История создания двигателя внутреннего сгорания кратко

Обновлено: 02.07.2024

Люди производят автомобили уже более века, и почти под каждым капотом стоит двигатель внутреннего сгорания. В течение последних 100 лет принцип его работы оставался неизменным: кислород и топливо поступают в цилиндры мотора, где происходит взрыв (воспламенение), в результате чего внутри силового агрегата образовывается сила, которая и двигает автомобиль вперед. Но с момента первого появления двигателя внутреннего сгорания (ДВС) каждый год инженеры оттачивают его, чтобы сделать быстрее, надежнее, экономичнее, эффективнее.

Благодаря этому сегодня все современные автомобили стали мощнее и экономичнее. Некоторые обычные автомобили сегодня имеют такую мощность, которая еще недавно была только в мощных дорогих суперкарах. Но без огромных прорывов в конструкции ДВС мы бы сегодня до сих пор владели маломощными прожорливыми автомобилями, на которых не уедешь далеко от заправки. К счастью, время от времени подобные прорывные технологии уже не раз открывали новый этап в развитии двигателей внутреннего сгорания. Мы решили вспомнить самые важные даты в эволюции развития ДВС. Вот они.

1955 год: впрыск топлива

До появления системы впрыска процесс попадания топлива в камеру сгорания двигателя был неточным и плохо регулируемым, поскольку топливно-воздушная смесь подавалась с помощью карбюратора, который постоянно нуждался в очистке и периодической сложной механической регулировке. К сожалению, на эффективность работы карбюраторов влияли погодные условия, температура, давление воздуха в атмосфере и даже на какой высоте над уровнем моря находится автомобиль. С появлением же электронного впрыска топлива (инжектора) процесс подачи топлива стал более контролируемым. Также с появлением инжектора владельцы автомобилей избавились от необходимости вручную контролировать процесс прогрева двигателя, регулируя дроссельную заслонку с помощью "подсоса". Для тех, кто не знает, что такое подсос:

Подсос – это ручка управления пусковым устройством карбюратора, с помощью которой на карбюраторных машинах было необходимо регулировать обогащение топлива кислородом. Так, если вы запускаете холодный двигатель, то на карбюраторных машинах необходимо открыть "подсос", обогатив топливо кислородом больше, чем необходимо на прогретом моторе. По мере прогревания двигателя нужно постепенно закрывать ручку регулировки пускового устройства карбюратора, возвращая обогащение топлива кислородом к нормальным значениям.

Сегодня подобная технология, естественно, выглядит допотопно. Но еще совсем недавно большинство автомобилей в мире оснащались карбюраторными системами подачи топлива. И это несмотря на то, что технология впрыска топлива с помощью инжектора пришла в мир в 1955 году, когда инжектор впервые был применен на автомобиле (ранее эта система подачи топлива использовалась в самолетах).

В этом году было проведено испытание инжектора на спорткаре Mercedes-Benz 300SLR, который смог проехать, не сломавшись, почти 1600 км. Это расстояние автомобиль преодолел за 10 часов 7 минут и 48 секунд. Испытание проходило в рамках очередной автогонки "Тысяча миль". Эта машина установила мировой рекорд.

Кстати, Mercedes-Benz 300SLR стал не только самым первым серийным автомобилем с инжекторным впрыском топлива, разработанным компанией Bosch, но и самым быстрым автомобилем в мире в те годы.

Два года спустя компания Chevrolet представила спорткар Corvette с впрыском топлива (система Rochester Ramjet). В итоге этот автомобиль стал быстрее первооткрывателя Mercedes-Benz 300SLR.

Но, несмотря на успех Chevrolet Corvette с уникальной системой впрыска топлива Rochester Ramjet, именно электронные инжекторные системы Bosch (с электронным управлением) начали свое наступление по миру. В результате за короткое время впрыск топлива, разработанный компанией Bosch, начал появляться на многих европейских автомобилях. В 1980-е годы электронные системы впрыска топлива (инжектор) охватили весь мир.

1962 год: турбонаддув

Турбокомпрессор является одним из самых драгоценных камней в двигателях внутреннего сгорания. Дело в том, что турбина, которая подает больше воздуха в цилиндры двигателя, когда-то позволяла

12-цилиндровым истребителям во время Второй мировой войны взлетать выше, лететь быстрее, дальше и меньше расходовать дорогое топливо.

В итоге, как и многие технологии, система турбин из авиатехники пришла в автопромышленность. Так, в 1962 году в мире были представлены первые серийные автомобили с турбокомпрессором. Ими стали BMW 2002, или Saab 99.

1964 год: роторный двигатель

Единственным двигателем, который по-настоящему смог сломать форму обычного двигателя внутреннего сгорания, стал роторный чудо-мотор инженера Феликса Ванкеля. Форма его ДВС ничего общего не имела с привычным нам двигателем. Роторный мотор представляет собой треугольник внутри овала, вращающийся с дьявольской силой. По своей конструкции роторный двигатель легче, менее сложный и более крутой, чем обычный двигатель внутреннего сгорания с поршнями и клапанами.

Первыми роторные двигатели на серийных авто начали использовать компания Mazda и ныне уже не существующий немецкий автопроизводитель NSU.

Самым же первым серийным автомобилем с роторным двигателем Ванкеля стал NSU Spider, который начал выпускаться в 1964 году.

Затем компания Mazda наладила производство своих автомобилей, оснащенных роторным мотором. Но в 2012 году она отказалась от использования роторных двигателей. Последней с роторным мотором стала модель RX-8.

Но недавно, в 2015 году, Mazda на Токийском автосалоне представила концепт-кар RX-Vision-2016, который использует роторный мотор. В итоге в мире начали появляться слухи, что японцы планируют в ближайшие годы возродить роторные автомобили. Предполагается, что в настоящий момент специализированная группа инженеров Mazda где-то в Хиросиме сидит за закрытыми дверями и создает новое поколение роторных моторов, которые должны стать основными двигателями во всех будущих новых моделях Mazda, открыв новую эру возрождения компании.

1981 год: технология дезактивации цилиндров двигателя

Эта технология должна была повысить эффективность двигателя, например, при движении по шоссе. Но последующая ненадежность и неуклюжесть этого мотора с системой дезактивации цилиндров напугала всех автопроизводителей, которые в течение 20 лет боялись использовать эту систему в своих моторах.

Но теперь эта система снова начинает завоевывать автомир. Сегодня уже несколько автопроизводителей используют эту систему на своих серийных автомобилях. Причем технология зарекомендовала себя очень и очень хорошо. Самое интересное, что эта система продолжает развиваться. Например, уже скоро эта технология может появиться на четырехцилиндровых и даже на трехцилиндровых моторах. Это фантастика!

2012 год: двигатель с высокой степенью сжатия – воспламенение бензина от сжатия

Наука не стоит на месте. Если бы наука не развивалась, то сегодня мы бы до сих пор жили в Средневековье и верили в колдунов, гадалок и что земля плоская (хотя сегодня все равно есть немало людей, которые верят в подобную чушь).

Не стоит на месте наука и в автопромышленности. Так, в 2012 году в мире появилась очередная прорывная технология, которая, возможно, совсем скоро перевернет весь автомир.

Речь идет о двигателях с высокой степенью сжатия.

Мы знаем, что чем меньше сжимать воздух и топливо внутри двигателя внутреннего сгорания, тем меньше мы получим энергии в тот момент, когда топливная смесь воспламеняется (взрывается). Поэтому автопроизводители всегда старались делать двигатели с немаленькой степенью сжатия.

Но есть проблема: чем выше степень сжатия, тем больше риска самовоспламенения топливной смеси.

Поэтому, как правило, ДВС имеют определенные рамки в степени сжатия, которая на протяжении всей истории автопромышленности была неизменяемой. Да, каждый двигатель имеет свою степень сжатия. Но она не меняется.

Но затем при массовом появлении электронного впрыска автопроизводители с помощью компьютера стали применять различные настройки, автоматически регулирующие качество топливной смеси, что позволило существенно улучшить экономичность двигателей и снизить уровень вредных веществ в выхлопе. Но главное, что удалось сделать с помощью компьютерных настроек и регулировки топливной смеси, – это снизить до минимума риск самовоспламенения топлива. В итоге со временем стало невыгодно использовать большие мощные моторы с низкой степенью сжатия. Так автопромышленность ввела новую моду – уменьшение количества цилиндров. Чтобы сохранить мощность в моторах, автопроизводители стали использовать турбины. Но главное – благодаря электронике, которая управляет качеством топливной смеси, автопроизводители снова могут создавать моторы с большой степенью сжатия, не опасаясь самовоспламенения топлива.

Но в 2012 году компания Mazda удивила весь мир, представив фантастический мотор SKYACTIV-G, который имеет невероятно высокий коэффициент сжатия для серийного двигателя. Степень сжатия этого мотора составляет 14:1. Это позволяет мотору извлекать энергию почти из каждой капли бензина без образования смога.

Следующим шагом для Mazda стал новый мотор SKYACTIV-X, который использует контролируемое зажигание (система SPCCI). Благодаря этой системе появилась возможность воспламенять бензин практически за счет одного только сжатия. То есть как в дизельных моторах. Также в двигателях SKYACTIV-X есть возможность воспламенять топливо обычным образом. Причем электроника автоматически выбирает, как выгоднее воспламенять бензин в камере сгорания. Все зависит от потребностей водителя и условий движения.

Например, если вам нужна сила (крутящий момент), то двигатель SKYACTIV-X будет воспламенять топливо от силы сжатия (почти как дизель). Если вам нужна мощность, то мотор с высокой степенью сжатия будет воспламенять топливо обычным образом. Причем реально для придания мощности будет использована последняя капля бензина.

Даже спустя столетие и даже с появлением альтернативных видов топлива, а также с появлением электрокаров двигатели внутреннего сгорания остаются главными силовыми агрегатами в автопромышленности. И несмотря на то что многие эксперты считают, что ДВС изжил себя и в скором времени должен исчезнуть из автомира, нам кажется, что двигатель внутреннего сгорания еще не развился до конца. Также мы считаем, что мир в ближайшие 100 лет все равно не будет готов полностью отказаться от ДВС, работающих на бензине.

И кто его знает, что нам подготовят автомобильные компании в ближайшем будущем. Ведь их инженеры не зря получают бутерброды с черной икрой. Вполне возможно, что уже скоро очередной автопроизводитель удивит нас какой-нибудь новой технологией в ДВС.

Так что рано сбрасывать со счетов традиционные моторы. Может быть, электрокары – это временное явление? Скорее всего, это более вероятно.

Технические изобретения существенно облегчили жизнь человечества и вывели ее на абсолютно новый качественный уровень. Особенно заметный скачок произошел после того, как был изобретен двигатель. Изначально это был паровой механизм, положивший начало настоящей технической и промышленной революции на планете. Но почти двести лет назад ему на замену начали приходить двигатели внутреннего сгорания, использующиеся сейчас практически во всех транспортных средствах. Что же такое ДВС? Каково устройство двигателя внутреннего сгорания? Каков принцип работы ДВС? Об и многом другом речь пойдет ниже.

Просто о сложном: разбираемся в терминологии

Современные семьи зачастую имеют не одно, а два-три авто. И девушки за рулем уже давно не редкость. Вот только большинство молодых водителей даже не понимают, как расшифровать аббревиатуру ДВС и не знают, что это такое. А ведь механизмы с подобным принципом работы стоят не только в легковых автомобилях, но и в:

  • мототранспорте;
  • сельскохозяйственной технике;
  • водном транспорте;
  • самолетах;
  • военной технике;
  • газонокосилках и это далеко не полный список.

Практически все привычные ТС, которые передвигаются по земле и летают над ней, основываются на том, как работает двигатель внутреннего сгорания. А значит вопросы его устройства не должны быть тайной даже для начинающих автолюбителей.

Итак, ДВС. Что это же такое важное он делает в машине? На самом деле все просто. Двигатель внутреннего сгорания или, как его часто называют сокращенно, ДВС – это приспособление, которое преобразует химическую и тепловую энергию в механическую работу. За счет этого он приводит в действие взаимосвязанные механизмы, придавая им движущую силу.

  • громоздкие;
  • неудобные в эксплуатации;
  • сложные в обслуживании.

Двигатели внутреннего сгорания стали следующим этапом развития, так как топливо воспламеняется внутри механизма в специальных камерах. За счет этого они:

  • надежны;
  • неприхотливы;
  • экономичны.

А также не требуют регулярного ТО.

Итак, что такое мотор? Обобщая все написанное выше, стоит сказать, что это – главный механизм технического средства, придающий ему движущую силу.

Принцип работы ДВС: основные моменты

Даже понимая, что же такое ДВС и какую роль он выполняет в автомобиле, не обойтись без чисто технических знаний. Если объяснять простыми словами, то принцип работы ДВС основан на эффекте расширения газов и образования в результате этого процесса мощного выброса тепловой энергии:

  • смесь топлива и воздуха в нужных пропорциях поступает в камеру;
  • сжимается;
  • воспламеняется;
  • энергия преобразовывается в движущую силу.

Если говорить еще проще о том, как работает двигатель внутреннего сгорания, то стоит отметить следующее:

  • при воспламенении любая смесь увеличивается в объемах;
  • в ограниченном пространстве она активно давит на стены камеры;
  • при наличии одной подвижной стенки большая часть давления уходит на нее;
  • любая присоединенная к этому элементу деталь приводится в движение.

В общих чертах принцип работы ДВС таков. В реальности все выглядит немного сложнее. Но общая последовательность операций сохраняется.

Об эволюции моторов и не только

Зная, что же такое ДВС в ТС, можно немного углубиться в изучение вопроса. И тут окажется, что современный мотор имеет несколько разновидностей со своими нюансами и особенностями:

  • роторно-поршневые;
  • газотурбинные;
  • поршневые.

О каждом стоит рассказать немного подробнее.

Роторно-поршневые

Что это такое в машине? И по какому принципу работает? В таком варианте ротор помещается в специальный отсек и выполняет при движении сразу несколько задач, выступая в роли:

  • коленчатого вала;
  • ГРМ;
  • поршня.

Работа двигателя внутреннего сгорания этого типа базируется на расширении газов. Именно они и приводят в движение ротор.

Газотурбинные

Принцип работы ДВС тоже довольно прост:

  • на ротор насажены специальные лопатки клиновидной формы;
  • тепловая энергия заставляет его двигаться;
  • за счет этого в движение приходит вал турбины;
  • энергия преобразуется в механическую работу.

Используются подобные модели довольно редко.

Поршневые

Это самый распространенный и оправдавший надежды конструкторов вариант. Если вкратце описывать, как работает двигатель внутреннего сгорания, то нужно обязательно отметить следующие нюансы:

  • камера сгорания помещается внутрь цилиндра;
  • кривошипно-шатунный механизм сдвигается за счет тепловой энергии;
  • в свою очередь он распределяет механические усилия на коленчатый вал.

Виды двигателей поршневого типа разнообразны:

  • карбюраторные;
  • инжекторные;
  • дизельные.

Принцип работы ДВС карбюраторного типа основывается на формировании горючего состава в карбюраторе. Уже оттуда он поступает в цилиндры, где и происходят стандартные процессы.

Инжекторные двигатели автомобиля считаются довольно сложными. Важная часть процессов происходит под контролем электроники:

  • залив горючего в коллектор;
  • прохождение через форсунки;
  • возгорание.

Далее речь пойдет об устройстве двигателя внутреннего сгорания поршневого типа. Как самый распространенный, он вызывает набольший интерес у автолюбителей и других категорий владельцев различных технических устройств.

Строение стандартного двигателя

Разбираясь в принципах работы ДВС и других вопросах, стоит учесть, что выпускающиеся на заводах агрегаты имеют несколько:

Это приводит к тому, что элементы двигателя автомобиля могут довольно сильно различаться между собой. Но при этом основные детали, блоки и узлы остаются идентичными. Поэтому конструктивные особенности не влияют на то, как работает двигатель внутреннего сгорания.

  • цилиндры;
  • КШМ (криво-шатунный механизм);
  • ГРМ.

Отдельно в устройстве стандартного ДВС выделяют сложные системы, отвечающие за слаженное и бесперебойное функционирование агрегата:

  • питания – подготавливает смесь к подаче в цилиндры;
  • смазки – подает смазочные материалы на необходимые узлы и элементы;
  • зажигания – устанавливается только на бензиновых моделях и необходима для воспламенения смеси;
  • охлаждения – поддерживает оптимальную температуру;
  • электросистема – источник энергии агрегата;
  • выхлопа – отводит продукты горения.

Каждый блок выполняет в строении движка свои задачи. Так как принцип работы ДВС основывается на воспламенении смеси, то цилиндры называют основным элементом всей системы, куда и поступает бензиново-воздушный состав.

В схеме двигателя КШМ выполняет роль основного трансформатора тепловой энергии в движущуюся силу, распределяющую ее на коленчатый вал.

Газораспределительный механизм (ГРМ) контролирует распахивание и закрытие следующих клапанов:

  • запуска горючего, смешанного с воздухом;
  • выхода отработанных газов.

Благодаря ему, гарантируется синхронность системы.

Исходя из того, как работает двигатель внутреннего сгорания, конструкторы совершенствуют модели, применяя различную комплектность цилиндров. В первых механизмах он был один. Позже начались эксперименты по усилению мощности:

  • увеличение диаметра цилиндра;
  • увеличение количества цилиндров.

Новые модернизированные двигатели внутреннего сгорания могут иметь до 12 цилиндров с разным расположением. Наиболее популярны расстановки:

  • в ряд – наиболее простой и понятный агрегат;
  • V-образный – более популярный.

В автомобилях чаще всего используют V-образные модели. Они выделяются:

  • компактностью;
  • производительностью;
  • надежностью.

Расположение под углом конструкторы используют при установке 6 цилиндров и более.

Также встречается и следующая компоновка цилиндров:

  • VR-образная – ставятся в два ряда с небольшим наклоном;
  • W-образная – крепятся на один коленвал в 3-4 ряда под углом;
  • U-образная – параллельная установка на два коленвала;
  • оппозитная – цилиндры располагаются в одной горизонтали под углом 180 градусов друг к другу;
  • встречная – поршни движутся на встречу друг другу;
  • радиальная – размещение по кругу.

Последний способ применяется в авиастроении. Остальные используют автомобильные концерны.

Несколько слов о тактности

Как работает двигатель внутреннего сгорания? Циклично. Одни и те же действия проходят с повторениями до нескольких сотен раз в 60 с. Благодаря этому, все элементы вращаются беспрерывно.

Исходя из этого принципа работы, ДВС делятся на:

Первоначально практически все двигатели внутреннего сгорания были двухтактными. В них цикл состоит из:

  • 2 движений поршня;
  • одного оборота коленвала.

Такие агрегаты имели низкую производительность при неизменно высоком потреблении топлива. С течением времени им на замену пришли четырехтактные модели, в которых цикл немного иной:

  • две фрикции поршня;
  • 2 витка коленвала.

Эти механизмы получили широкое распространение и ставятся на 90% машин.

Все о 2-тактных моделях

Принцип работы ДВС этого типа можно подробно описать в следующем списке:

  • запуск движка заставляет поворачиваться коленчатый вал;
  • он вовлекает в перемещения поршень;
  • при достижении нижней позиции вливается бензиново-воздушный состав;
  • на ходу вверх создается давление;
  • в верхней позиции свеча вызывает искру и воспламеняет содержимое камеры;
  • расширение сдвигает поршень вниз;
  • на нижней границе раскрывается клапан, выпускающий отработку.

За этот период коленвал делает одно вращение и все повторяется заново.

При такой схеме двигатель совершает небольшое количество движений, благодаря чему снижается износ узлов. Но при этом он серьезно греется, а потери газа существенно снижают мощность. Поэтому на производстве он ставится на технику небольшой мощности.

Функционирование 4-тактных агрегатов

Основываясь на том, как работает двигатель внутреннего сгорания двухтактного типа, отметим, что 4-тактный механизм во многом похож на него. Но здесь есть свои особенности – раскрытие и захлопывание клапанов никак не связано с остальными процессами. Каждый такт рассчитан на одну фрикцию поршня в ту или иную стороны.

Принцип работы двигателя внутреннего сгорания выглядит следующим образом:

  • впуск – при опускании поршня до нижней границы раскрывается впускной клапан, параллельно повышается давление и температура;
  • сжатие – движение вверх вызывает плотное закрытие клапанов с последующим сжатием при одновременном изменении температурного режима в сторону плавного увеличения;
  • расширение – искра и горение приводят к резкому увеличению объема смеси, за счет чего поршень начинает опускаться вниз;
  • выпуск – стремление к верхней границе сопровождается открытием выпускного клапана, избавляющего камеру от отработанных газов.

Таким образом функционируют все бензиновые моторы. Если сравнивать их с тем, как работает двигатель внутреннего сгорания на дизеле, то различие будет одно – для возгорания не требуются свечи. В таких моделях важно четко дозировать поступление солярки. При бесперебойном впрыскивании в определенном объеме агрегат будет работать слаженно и четко.

Плюсы и минусы

Двигатели внутреннего сгорания имеют немало достоинств:

  • удобство и простота использования;
  • доступность топлива;
  • быстрая заправка;
  • долговечность;
  • сохранение работоспособности даже после нескольких ТО.

К тому же для многих автовладельцев звук мотора является лучшей музыкой. Зная это, производители настраивают их особым образом.

Но и минусы у агрегатов существуют:

  • более низкий коэффициент полезного действия по сравнению с электрическими моделями;
  • сложность системы.

Современные модели уже невозможно починить и обслуживать самостоятельно в гараже. Но чем сложнее конструкция, тем больше слабых мест в ней остается. А значит ТО придется проходить все чаще и чаще.

Требует упоминания и экологический аспект. Многие европейские города задыхаются от бензинового смога и не видят солнечного света. Поэтому требования к экологической безопасности регулярно ужесточаются.

Двигатели внутреннего сгорания с течением времени не теряют своих позиций. Несмотря на то, что инженеры и изобретатели бьются над созданием принципиально новых моторов, этот вопрос до сих пор не решен. А значит в ближайшие годы человечество будет пользоваться все теми же привычными, надежными и удобными агрегатами.

История изобретения ДВС

Итак, в связи с тем, что первым двигателем внутреннего сгорания была пушка, необходимо было бы узнать имя изобретателя, но оно, к сожалению, потерялось в веках. Известно, только,что в Европе пушка появилась в 14-м веке, а в восточных странах еще в 13-м.

Христиан Гюйгенс (портрет слева) в начале 17-го века предложил внутрь цилиндра с поршнем насыпать немного пороха. Если этот порох поджечь, то поршень поднимется вверх и шток прикрепленный к поршеню может совершить некоторую работу. Затем аппарат необходимо было разобрать, засыпать новую порцию пороха и продолжить. Шток останавливался в верхнем положении при помощи специального фиксатора.

Конечно, на это сейчас мы смотрим с удивлением, но для 17-го века это был прорыв.

В 1690 году (конец 17-го века) Дени Папен (портрет справа) усовершенствовал эту конструкцию предложив вместо пороха залить на дно цилиндра воду. Если нагреть цилиндр вода испарится превратившись в пар и этот пар совершит работу подняв поршень. Затем поршень можно остудить пар внутри превратится в воду и процесс можно повторить.

Только в 1801 году французский изобретатель Филип Лебон придумал подавать в цилиндр светильный газ в смеси с воздухом и поджигать его там. Он даже получил патент на этот газовый двигатель. Но в связи с тем, что Лебон рано умер (в 1804 году в возрасте 35 лет), довести свое детище до практической модели не успел.

Этьен Ленуар (француз с бельгийскими корнями), придумывал различные механические конструкции, работая на гальваническом заводе. Именно он считается изобретателем первого работающего двигателя внутреннего сгорания.

Доработав идею Лебона, в 1860 году он взял за основу двухходовой поршень, который совершал работу двигаясь как вправо, так и влево. А смесь светильного газа и воздуха он поджигал в отдельной камере при помощи электрической искры. Направляя продукты сгорания (в зависимости от положения поршня) либо в правую, либо в левую полость, как пар у паровоза.

Как видим это опять не совсем похож на современный двигатель в нашем его понимании, но прародитель его это уж точно. Выпустив более 300 таких двигателей, он разбогател и перестал заниматься изобретательством. Изобретенный Августом Николаусом Отто двигатель вытеснил с рынка двигатели Ленуара. Именно Отто предложил и построил четырехтактный двигатель. КПД его двигателя достигал 15%, это почти в 3 раза выше чем у двигателей Ленуара. Кстати сказать современные бензиновые двигатели имеют КПД не выше 36%, это все чего мы достигли за 150 лет работы над двигателями внутреннего сгорания. На этом четырехтактном цикле работают сейчас большинство двигателей.

Только после изобретения двигателей работающих на жидком топливе (керосине и бензине), их вполне уже можно было устанавливать на повозки, что и сделал Карл Бенс в 1886 году.

В 1893 году Рудольф Дизель запатентовал двигатель работающий на отходах производства бензина – солярке.В его двигателе смесь не нужно было воспламенять, она загоралась сама от высокой температуры в цилиндре. Но и смесь воздуха с топливом готовилась несколько по-другому. В его двигателе топливо (солярка) подавалась в цилиндр в конце цикла сжатия специальным насосом. Это было революционным прорывом. Многие современные бензиновые двигатели используют этот метод образования воздушно-топливной смеси. Дизельный же двигатель не претерпел особых изменений.

В первом тепловом двигателе — паровой машине — тепло производилось в топке и в паровом котле, вне цилиндра — рабочего органа машины. Топка и котёл делали двигатель громоздким и тяжёлым, годным только для стационарного использования или для установки на большие пароходы и паровозы. В поисках идеи компактного и лёгкого двигателя конструкторы пришли к мысли сжигать топливо внутри рабочего цилиндра — так появились прототипы двигателя внутреннего сгорания (ДВС). Первый ДВС, схожий с современным, создал в 1876 г. немецкий конструктор Николаус Отто.

Двигатель де Риваса на самодвижущейся тележке

Двигатель де Риваса на самодвижущейся тележке. Сдавливая баллон (1), в рабочий цилиндр (2) впрыскивали сжатый водород. Одновременно через открывавшийся рычагом (3) клапан (4) в цилиндр впускали воздух. Водородно — воздушную смесь (5) поджигала электрическая искра от батареи Вольта (6). Взорванная смесь расширялась, и её давление поднимало поршень (7). Обратным движением рычага открывался клапан отработанного газа, и тяжёлый поршень падал. Движения поршня через цепь (9) передавались валу (10), но лишь при обратном ходе поршня трещотка (11) на кривозубой шестерёнке (12) позволяла крутиться валу, который через ременную передачу (13) раскручивал ось передних колёс (14) тележки.

Пробный вариант

Первый двигатель внутреннего сгорания (ДВС) создал французский изобретатель Ф.И. де Ривас в 1807 г. Смесь воздуха и водорода в рабочем цилиндре зажигалась электрической искрой от батареи Вольта, после подрыва смесь расширялась, создавая высокое давление в цилиндре и подбрасывая поршень. Отработанные газы выпускались, образуя под поршнем вакуум. Под воздействием давления атмосферы и своего веса поршень падал, возвращаясь в исходное положение, чтобы повторить цикл. Де Ривас использовал свой ДВС как привод передних колёс повозки. Но из-за низкой эффективности его двигатель не нашёл спроса. Впоследствии идеи де Риваса легли в основу дальнейших разработок ДВС.

Двигатель Ленуара

В 1860 г. другой француз, механик Э. Ленуар, сделал ДВС, похожий на горизонтальную паровую машину, но работающий на смеси воздуха со светильным газом (содержащим углеводороды). ДВС Ленуара был двойного действия — рабочий ход поршень совершал при движении в обе стороны. Это обеспечивалось тем, что смесь поджигалась искрой от двух электрических свечей по обе стороны от поршня, и впуск и выпуск газов проводился также с двух концов цилиндра с помощью золотников (таких же, как в паровых машинах).

Цикл работы ДВС Ленуара состоял из двух тактов (из двух ходов поршня — вперёд и назад). Оба хода обеспечивались расширением газовой смеси при сжигании, что требовало большого расхода топлива. Работа ДВС Ленуара обходилась в 7 раз дороже работы паровой машины той же мощности. Зато из-за отсутствия котла и топки ДВС был компактнее, и его, например, ставили на лодки, где не было места для паровой машины.

Цикл двухтактного ДВС Ленуара. 1864 г.

Цикл двухтактного ДВС Ленуара. 1864 г. Первый такт. Поршень (1) двигается вперёд. Тяга (2) впускного золотника (3), связанная через эксцентрик (4) вала (5), открывает заднее отверстие (6) в цилиндре (7) для впуска смеси светильного газа и воздуха. Поршень немного продвигается, впускной золотник перекрывает задний впуск, а выпускной золотник (8) открывает переднее отверстие выпуска (9), через которое поршень выталкивает газы, отработанные в прошлом такте. На заднюю свечу зажигания (10) подаётся высоковольтный разряд от электрической батареи (11). Смесь зажигается, расширяется и толкает поршень дальше вперёд до крайнего положения. Шток (12) поршня через кривошипно — шатунный механизм (13) раскручивает вал и маховик (14). Второй такт. Инерция крутящегося маховика тянет поршень назад. Впускной золотник открывает переднее отверстие впуска газов (15), поршень продолжает двигаться, впуск закрывается, смесь в цилиндре поджигается передней свечой зажигания (16), давление газов толкает поршень назад, золотник выпуска открывает заднее отверстие (17), и отработанные в первом такте газы выходят. Поршень занимает исходное крайне заднее положение. Цикл повторяется.

Первая победа Отто

Недостатки ДВС Ленуара учёл немецкий конструктор Н.А. Отто при создании своего двухтактного двигателя. Сделанный им в 1864 г. ДВС тоже работал на смеси воздуха со светильным газом. Отто поджигал смесь не электрической искрой, а пламенем газовой горелки, что было надёжнее при тогдашнем уровне развития электротехники. ДВС Отто совершал один рабочий ход. Сделав цилиндр вертикальным, Отто заставил поршень двигаться вниз без помощи давления газов, только под воздействием своего веса и давления атмосферы. Это позволило его ДВС при вдвое меньшем расходе топлива развивать мощность как у ДВС двойного действия. ДВС Отто оказался в 4-5 раз экономичнее двигателя Ленуара. Первые ДВС Отто широко использовались как приводы для типографских машин, грузовых лифтов-подъёмников, токарных и ткацких станков, прядильных машин и прочего оборудования.

Двухтактные ДВС, работающие по принципу ДВС Отто 1864 г., и сейчас используются как приводы сенокосилок и бензопил, в лодочных и мотоциклетных моторах.

Николаус Аугуст Отто

Четыре такта успеха

Настоящий прорыв в создании ДВС Отто совершил в 1876 г. В новом двигателе Отто вернулся к горизонтальной конструкции. Для увеличения мощности ДВС Отто решил перед воспламенением сжать топливную смесь, а для этого цикл работы ДВС пришлось увеличить до 4 тактов — 4 ходов поршня, и этот двигатель стал называться четырёхтактным ДВС.

Мощный четырёхтактный ДВС Отто вытеснил все предыдущие модели ДВС — его схема стала образцом для создания всех последующих ДВС вплоть до нашего времени и открыла возможность применения ДВС на транспорте.

Четырёхтактный цикл работы ДВС Отто 1876 г.

Четырёхтактный цикл работы ДВС Отто 1876 г. I такт. Впуск топлива: поршень (1) идёт вперёд (первый ход), создавая низкое давление в цилиндре. Вращение главного вала (2) через червячную передачу (3) передаётся вспомогательному валу (4), управляющему газораспределительными клапанами. В I такте вал открывает впускной клапан (5), и горючая смесь из топливного бака (6) поступает в цилиндр (7). Клапан закрывается. II такт. Сжатие смеси: поршень идёт назад (второй ход) и сжимает топливную смесь. При запуске ДВС первый и второй ходы поршня осуществлялись вручную, затем это происходило автоматически — инерция маховика (8) поддерживала вращение главного вала. III такт. Расширение смеси (рабочий ход): вспомогательный вал кратковременно открывает клапан (9), подающий порцию смеси в газовую горелку (10), где она воспламеняется (11) и, поступая в цилиндр, воспламеняет в нём основную порцию горючего. Газы в цилиндре расширяются и выталкивают поршень вперёд (третий ход). На этом такте поршень производит полезную работу: через шток (12) передаёт толчок кривошипно — шатунному механизму (13), раскручивающему маховик. IV такт. Выпуск отработанных газов: через выпускной клапан (14) отработавшие газы, быстро сжимающиеся благодаря рубашке охлаждения (15) в корпусе цилиндра, удаляются из цилиндра. Создаётся разряжение (низкое давление), и поршень идёт назад (четвёртый ход).

Развитие идеи

Сотрудники компании Отто Г. Даймлер и В. Майбах в 1883 г. создали первый бензиновый ДВС, который в 1885 г. установили на первом мотоцикле, а в 1886 г. — на первом автомобиле.

Четырёхтактный цикл работы современного одноцилиндрового ДВС

Четырёхтактный цикл работы современного одноцилиндрового ДВС. Такт — это один ход поршня (1), т. е. прохождение поршня от крайнего верхнего положения, верхней мёртвой точки (ВМТ), до крайнего нижнего положения, нижней мёртвой точки (НМТ). I такт. Впуск. Поршень идёт вниз, создавая в цилиндре (2) разряжение. Открывается впускной клапан (3), и под воздействием атмосферного давления из впускного трубопровода (4) в цилиндр засасывается горючая смесь — распылённый в воздухе бензин (5). II такт. Сжатие. Впускной клапан закрывается. Поршень идёт вверх, сжимая горючую смесь (6). III такт. Рабочий ход (расширение). Между электродами свечи зажигания (7) проскакивает электрическая искра, поджигающая смесь. Газы расширяются (8), под их давлением поршень идёт вниз и передаёт усилие через кривошипно — шатунный механизм (9) на коленчатый вал (10), проворачивая его. IV такт. Выпуск. Поршень по инерции идёт вверх. Открывается выпускной клапан (11), и под давлением поршня отработанные газы (12) вытесняются в атмосферу.

Однако бензин при испарении плохо смешивался с воздухом, реакция при возгорании протекала неравномерно, и бензиновые ДВС, работая ненадёжно, не могли вытеснить газовые ДВС. Выход нашёл венгерский инженер Д. Банки — в 1893 г. он придумал устройство для распыления бензина в воздухе — карбюратор с жиклёром. Бензиновая взвесь, равномерно смешанная с воздухом, поступала в цилиндр, где при зажигании быстро превращалась в газовую смесь, обеспечивая хорошее протекание реакции и мощное расширение при взрыве. В России первый бензиновый двигатель с карбюратором сконструировал в 1880-х гг. О. С. Костович. В 1897 г. немецкий инженер Р Дизель придумал дизельный двигатель, в котором топливо воспламенялось не от огня или электрической искры, а от высокой температуры, которая возникает при сильном сжатии воздуха. В России производство дизельных двигателей, усовершенствованных российским инженером Г. В. Тринклером, началось в 1899 г. Эти дизели устанавливали на стационарных машинах (станках и пр.).


Двигатель – одно из основных составляющих автомобиля. Без изобретения двигателя автомобилестроение, скорее всего, остановилось в развитии сразу же после изобретения колеса. Рывок в истории создания автомобилей, произошел благодаря изобретению двигателя внутреннего сгорания. Это устройство стало реальной движущей силой, дающей скорость.Попытки создать устройство, подобное двигателю внутреннего сгорания, начались с 18 века. Созданием устройства, которое могло бы преобразовывать энергию топлива в механическую, занимались многие изобретатели.

Первым успешным двигателем, который начал продаваться, был двигатель внутреннего сгорания бельгийского инженера Ж.Ж. Этьена Ленуара. Год рождения этого изобретения – 1858. Это был двухтактовый электрический двигатель с карбюратором и искровым зажиганием. Топливом для устройства служил каменноугольный газ. Однако изобретатель не учел потребность в смазке и охлаждении своего двигателя, поэтому он работал очень недолго. В 1863 году Ленуар переделал свой двигатель – добавил недостающие системы и в качестве топлива ввел в использование керосин.



Ж.Ж.Этьен Ленуар

Устройство было крайне несовершенным – сильно нагревался, неэффективно использовал смазку и топливо. Однако с помощью него ездили трехколесные автомобили, которые так же были далеки от совершенства.В 1864 году был изобретен одноцилиндровый карбюраторный двигатель, работающий от сгорания нефтепродуктов. Автором изобретения стал Зигфрид Маркус, он же представил общественности транспортное средство, развивающее скорость 10 миль в час.

В 1873 году еще один инженер – Джордж Брайтон – смог сконструировать 2-х цилиндровый двигатель. Изначально он работал на керосине, а позже на бензине. Недостатком этого двигателя была излишняя массивность.

В 1876 году произошел рывок в индустрии создания двигателей внутреннего сгорания. Николас Отто впервые создал технически сложное устройство, которое эффективно преобразовывало энергию топлива в механическую энергию.



Николас Отто

В 1883 году француз Эдуард Деламар разрабатывает чертеж двигателя, топливом для которого служит газ. Однако его изобретение существовало только на бумаге.1185 году в истории автомобилестроения появляется громкое имя – Готтлиб Даймлер. Он смог не только изобрести, но и запустить в производство прототип современного газового двигателя – с вертикально расположенными цилиндрами и карбюратором. Это был первый компактный двигатель, который к тому же способствовал развитию приличной скорости перемещения.

Параллельно с Даймлером над созданием двигателей и автомобилей работал Карл Бенц.

В 1903 году предприятия Даймлера и Бенца объединились, дав начало полноценному предприятию автомобилестроения. Так началась новая эра, послужившая дальнейшему совершенствованию двигателя внутреннего сгорания.

Читайте также: