объекта (объектов) применяется процедура, называемая геокодированием. С ее помощью можно быстро определить и посмотреть на карте где находится интересующий вас объект или явление, такие как дом, в котором проживает ваш знакомый или находится нужная вам организация, где произошло землетрясение или наводнение, по какому маршруту проще и быстрее добраться до нужного вам пункта или дома.

Векторная и растровая модели

ГИС может работать с двумя существенно отличающимися типами данных - векторными и растровыми. В векторной модели информация о точках, линиях и полигонах кодируется и хранится в виде набора координат X,Y. Местоположение точки (точечного объекта), например буровой скважины, описывается парой координат (X,Y). Линейные объекты, такие как дороги, реки или трубопроводы, сохраняются как наборы координат X,Y. Полигональные объекты, типа речных водосборов, земельных участков или областей обслуживания, хранятся в виде замкнутого набора координат. Векторная модель особенно удобна для описания дискретных объектов и меньше подходит для описания непрерывно меняющихся свойств, таких как типы почв или доступность объектов. Растровая модель оптимальна для работы с непрерывными свойствами. Растровое изображение представляет собой набор значений для отдельных элементарных составляющих (ячеек), оно подобно отсканированной карте или картинке. Обе модели имеют свои преимущества и недостатки. Современные ГИС могут работать как с векторными, так и с растровыми моделями.

Слои ГИС

Вся картографическая информация в ГИС организована в виде слоев. Слои, это самый первый уровень абстракции в ГИС. Работая с ГИС, мы обязаны разделить существующие у нас данные на слои. Каждый слой содержит объекты определенного вида, объединенные общими характеристиками. Работая в ГИС, мы можем подключать и отключать интересующие нас слои, или менять порядок их отображения. Слои бывают следующих типов:

Точечные

Точечные слои содержат объекты, которые можно абстрагировать до точки, например скважины или города. Ради ясности понимания даже город можно представить точкой.

Файл:Гис1.jpg

Линейные

Эти объекты можно абстрагировать до ломаной или гладкой линии, например реки, дороги, или трубопроводы.

Файл:Гис2.jpg

Полигональные или площадные

Объекты этого типа представляются как находящиеся в пределах некоторого полигона, например лицензионные участки.

Файл:Гис3.jpg

Площадные объекты могут состоять из нескольких контуров. Это необходимо если требуется представить полигон с дыркой внутри. На рисунке представлен пример обычного полигона и полигона, состоящего из двух контуров.

Файл:Гис4.jpg

Последняя точка полигона всегда должна совпадать с первой точкой. Правильно это или нет, но так уж повелось в геоинформационных системах. Таким образом, полигон не может иметь менее четырех точек. Если полигон имеет нулевую площадь, то есть вырождается, то его необходимо удалить. Полигон также не должен иметь самопересечений. Подобные недочеты позже могут привести к серьезным ошибкам в расчетах, и потому их следует избегать.

Изображения

Растровые графические изображения, привязанные к географическим координатам, например космоснимки или отсканированые карты.

Файл:Гис5.jpg

Сеточные модели

Это структурные карты и карты параметров. Первоначально такие модели основывались на прямоугольной сетке, где в узлах сетки указано значение Z (параметра).



Теперь строение подобных моделей зачастую боле сложное, но по традиции их продолжают называть сетками или гридами. Современные гриды могут содержать разломы, области уточнения или быть основаны на сплайнах. Смысл сеточных моделей остается прежним: непрерывное представление параметра на определенной площади.



Сетка сплайнов отличается от обычной сетки тем, что ее поверхность является идеально гладкой, что более естественно для большинсва моделей. Сетки с разломами содержат дополнительные сегменты для моделирования ровного разрыва. На обычной сеточной модели разрыв получается ступенчатым. Сеточные модели, также называют картами в изолиниях.

Специальные виды слоев

Эти пять типов слоев стандартны для любой профессиональной ГИС, но кроме них могут существовать и другие, специальные типы данных, обусловленые областью применения данной системы. Например, это могут быть разломы (для моделирования сеток с разломами), растровые карты (для представления очень больших растровых изображений), 3D модели (для трехмерных моделей пластов).

Таблицы данных ГИС

Точки линии и полигоны имеют таблицы аттрибутивных данных для своих объектов.

Файл:Гис9.jpg

Каждому объекту на карте соответствует строка в таблице данных. Используя таблицу данных можно находить и сортировать объекты, выделять их на карте по аттрибутам или смотреть атрибуты выделенных объектов. Атрибутивная таблица позволяет искать объекты, сортировать их, выделять по условиям, группировать, создавать фильтры, проводить вычисления. Таблица аттрибутов превращает ГИС в базу данных, в которой вы можете проводить анализ данных или управление данными при помощи развитых инструментов ГИС. Без таблиц аттрибутов геоинформационные системы не имели бы смысла, а карты в них не были бы картами, а были просто рисунками, как рисунки в CorelDraw или Paint.

Файл:Гис10.jpg

Точки в составе линий и полигонов также имеют свои аттрибутивные таблицы. Так, например, сейсмопрофили можно загрузить вместе с данными по отпикированным горизонтам и использовать их для построения карт в изолиниях. Таблица данных поддерживает понятие выделенных объектов, такие строки в таблице помечены другим цветом. Выделенные объекты также, несколько иначе отображаются и на карте. Выделение объектов очень часто используется при анализе данных. Выделять объекты можно как в таблице, так и на карте, а также по заданным условиям.

Формирование слоев

Очень важной темой является правильное формирование структуры слоев. Полезность любой базы данных, и ГИС в том числе, сильно зависит от правильной структуры данных. Даже можно сформулировать следующее: полезность базы прямо пропорциональна ее правильной организации и порядку в данных. Если данные в базе содержат большое количество ошибок или неправильно организованы, то это может свести на нет все достоинтва базы данных как таковой. По этой причине важным является умение правильно структурировать информацию. Например, если вы загружаете данные сейсморазведки, то правильно будет объединить все сейсмопартии в одном слое, а не создавать несколько слоев групируя их по районам или площадям. Лучше придерживаться такого правила: один тип данных - одна таблица (или один слой). С другой стороны разнородные объекты лучше помещать в разные слои, даже если они объеденены общей тематикой. Так автодороги и железные дороги лучше разделить на два слоя, а потом поместить их в группу 'Транспортные пути'.

Координаты

Всем известно, что земля круглая, а карта плоская, и поверхность шара невозможно развернуть на плоскость без деформаций. По этой причине в картографии используют проекции. Поекции это правила и формулы преобразования одних координат в другие. Обычно используется преобразование из сферических (географических) координат в прамоугольные координаты (координаты карты). Проекции бывают равноплощадными или равноугольными, то есть сохраняют площадь объектов или углы. Иногда проекция может искажать и то и другое, минимизируя искажения вобщем. Для нашей страны стандартной сиситемой преобразования является система координат '42-ого года'. Система '42-ого года' делит территорию земного шара на 60 зон, по 6 градусов. Тюменская область, например, находится в пределах 12-ой, 13-ой и 14-ой зон. '42-ой год' это равноплощадная проекция. ГИС устроены так, что могут хранить данные в одной системе координат, а отображать в другой. Поэтому необходимо не запутаться с тем, в какой системе координат хранятся данные, и в какой они отображены на карте. Чтобы уменьшить путаницу с проекциями Isoline поддерживает только два варианта исходных данных:

  • Прямогугольные координаты (любые произвольные координаты, к которым не применяется никаких преобразований).
  • Географические координаты (градусы, минуты, секунды, которые при отображении на карте пересчитываются в какую либо проекцию).

Вот варианты отображения одного и того же участка в разных системах координат и проекциях.

Читайте также: