Хроматография это в химии кратко

Обновлено: 07.07.2024

Хроматография — способ разделения смесей, который изобрел русский ученый Михаил Семенович Цвет в 1900 году. Заключается в различии свойств компонентов смесей, разнице их реакций при нахождении в одинаковых условиях.

История хроматографии

Михаил Семенович Цвет

С 1910 по 1930 гг. этот метод почти не исследовался.

Следующее упоминание в истории принадлежит европейским ученым Р. Куну, А. Виртенштейну, Э. Ледеру. В 1931 году, используя этот метод, они выделили из сырого каротина составляющие a- и b-каротин.

Важным этапом развития стало открытие в 1941 году английскими естествоиспытателями А. Мартином и Р. Сингом жидкостного варианта, где подвижное вещество — бумага, смоченная водой с бутанолом.

В 1975 году ученые из США ввели в терминологию новый вариант хроматографии — ионную.

Суть метода хроматографии

Метод хроматографии основан на постоянно повторяющихся с конкретной периодичностью процессах сорбции-десорбции, которые происходят между подвижным веществом с растворенной в нем пробой (элюентом) и неподвижным (сорбентом). Компоненты исследуемой смеси имеют различную степень сорбции (впитывания), за счет чего поглощаются сорбентом с различной скоростью и степенью. Суть метода заключается в многократном повторении этих процессов. Получившиеся пробы после изучения в хроматограмме позволяют уточнить состав реактива.

Теоретические основы хроматографии

В теории этот метод представляет собой последовательный процесс уравновешивания составляющих смеси, когда происходит деление на 2 части — подвижную и недвижную.

Понятия и определения метода зафиксированы ГОСТ 17567-81.

Выделяют адсорбцию, когда поглощение происходит на поверхности границ и абсорбцию, когда вещества расходятся между 2-х фаз.

Виды хроматографии

Виды хроматографии классифицируют по особенностям процесса разделения (по данным Википедии):

  • агрегатное состояние неподвижной (сорбент) и подвижной (элюент) фазы: газовая, жидкостная, флюидная, полифазная;
  • природа взаимодействия сорбента (удерживающее вещество) и сорбата, сорбтива (удерживаемое вещество): адсорбционная, ионообменная, распределительная, осадочная;
  • способ введения элюента: фронтальная, вытеснительная, проявительная;
  • техника проведения (капиллярная, колоночная, на бумаге);
  • цели хроматографирования (аналитическая, препаративная, промышленная).

Хроматография

Классификация эта весьма условна. Все виды тесно связаны между собой. Так, в аналитической по цели использует проявительную по способу введения элюента. Кроме того, в каждом показателе могут выделяться дополнительные критерии. В технике проведения дополнительное влияние дают технические условия (высокое или низкое давление).

Капиллярная хроматография

Лекции по капиллярной начинаются с ответа на вопрос о том, для чего она нужна. Быстрое развитие метода привело к вопросу разделения смесей, состоящих из веществ, близких по физическим и химическим свойствам. Новую капиллярную колонку для решения этих задач изобрел М. Голей в 1957 году. Ее диаметр изменяется в пределах 0.05-0.15 мм, стандартный диаметр — 0.11 mm, а длина — 40-200 мкм. Самая длинная колонка достигала 477 м.

Данный вид позволяет решать различные экологические задачи — исследование воздуха на наличие летучих органических соединений (кратко — ЛОС), определение содержания пестицидов в почве. Разработаны методики:

  • измерения концентраций ЛОС в воздухе — методика 1633-2013;
  • определения содержания нефтяных продуктов в воде — ГОСТ 31953-2012;
  • определения состава газа — ГОСТ 3-2008 с правками 2019 года.

Первоначально этот метод использовался для исследования качества нефтепродуктов, определения процентного содержания нефти в бензине.

Препаративная хроматография

Препаративная ставит цель выделять чистое вещество из смеси, причем в значительных количествах. Особенность — выполнение непрерывного разделения смеси. Для получения большего количества вещества увеличивают объем колонки в хроматографической установке.

Аналитическая хроматография

Используя аналитическую, проводят качественный и количественный анализ соединений — оксидов, кислот, окисей, полимеров.

В конце колонки расположен аппарат, измеряющий концентрацию вещества в элюенте — детектор. Время, прошедшее с момента поступления вещества в колонку до наступления максимальной концентрации вещества, называется время удерживания в хроматографии. Эта величина постоянна для каждого вещества, если в колонке поддерживается постоянная внешняя и внутренняя температура, и на основе этих данных делают качественный анализ.

Бумажная хроматография

Количественный анализ осуществляется через измерение площади и расположения пиков на хроматограмме.

Хроматография практическая

Современный метод хроматографии предназначен для решения практических задач. Сегодня использование этого метода актуально в биологии, криминалистике, химии, медицине, быту. Самые простые примеры доступны для проведения даже дошкольнику. Для опыта с чернилами разного цвета и простой водой в качестве растворителя не требуется современного оборудования, сложных расчетов и технологичной лаборатории. Школьники и студенты вузов проводят опыт по размыванию чернил на уроках химии.

Флюидная хроматография

К высокоэффективным видам относится флюидная. Процесс в данном случае проходит в сверхкритических условиях, где в качестве подвижной фазы берут газ, больше похожий на гель. Достоинство этого вида — определение верного состава любых микросоединений, которые не дают сигнал спектроскопам или другим детекторам.

С помощью флюидной хроматографии успешно анализируется состав лекарственных средств, продуктов, полимеров, сырой нефти, ПАВов.

Хроматография аминокислот

Данный метод играет большое значение при идентификации аминокислот и белков. Проводится техникой на листе бумаги по распределительному принципу. Определение вида аминокислоты проходит в несколько этапов:

Основные достоинства этого метода: точность получаемых данных и легкость расчетов.

Разновидности хроматографии по механизму разделения веществ

  • Адсорбционная. Определение вещества происходит по степени его адсорбции, т. е. возможности его поглощения поверхностью вещества.
  • Распределительная основана на различных степенях растворимости определяемого вещества в подвижной и неподвижной фазах.
  • Ионообменная основана на способностях к обмену ионами в атомах вещества с неподвижной фазой. Происходит замещение ионов в неподвижной фазе ионами вещества, при этом возникновение разницы в скорости приближения ионов к неподвижной фазе приводит к разделению элюента вследствие изменения концентрации вещества в фазах.

Хроматограф аффинный

Процессы ионообменной хроматографии применяются для изучения биологических жидкостей (кровь, моча, плазма) и диагностики заболеваний.

  • Осадочная изучает степень растворимости осадка, получившегося после проведения химической реакции с компонентом твердой фазы, а также скорости его осаждения.
  • Аффинная основана на способности соединений притягиваться с высокой избирательностью к сорбенту. Элюирование (вымывание) вещества из общей массы — это аффинный метод хроматографии.

На характере взаимодействия между сорбентом и сорбатом основывается классификация по механизму разделения веществ.

Разновидности хроматографии по агрегатному состоянию фаз

По агрегатному состоянию фазы хроматографические методики бывают четырех видов.

Газовая: жидкостно-газовая и газо-твердофазная. Подвижной фазой выступает инертный газ (гелий, азот, водород, диоксид углерода) или воздух, который должен быть чистым, инертным по отношению к сорбенту и исследуемому веществу, хорошо растворять смесь. Неподвижной фазой служит либо жидкость, либо вещество.

Одним из направлений газовой является парофазный анализ, отличие которого заключается в том, что изучается не жидкий или твердый объект, а газовая фаза (пар).

Флюидная. Подвижная находится в сверхкритических условиях — высокое давление, критическая температура.

Полифазная. Неподвижная фаза — смесь твердых и жидких компонентов.

Данные методы используются для исследования смесей органических соединений.

Качественный анализ в хроматографии

Качественный анализ пробы проводится на хроматографе, который измеряет и записывает характеристики, составляет схему. Полученную по результатам исследования хроматограмму изучают, высчитывают, используя формулы, закон Генри, уравнение Ван-Деемтера, сравнивают с эталонными градуировками и делают расшифровку.

Жидкостная хроматография

Исходные графические данные, на основе которых проводят качественный анализ, называют элюционными характеристиками (параметрами). К ним относятся:

  • время удерживания (activity, активности);
  • ширина и высота элюционной кривой;
  • ширина зоны на слое;
  • удерживаемый объем;
  • индекс удерживания;
  • эффективность (число тарелок);
  • селективность.

Методики постоянно улучшаются и дорабатываются — составляются специальные таблицы по результатам испытаний, что позволяет получать более точные данные для качественного проведения исследований.

Где применяется хроматография

Первоначально этот метод был применен в биологии первооткрывателем М. С. Цветом. В настоящее время он используется практически во всех сферах — промышленности, медицине, экологии, криминалистике, фармацевтике.

Хроматография в биологии

Хроматография в биологии в настоящее время применяется на постоянной основе. Основным методом хроматографии в биологии является газовый. Это проведение тестов на уровень содержания пестицидов в почве, вредных веществ в воде и воздухе. Метод ЖХ/МС/МС, объединяющий жидкостное хроматографирование и тандемную масс-спектрометрию, вместе с центрифугированием используется при расщеплении липидов, белков, углеводов до простых компонентов для дальнейшего их исследования, которым занимается наука протеомика.

Хроматография в химии

Хроматография — это в химии один из основных методов исследования, позволяющий получить точные и проверенные данные. Представители IUPAC (Международного союза теоретической и прикладной химии) участвовали в разработке стандартов обозначения хроматографических процессов.

Различные виды метода применяются для исследования свойств анаэробных и аэробных веществ, извлечения из смеси веществ необходимого препарата. Каждое предприятие химической промышленности использует хроматографические методы на этапе контроля качества сырья и других технологических процессов.

Хроматография в медицине

В клинической медицине эти методы применяются в тесной взаимосвязи с биологией. Изучение беременности, хромосом, медицинское лечение различных микробных инфекций, патологий, отравлений происходит без использования антибиотиков и сывороток, основываясь на принципах жидкостно-адсорбционной хроматографии, где неподвижная фаза — адсорбент, жидкая — кровь, плазма, лимфа, а разделяемая смесь — внутренние жидкости с метаболитами токсинов.

Хроматография в криминалистике

Криминалистические хроматографические методы предполагают решение государственных задач через проведение исследований в следующих областях:

  • поиск и идентификация отпечатков пальцев тела;
  • медико-биологический анализ ДНК для идентификации личности человека;
  • аппаратурное определение состава ядов, наркотиков, взрывчатых веществ;
  • анализ состава чернил, бумаги, алкоголя.

В криминалистике широкое применение получили две разновидности жидкостного метода: хроматографирование в тонких слоях сорбента и 2-й — хроматография на бумаге.

Хроматография в цитологии

Хроматография нефти

На НПЗ хроматографический метод применяется для определения физических свойств нефти (теплопроводности, плотности), уровня содержания серосодержащих примесей. Так как от этого напрямую зависит качество продуктов — бензина, моторного топлива, трансформаторного масла.

Хроматография в фармации

В фармацевтической отрасли хроматографические методы применяются в нескольких науках: фармакопея (лат. pharmacopoeia), фармация и фармакогнозия. В фармакопейном анализе широкое применение получил ионообменный вид и метод спектрометрии, с помощью которых удается выделить из смеси микроскопически малые части за небольшой промежуток. В косметологии в состав средств для ухода за волосами входит метилпропансульфокислота, получаемая препаративным методом.

Где используется хроматография в быту

В домашних условиях возможно бесплатно провести самые простые эксперименты, демонстрирующие сущность разных видов хроматографии.

Опыт с бумагой (можно взять обыкновенную промокашку) и спиртовым экстрактом календулы прекрасно демонстрирует принцип действия бумажной.

Если капнуть на бумагу сначала эфирный раствор календулы, а затем этиленгликоль, в итоге через небольшой промежуток времени на бумаге образуется несколько разноцветных колец. Прослеживается прямопорциональная зависимость количества веществ в смеси и количества колец.

Селективность в хроматографии

Селективность — это свойство одного объекта подбирать свойства другого объекта, работающего в тандемной связке, под свои потребности для решения задачи.

В хроматографии используют термин селективность колонки, и чем она выше, тем лучших результатов можно достичь. Возможность выбирать сорбент, состав растворителя, химическую структуру и свойства компонентов смеси, температуру колонки — это факторы, изменение которых выводит селективность на высокий уровень.

Индекс удерживания в хроматографии

Индекс удерживания вещества — это величина, измеряющая время нахождения молекулы изучаемого вещества в подвижной фазе.

Неподвижная фаза в хроматографии

Неподвижная фаза — это вещество, которое выступает в роли сорбента для анализируемых веществ. Неподвижной фазой выступает твердое вещество с пористой поверхностью, в некоторых случаях жидкости.

Электрофорез и хроматография

Электрофорез, используя ток, и хроматография решают одни и те же задачи — разделение смеси веществ, выделение их составляющих. Но при этом есть существенное отличие. Процесс электрофореза — электрохимический, он состоит из неподвижной и мокрой подвижной фазы, а 2-ой использует стационарную и подвижную фазы.

Применяют в медицине в биохимии жидкостей (крови, плазмы).

Что общего между экстракцией и хроматографией

Экстракция — это разделение смеси жидких или твердых веществ. Активируют селективные растворители (экстрагенты). Общее с хроматографическими методами — деление исследуемого вещества на части и его выделение из общей массы.

ТСХ хроматография и ГСО

ТСХ (расшифровка — тонкослойная хроматография) протекает при перемещении подвижной фазы на тонком слое (до 0,20 см) неподвижного сорбента, нанесенного на твердую поверхность — пластинку (стекло, металл, малеинизированный полимер, акриламидо).

Испытание лекарственных средств на абсолютную подлинность и посторонние примеси — основная задача этой методики.

Тонкослойная хроматография

В исследованиях, для обеспечения чистоты полученных результатов, в качестве сорбента и растворителя используют вещества высшего класса по государственным стандартным образцам (ГСО).

Виды детекторов в хроматографии

Пробы исследуются в хроматографе, который фиксирует и анализирует все изменения пиков, используя градуировочные детекторы. Основные из них:

  • пламенно-ионизационный;
  • фотоионизационный;
  • электронного захвата;
  • термоионизационный;
  • инфракрасный;
  • рефрактометрический;
  • электронозахватный;
  • масс-спектрометрический;
  • хемосорбционный;
  • радиоактивный.

Это насадочные приборы, применяемые в хроматографии. Каждый год, и в 2017, и 2020 годах, изобретаются новые модификации и формы детекторов.

Достоинства хроматографии

К преимуществам относят:

  • одновременное разделение вещества на фракции и его изучение;
  • эффективность разделения из-за многократного повторения цикла сорбция — десорбция;
  • определение и выделение из смеси заданного типа препарата одновременно;
  • относительная быстрота достижения цели;
  • высокая чувствительность (100х6);
  • отсутствие химических превращений анализируемого вещества.

Это отличает хроматографические методы от других.

Недостатки хроматографии

Есть отдельные недостатки у каждого вида.

  • необходимо сложное оборудование и проведение долгого обучения;
  • невысокая скорость протекания реакций;
  • большая цена.
  • плохая нелабораторная воспроизводимость результата;
  • невозможность разделения веществ с близкими свойствами.

Диапазон применения хроматографических методов очень широк: от исследования составляющей клетки до объектов Солнечной системы. Эти методы незаменимы в нефтехимической, пищевой, газовой, экологической промышленностях на этапе контроля и поддержания оптимального графика производства.


Хроматогра́фия (от др.-греч. χρῶμα — цвет) — динамический сорбционный метод разделения и анализа смесей веществ, а также изучения физико-химических свойств веществ. Основан на распределении веществ между двумя фазами — неподвижной (твердая фаза или жидкость, связанная на инертном носителе) и подвижной (газовая или жидкая фаза, элюент). Название метода связано с первыми экспериментами по хроматографии, в ходе которых разработчик метода Михаил Цвет разделял ярко окрашенные растительные пигменты.

Содержание

История метода

В 1910—1930 годы метод был незаслуженно забыт и практически не развивался.

В 1931 году Р. Кун, А. Винтерштейн и Е. Ледерер при помощи хроматографии выделили из сырого каротина α и β фракции в кристаллическом виде, чем продемонстрировали препаративную ценность метода.

В 1952 году Дж. Мартину и Р. Сингу была присуждена Нобелевская премия в области химии за создание метода распределительной хроматографии.

С середины XX века и до наших дней хроматография интенсивно развивалась и стала одним из наиболее широко применяемых аналитических методов.

Терминология

  • Хроматография — наука о межмолекулярных взаимодействиях и переносе молекул или частиц в системе несмешивающихся и движущихся друг относительно друга фаз.
  • Хроматография — процесс дифференцированного многократного перераспределения веществ или частиц между несмешивающимися и движущимися относительно друг друга фазами, приводящий к обособлению и концентрационных зон индивидуальных компонентов исходных смесей этих веществ или частиц.
  • Хроматография — метод разделения смесей веществ или частиц основанный на различиях в скоростях их перемещения в системе несмешивающихся и движущихся относительно друг друга фаз.
  • Колонка — содержит хроматографический сорбент, выполняет функцию разделения смеси на индивидуальные компоненты.
  • Элюент — подвижная фаза: газ, жидкость или (реже) сверхкритический флюид.
  • Неподвижная фаза — твердая фаза или жидкость, связанная на инертном носителе, в адсорбционной хроматографии — сорбент.
  • Хроматограмма — результат регистрирования зависимости концентрации компонентов на выходе из колонки от времени. — устройство для регистрации концентрации компонентов смеси на выходе из колонки. — прибор для проведения хроматографии.

Класcификация видов хроматографии

По агрегатному состоянию фаз

  • Жидкостно-жидкостная хроматография
  • Жидкостно-твёрдофазная хроматография
  • Жидкостно-гелевая хроматография

По механизму взаимодействия

По цели проведения

  • Аналитическая хроматография
  • Промышленная хроматография

По способу ввода пробы

  • Элюентная хроматография (проявительная, редк. элютивная)

Наиболее часто используемый вариант проведения аналитической хроматографии. Анализируемую смесь вводят в поток элюента в виде импульса . В колонке смесь разделяется на отдельные компоненты, между которыми находятся зоны подвижной фазы.

Смесь непрерывно подают в колонку, при этом на выходе из колонки только первый, наименее удерживаемый компонент можно выделить в чистом виде. Остальные зоны содержат 2 и более компонентов. Родственный метод — твердофазная экстракция (сорбционное концентрирование).

В колонку после подачи разделяемой смеси вводят специальное вещество-вытеснитель, которое удерживается сильнее любого из компонентов смеси. Образуются примыкающие друг к другу зоны разделяемых веществ.



10.11.2021

О хроматографии написано много. Мы расскажем самое главное простыми словами.

Хроматография – это физико-химический метод разделения смеси веществ путем распределения их между двумя несмешивающимися фазами.

Принцип хроматографического разделения

Классификация хроматографических методов по природе взаимодействия сорбатов (определяемых компонентов) с подвижной и неподвижной фазами.

  • Распределительная хроматография — разделение основано на различии в растворимости сорбатов в подвижной и неподвижной фазах или на различии в стабильности образующихся комплексов. Этот вид самый популярный. Большинство ГХ и ВЭЖХ систем работают с данным видом.
  • Адсорбционная хроматография — разделение за счёт адсорбции основано на различии адсорбируемости компонентов смеси на данном адсорбенте. Примерами являются ТСХ, бумажная хроматография и газовая хроматография с насадочными, микронасадочными и капиллярными колонками заполненными сорбентами NaX, CaA, Al2O3 и т.д.
  • Ионообменная хроматография — разделение основано на различии констант ионообменного равновесия. Примером являются ВЭЖХ системы для анализа анионов и катионов.
  • Эксклюзионная хроматография — разделение основано на различии и проницаемости молекул разделяемых веществ в неподвижную фазу. Компоненты элюируются в порядке уменьшения их молекулярной массы. Примером являются ВЭЖХ системы для анализа полимеров.
  • Аффинная хроматография — основана на биоспецифическом взаимодействии компонентов с аффинным лигандом. Как правило, это колоночная хроматография или ТСХ. Анализы в биологии и медицине для выделения ферментов, белков, сахаров, витаминов и прочее.

Самые популярные варианты хроматографии:

    Подвижная фаза – газ. Подвижная фаза – жидкость.
  • Тонкослойная хроматография (ТСХ, TLC).



Хроматография в медицине

Хроматография активно используется в медицине.…


05.02.2022


Генераторы азота и сфера их применения

В газовой хроматографии азот –…


31.01.2022


Газовые хроматографы: устройство и принцип работы.

Любой газовый хроматограф состоит минимум…


30.01.2022


ГХ или ВЭЖХ? Что выбрать?

При появлении новой аналитической задачи…


16.11.2021


Хроматография. Простыми словами.

О хроматографии написано много. Мы…


10.11.2021


Как проводится хроматография

Хроматографический анализ представляет собой один…


18.03.2021


Абсорбционная спектрометрия уже больше века…


18.03.2021


Основные Параметры Хроматографических Пиков

Ключевую для хроматографии информацию получают…


21.01.2021


Результатом хроматографии является хроматограмма, дающая…


21.01.2021


Распространённые причины поломки хроматографов

Использование любых сложных видов оборудования…


02.10.2020


Как Хроматография Применяется в Парфюмерии?

Методику хроматографии активно используют в…


02.10.2020


Хроматография: история открытия и развития

Хроматография сегодня активно используется в…


06.09.2020


Как правильно выбрать хроматограф?

Хроматография – метод анализа жидкостных…


05.09.2020


Работа любого сложного устройства сопровождается…


28.07.2020


Сегодня хроматография остается самым используемым…


28.07.2020


Предшественником всех современных спектрометров считается…


06.07.2020


Разделение сложных смесей на единичные…


06.07.2020


Хроматографические методы в криминалистике

Криминалистические экспертизы играют важную роль…


06.07.2020


Хроматография в фармацевтической промышленности

В настоящее время можно выделить…


27.05.2020


Принципы работы спектрометра

Спектрометр – прибор, работающий на…


08.05.2020


Хромато-масс-спектрометры: принцип действия

Командой Хроматограф.ру в Печорской центральной…


08.05.2020


При поставке приборы снабжаются всем…


17.04.2020


Хроматография в контроле качества продовольственного сырья и пищевых продуктов

Безопасность и качество продуктов питания…


17.04.2020


Телемедицина для хроматографов

Что такое телемедицина? Это консультация…


15.04.2020


Основные производители хроматографов в мире, в России

Хроматографы используются в аналитических исследованиях,…


02.12.2019


Области применения газовых и жидкостных хроматографов

Хроматография – способ разделения многокомпонентных…


02.12.2019


Хроматографические Методы Анализа

Хроматографические методы анализа базируются на…


02.12.2019


Хроматограф — принцип действия, виды хроматографов

Одним из самых популярных методов…


23.02.2019


Обучение с выдачей удостоверения

С июня 2017 года наши…


28.11.2018


Скидка на Хромато-масс-спектрометр с МСД Хроматэк 12% до 31 октября 2017 года

Руководством предприятия принято решение предоставить…


28.11.2018

Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.


Существует много различных методов анализа состава и изучения свойств различных соединений и смесей веществ. Одним из таких методов является хроматография. Авторство в изобретении и применении метода принадлежит русскому ботанику М. С. Цвету, который в начале XX века осуществил разделение растительных пигментов.

Определение и основы метода

Хроматография – это физико-химический метод разделения смесей и определения их компонентов, основанный на распределении между подвижной и неподвижной фазами веществ, входящих в состав смеси (пробы). Неподвижная фаза представляет собой пористое твердое вещество – сорбент. Также это может быть жидкостная пленка, нанесенная на твердую поверхность. Подвижная фаза – элюент – должна перемещаться вдоль неподвижной фазы либо протекать через нее, фильтруясь при этом сорбентом.

Сущность хроматографии состоит в том, что разные компоненты смеси обязательно характеризуются различными свойствами, такими как молекулярная масса, растворимость, адсорбируемость и так далее. Поэтому скорость взаимодействия компонентов подвижной фазы – сорбатов – с неподвижной неодинакова. Это приводит к различию в скоростях движения молекул смеси относительно неподвижной фазы, вследствие чего компоненты разделяются и концентрируются в различных зонах сорбента. Некоторые из них покидают сорбент вместе с подвижной фазой – это так называемые неудерживаемые компоненты.

Особым достоинством хроматографии является то, что она позволяет достаточно быстро разделять сложные смеси веществ, в том числе и близких по свойствам.

Эксклюзионная, или гель-хроматография

Способы классификации видов хроматографии

Методы, используемые в анализе, можно классифицировать по различным критериям. Основной набор таких критериев следующий:

  • агрегатное состояние неподвижной и подвижной фаз;
  • физико-химическая природа взаимодействия сорбента и сорбатов;
  • способ введения элюента и его перемещения;
  • способ размещения неподвижной фазы, то есть техника проведения хроматографии;
  • цели хроматографирования.

Кроме того, методы могут основываться на разной природе сорбционного процесса, на технических условиях проведения хроматографического разделения (например, низкое или высокое давление).

Рассмотрим подробнее вышеперечисленные основные критерии и связанные с ними наиболее широко используемые виды хроматографии.

Агрегатное состояние элюента и сорбента

По этому признаку хроматография подразделяется на жидкостную и газовую. Названия методов отражают состояние подвижной фазы.

Жидкостная хроматография – это метод, применяемый в процессах разделения смесей высокомолекулярных соединений, в том числе биологически важных. В зависимости от агрегатного состояния сорбента она делится на жидкостно-жидкостную и жидкостно-твердофазную.

Газовая хроматография бывает следующих видов:

  • Газоадсорбционная (газо-твердофазная), в которой используется твердый сорбент, например уголь, силикагель, цеолиты либо пористые полимеры. В роли элюента – переносчика разделяемой смеси выступает инертный газ (аргон, гелий), азот, углекислый газ. Разделение летучих компонентов смеси осуществляется благодаря разной степени их адсорбции.
  • Газо-жидкостная. Неподвижная фаза в данном случае состоит из пленки жидкости, нанесенной на твердую инертную основу. Компоненты пробы разделяются сообразно их адсорбируемости или растворимости.

Газовая хроматографическая колонка

Метод газовой хроматографии широко применяется для анализа смесей органических соединений (с использованием продуктов их распада или производных в газообразной форме).

Взаимодействие сорбента и сорбатов

По данному критерию выделяют такие виды, как:

  • Адсорбционная хроматография, посредством которой осуществляется разделение смесей за счет различий в степени адсорбции веществ неподвижным сорбентом.
  • Распределительная. С ее помощью проводят разделение на основе разной растворимости компонентов смеси. Растворение происходит либо в подвижной и неподвижной фазах (в жидкостной хроматографии), либо только в неподвижной фазе (в газо-жидкостной хроматографии).
  • Осадочная. В основе этого метода хроматографии лежит разная растворимость образующихся осадков разделяемых веществ.
  • Эксклюзионная, или гель-хроматография. Базируется на различии в размерах молекул, благодаря чему варьирует их способность проникать в поры сорбента – так называемой гелевой матрицы.
  • Аффинная. Этот специфический метод, основой которого служит особый тип биохимического взаимодействия разделяемых примесей с лигандом, образующим комплексное соединение с инертным носителем в неподвижной фазе. Данный метод эффективен при разделении смесей белков-ферментов и распространен в биохимии.
  • Ионообменная. В качестве фактора разделения пробы этот способ использует различие в способности компонентов смеси к ионному обмену с неподвижной фазой (ионообменником). В ходе процесса происходит замещение ионов неподвижной фазы ионами веществ в составе элюента, при этом вследствие разного сродства последних к ионообменнику возникает разница в скорости их перемещения, и таким образом смесь разделяется. Для неподвижной фазы чаще всего употребляются ионообменные смолы – особые синтетические полимеры.

Ионообменная хроматография

Ионообменная хроматография имеет два варианта – анионный (задерживает отрицательные ионы) и катионный (задерживает соответственно положительные ионы). Применяется данный метод чрезвычайно широко: в разделении электролитов, редкоземельных и трансурановых элементов, в очистке воды, в анализе лекарственных препаратов.

Различие методов по технике проведения

Существуют два основных способа, посредством которых проба перемещается относительно неподвижной фазы:

В отличие от колоночного метода, где хроматографические колонки используются многократно, в плоскостной хроматографии любой носитель со слоем сорбента может быть использован только один раз. Процесс разделения происходит при погружении пластины или листа бумаги в емкость с элюентом.

Бумажная хроматография

Ввод и перемещение элюента

От этого фактора зависит характер перемещения по слою сорбента хроматографических зон, образующихся при разделении смеси. Различают следующие методы подачи элюента:

  • Фронтальный. Этот способ наиболее прост по технике выполнения. Подвижной фазой служит непосредственно сама проба, непрерывно подаваемая в колонку, заполненную сорбентом. При этом наименее удерживаемый компонент, адсорбируемый хуже прочих, перемещается вдоль сорбента быстрее остальных. В итоге только этот первый компонент может быть выделен в чистом виде, далее следуют зоны, содержащие смеси компонентов. Распределение пробы выглядит таким образом: A; A+B; A+B+C и так далее. Фронтальная хроматография не применяется поэтому для разделения смесей, но она эффективна в различных процессах очистки, при условии, что выделяемое вещество имеет низкую удерживаемость.
  • Вытеснительный метод отличается тем, что после ввода разделяемой смеси в колонку подается элюент со специальным вытеснителем – веществом, характеризующимся большей сорбируемостью, чем любой из компонентов смеси. Оно вытесняет наиболее удерживаемый компонент, тот вытесняет следующий и так далее. Проба движется по колонке со скоростью вытеснителя и образует примыкающие друг к другу зоны концентрации. С помощью этого вида хроматографии можно получить на выходе из колонки каждый компонент индивидуально в жидком виде.
  • Элюентный (проявительный) метод является наиболее распространенным. В отличие от вытеснительного метода, элюент (носитель) в данном случае имеет меньшую сорбируемость, чем компоненты пробы. Он непрерывно пропускается через слой сорбента, промывая его. Периодически порциями (импульсами) в поток элюента вводится разделяемая смесь, после чего снова подается чистый элюент. При вымывании (элюировании) происходит разделение компонентов, причем зоны концентрации их разделены зонами элюента.

Элюентная хроматография дает возможность практически полного разделения анализируемой смеси веществ, причем смесь может быть многокомпонентной. Также достоинствами этого метода являются изоляция компонентов друг от друга и простота количественного анализа смеси. К недостаткам можно отнести большой расход элюента и низкую концентрацию в нем компонентов пробы после разделения на выходе из колонки. Элюентный метод широко применяется как в газовой, так и в жидкостной хроматографии.

Хроматографические процессы в зависимости от целей

Различие по целям хроматографирования позволяет выделить такие методы, как аналитический, препаративный и промышленный.

Посредством аналитической хроматографии проводится качественный и количественный анализ смесей. При анализе компоненты пробы при выходе из колонки хроматографа поступают на детектор – устройство, чувствительное к изменению концентрации вещества в элюенте. Время, прошедшее от момента подачи пробы в колонку до максимума пика концентрации вещества на детекторе, называется временем удерживания. При условии постоянства температуры колонки и скорости элюента эта величина постоянна для каждого вещества и служит основой для качественного анализа смеси. Количественный анализ проводится путем измерения площади отдельных пиков на хроматограмме. Как правило, в аналитической хроматографии используется элюентный метод.

Препаративная хроматография имеет целью выделение чистых веществ из смеси. Препаративные колонки имеют гораздо больший диаметр, чем аналитические.

Промышленная хроматография применяется, во-первых, для получения больших количеств чистых веществ, необходимых в том или ином производстве. Во-вторых, это важная часть современных систем контроля и регулирования технологических процессов.

Установка для промышленной хроматографии

Промышленный хроматограф имеет шкалу концентрации того или иного компонента и снабжен датчиком, а также системами управления и регистрации. Поступление проб на такие хроматографы производится автоматически с определенной периодичностью.

Многофункциональное оборудование для хроматографии

Современные хроматографы представляют собой сложные высокотехнологичные устройства, способные к применению в самых различных областях и с различными целями. Эти приборы позволяют анализировать сложные многокомпонентные смеси. Они оснащены широким набором детекторов: термокондуктометрическими, оптическими, ионизационными, масс-спектрометрическими и так далее.

Кроме того, в современной хроматографии используются автоматические системы управления процессом анализа и обработки хроматограмм. Управление может производиться с компьютера либо непосредственно с прибора.

Примером такого устройства является многофункциональный газовый хроматограф "Кристалл 5000". Он имеет набор из четырех детекторов с возможностью замены, колоночный термостат, системы электронного регулирования давления и расхода рабочих веществ, а также управления газовыми кранами. Для решения разнообразных задач устройство имеет возможность установки как насадочных, так и капиллярных колонок.

Хроматограф управляется при помощи полнофункциональной клавиатуры и контрольного дисплея либо (в другой модификации) с персонального компьютера. Это устройство нового поколения может эффективно применяться на производстве и в различных научно-исследовательских лабораториях: медицинских, криминалистических, экологических.

Хроматограф Кристалл 5000

Хроматография высокого давления

Проведение жидкостной колоночной хроматографии характеризуется довольно большой длительностью процесса. Для ускорения движения жидкого элюента применяют подачу подвижной фазы в колонку под давлением. Этот современный и весьма перспективный способ получил название метода высокоэффективной жидкостной хроматографии (ВЭЖХ).

Насосная система, входящая в состав жидкостного хроматографа для ВЭЖХ, обеспечивает подачу элюента с постоянной скоростью. Развиваемое давление на входе может достигать 40 Мпа. Компьютерное управление дает возможность менять состав подвижной фазы по заданной программе (такой метод элюирования называется градиентным).

ВЭЖХ могут применяться различные методы, основанные на характере взаимодействия сорбента и сорбата: распределительная, адсорбционная, эксклюзионная, ионообменная хроматография. Наиболее распространенной разновидностью ВЭЖХ является обращенно-фазовый метод, основанный на гидрофобном взаимодействии полярной (водной) подвижной фазы и неполярного сорбента, например силикагеля.

Метод широко применяется для разделения, анализа, контроля качества нелетучих, термически неустойчивых веществ, которые не могут быть переведены в газовое состояние. Это агрохимикаты, лекарственные препараты, компоненты пищевых продуктов и прочие сложные вещества.

Значение хроматографических исследований

Различные виды хроматографии широко используются в самых разных областях:

  • неорганическая химия;
  • нефтехимия и горное дело;
  • биохимия;
  • медицина и фармацевтика;
  • пищевая промышленность;
  • экология;
  • криминалистика.

Разделенная нефть в хроматографических колонках

Список этот неполон, но отражает охват отраслей, которые не могут обойтись без хроматографических методов анализа, разделения и очистки веществ. Во всех областях применения хроматографии, от научных лабораторий до промышленного производства, роль этих методов еще более возрастает по мере внедрения современных технологий обработки информации, управления и контроля над сложными процессами.

Читайте также: