Генная инженерия бактерий кратко

Обновлено: 02.07.2024

Генная инженерия (технология рекомбинантных ДНК, молекулярной клонирование) — современное направление биотехнологии, объединяющее знания, приемы, методики комплекса смежных наук, в частности генетики, химии, биологии. С их помощью удается выделить необходимый ген из генома, перенести этот генетический материал из одного организма в другой с целью получения новых полезных для человека наследственных свойств.

Обычно этот термин связывают с клонированием генов, молекулярным клонированием, технологией рекомбинантных ДНК либо генетическими манипуляциями.

Генную инженерию можно определить как систему экспериментальных приемов, манипуляций, которые с помощью молекулярной биологии позволяют лабораторным путем создать искусственные генетические детерминанты в виде рекомбинантных (измененных) молекул ДНК. Таким образом, благодаря генной инженерии можно целенаправленно конструировать новые биологические объекты.

Характерной чертой генной инженерии является то, что лабораторное воспроизведение некоторых ключевых генетических процессов осуществляется на молекулярном уровне (уровне клетки и молекул). Внедрение в клетку новой генетической информации в виде рекомбинантных молекул ДНК изменяет ее фенотип и генотип, в результате чего экспериментатор получает измененный в соответствии с поставленной целью микроорганизм.

В генах содержится информация, позволяющая синтезировать в организме молекулы РНК и белки, в том числе ферменты. Для того чтобы заставить клетку образовывать новые, неизвестные ей вещества, в ней должны синтезироваться соответствующие наборы ферментов. Для этого нужно целенаправленно изменить находящиеся в ней гены либо внедрить в нее новые, ранее отсутствовавшие.

Изменения генов в живых клетках называют мутациями. Они могут происходить под действием, например, мутагенов — химических излучений или ядов.

Генно-модифицированный организм (ГМО) — это организм, генотип которого был искусственно изменен при помощи генно-инженерных методов.

Генно-инженерные методы направлены на конструирование новых, не существующих в природе сочетаний генов. В результате их использования можно получать рекомбинантные, то есть модифицированные молекулы ДНК и РНК.

С этой целью выделяют отдельные гены (кодирующие необходимый продукт) из клеток какого-то организма и внедряют их в другие организмы: дрожжи, бактерии, млекопитающие. Получив новые гены, они смогут синтезировать конечные продукты с измененными свойствами, необходимыми человеку.

Генная инженерия широко используется во многих сферах человеческой жизни с целью наделения живых организмов желательными свойствами, которыми они не обладали ранее, комбинируя имеющийся генетический материал, удаляя старые или синтезируя новые гены.

На основе генной инженерии сформировалась одна из современных ветвей биотехнологии — отрасль фармацевтической промышленности.

История развития, зачем нужно вмешиваться

Основы классической генетики были заложены в середине XIX В. Так, в 1865 г. чешско-австрийский биолог Грегор Мендель раскрыл принципы передачи наследственных признаков от родительских организмов к их потомкам на примере растений. К сожалению его эксперименты не получили заслуженного признания, и только в 1900 г. Хуго де Фриз, а также другие европейские ученые независимо друг от друга вновь открыли законы наследственности.

Одновременно с этим происходило формирование знаний о ДНК:

  1. Швейцарский биолог Фридрих Мишер в 1869 г. открыл факт существования макромолекулы.
  2. Американский биолог Томас Морган в 1910 г., основываясь на характере наследования у дрозофил, обнаружил, что на хромосомах гены расположены линейно и образуют группы сцепления.
  3. Эйвери Мак Леод и Мак Карти в 1944 г. показали, что именно ДНК является носителем наследственной информации.
  4. Американец Джон Уотсон и британец Фрэнсис Крик в 1953 г. сделали важнейшее открытие, определив молекулярную структуру ДНК — двойную спираль.

В конце 1960-х гг. происходит активное развитие генетики, а важными объектами ее изучения становятся плазмиды и вирусы. Ученые разработали методы выделения высокоочищенных препаратов неповрежденных молекул ДНК, вирусов и плазмид, а в 1970-х г.г. открыли ряд ферментов, катализирующих реакции превращения ДНК.

Как отдельное направление исследовательской работы генная инженерия зародилась в США в 1972 г., когда в Стэнфордском университете ученые Стэнли Норман Коэн, Пол Берг, Герберт Бойер со своей научной группой смогли создать первую рекомбинантную ДНК, внедрив новый ген в бактерии кишечной палочки (E. coli).

В 1980-х гг. американский биохимик Кэри Маллис (будущий лауреат Нобелевской премии по химии) впервые разработал технику ПЦР. Он обнаружил фермент, участвующий в репликации ДНК — ДНК-полимеразу. Этот специфический фермент буквально считывает отрезки цепи нуклеотидов молекулы и использует их как шаблон для дальнейшего копирования генетической информации.

В 1987 г. впервые были проведены полевые испытания генетически модифицированных сельскохозяйственных растений. В итоге вывели устойчивый к вирусным инфекциям сорт помидор.

В 1996 произошел прорыв в истории развития генной инженерии, так как на свет появилась овца Долли — первое клонированное млекопитающее методом пересадки ядра соматической клетки в цитоплазму яйцеклетки. Благодаря этому революционному достижению в генной инженерии впервые стало возможным серьезно относиться к клонированию и выращиванию живых организмов на основе молекул.

Можно выделить 3 стадии в развитии генной инженерии:

  1. Выдвижение гипотезы и доказывание принципиальной возможности получения рекомбинантных молекул ДНК in vitro (в пробирке). Начался этап формирования гибридов между различными плазмидами.
  2. Начало работ по получению рекомбинантных молекул ДНК между хромосомными генами прокариот и различными плазмидами. В ходе исследований была доказана их реальная жизнеспособность, стабильность, адаптация к окружающей среде.
  3. Экспериментальные исследования по внедрению в векторные молекулы ДНК (то есть молекулы, способные переносить генетический код и встраиваться в генетическую структуру клетки-реципиента) генов эукариот. В основном использовались гены животных.

В настоящее время генная инженерия развивается как экспериментальная наука, с помощью которой многие люди избавляются от различных заболеваний, создаются новые сорта растений и т. д.

Какие задачи стоят перед ней

Основными задачами генной инженерии являются:

  1. Конструирование рекомбинантных ДНК, способных придать клеткам-реципиентам полезные для человечества свойства (синтезирование пищевого и коровьего белка).
  2. Создание и применение генно-инженерных штаммов бактерий, животных и человека для культивирования вирусов с целью получения вакцин, сывороток, диагностических препаратов, лекарственных средств.
  3. Создание трансгенных животных.
  4. Получение трансгенных растений с желаемыми свойствами.
  5. Разработка методов генной терапии человека.
  • получение изолированного гена путем синтеза либо выделения из клеток;
  • создание рекомбинантных молекул ДНК, состоящих из фрагментов молекул ДНК, полученных от разных организмов;
  • клонирование генов или генетических структур;
  • внедрение гена в вектор для переноса в организм;
  • перенос вектора с геном в модифицируемый организм и синтез чужеродного белка;
  • преобразование клеток организма;
  • отбор генетически модифицированных организмов (ГМО) и устранение неудачных вариантов.

Виды, сферы применения генной инженерии

Человек использует генную инженерию для получения трансгенных растений и животных, генной терапии наследственных заболеваний, производства лекарственных препаратов, вакцин, гормонов и т. д.

В настоящее время генная инженерия широко распространена в отраслях народного хозяйства: фармакологической, микробиологической, пищевой промышленности, в сельском хозяйстве.

В медицине:

  1. Разработка с помощью синтезированных генов интерферонов — белков, вырабатываемых организмом в ответ на вирусную инфекцию, а также гормонов. Ученые рассматривают возможность использования интерферонов в качестве средства лечения от СПИДа и рака. Массовое производство этого полезного белка очень эффективно, ведь всего один литр бактериальной культуры дает столько интерферона, сколько добывают из тысяч литров человеческой крови.
  2. Производство в промышленных масштабах путем использования генномодифицированных бактерий инсулина, необходимого для лечения сахарного диабета.
  3. Используя рекомбинантную ДНК, получение человеческого гормона роста — единственного лекарства от гипофизарной карликовости (редкого детского заболевания).
  4. Клинические испытания около 200 новых диагностических препаратов (генных, а не белковых), а также более 100 лекарственных веществ.

С помощью генно-инженерных методов создали ряд вакцин, которые сейчас проходят испытания по проверке их эффективности против ВИЧ — вируса иммунодефицита человека, вызывающего СПИД.

В настоящее время интенсивно развивается и генная терапия. Так, для борьбы со злокачественными опухолями в организм вводят сконструированную копию гена, который кодирует мощный противоопухолевый фермент.

Важным направлением генной инженерии является обеспечение больных людей органами для пересадки. Например, трансгенная свинья, может стать донором сердца, почек, печени, сосудов и кожи для людей, так как по размерам внутренних органов и физиологии она наиболее близка к человеку.

В сельском хозяйстве:

Главными задачами являются:

  • выведение устойчивых к вирусам видов животных и растений, сельскохозяйственных культур;
  • защита растений от насекомых-вредителей;
  • уменьшение интенсивности обработки полей пестицидами и т. д;
  • увеличение витаминов и полезных веществ в зерновых культурах;
  • улучшение качества и вкуса пищи;
  • получение дизельного топлива из животных и растительных жиров;
  • решение экологических проблем — например, очистка почвы от промышленных отходов, защита окружающей среды от загрязнений, разработка новых очистительных сооружений.

В генной терапии —проведение в клетке пациента различных манипуляций с генетическим материалом, в частности с ДНК или РНК, для лечения определенных заболеваний:

  • замена мутировавшего гена, провоцирующего болезнь, здоровой копией;
  • инактивация неправильно функционирующих мутирующих генов;
  • внедрение нового гена, помогающего бороться с заболеванием.

Этапы создания трансгенного организма

Роль в жизни человека, примеры

Генная инженерия как одно из главных направлений научно-технического прогресса способствует ускорению решения вопросов здравоохранения, продовольственных, энергетических, сельскохозяйственных, экологических и иных актуальных задач.

Существует несколько сотен генетически измененных продуктов, употребляемых людьми во всем мире. Чаще всего на упаковке таких продуктов должно быть написано, что они сделаны из генетически модифицированного продукта.

Защитники генетически модифицированных организмов считают, что только они могут спасти человечество от голода, способствуя увеличению мирового производства сельскохозяйственной продукции. Ведь генетически модифицированные сорта растений:

  • быстрее созревают и дольше хранятся;
  • устойчивые к погоде, болезням;
  • могут самостоятельно вырабатывать инсектициды против вредителей;
  • способны приносить хороший урожай в отличие от старых сортов, погибающих при неблагоприятных условиях.

Особые возможности открывает генная инженерия перед медициной и фармацевтикой. Благодаря генно-инженерным методам во всем мире успешно практикуют производство лекарств. Так, многие болезни, не поддающиеся в настоящее время диагностике и лечению, например: сердечно-сосудистые, раковые заболевания, умственные и нервные расстройства, вирусные и паразитные инфекции — с помощью генной инженерии можно будет своевременно диагностировать и вылечить.

По мнению медиков, генномодифицированные продукты — основа специальных диет, помогающих в профилактике и лечении различных болезней. Ученые утверждают, что благодаря таким продуктам люди с остеопорозом, сахарным диабетом, онкологическими, сердечно-сосудистыми заболеваниями, болезнями кишечника, печени и др. смогут расширить свой рацион питания.

Некоторые ученые считают, что внесение изменений в генный код животных и растений не противоречит, а соответствует природе, ведь абсолютно все живые организмы, включая и бактерии, и человека — результат естественного отбора и мутаций. Отличие заключается лишь в том, что ученым для образования их новых видов нужно несколько лет, а природа затрачивает на этот процесс столетия и даже тысячелетия.

Самыми распространенными в мире генно-модифицированными растениями являются: хлопок, масличный рапс, кукуруза, соя. В некоторых странах разрешают выращивать трансгенные кабачки, помидоры, рис, проводятся эксперименты на винограде, сахарной свекле, табаке, подсолнечнике, деревьях и т. д.

Основную массу трансгенов выращивают в Аргентине, США, Китае, Канаде. В странах Европы часто действует запрет на ввоз генетически измененного продовольствия, либо требуется обязательная маркировка таких продуктов. В странах ЕС разрешены только три вида генетически измененных растений — три сорта кукурузы.

В России разрешено использовать лишь 14 видов ГМО для продажи и производства пищевых продуктов: 4 сорта картофеля, 1 сорт сахарной свеклы, 8 сортов кукурузы и 1 сорт риса.

Следует отметить, что при употреблении такой пищи сохраняется потенциальная опасность отдаленных последствий для здоровья человека. Хотя опасность продуктов с ГМО официально не доказана, и они разрешены к применению Всемирной организацией здравоохранения, по мнению некоторых ученых к ним нужно относиться с осторожностью до завершения полномасштабных исследований воздействия ГМО на организм.

И тем более, во избежание непредсказуемых последствий, следует особо тщательно подходить к вопросам их применения в детском питании.

Несмотря на существующие риски, на обвинения в бесчеловечности защитников животных и растений, генная инженерия открывает перед человечеством огромные возможности, если умело распоряжаться полученными знаниями.


Несмотря на существование очевидных преград и трудностей, которые подчас встают на пути развития и внедрения продуктов генной инженерии (ГИ), XXI век уже невозможно представить без плодов этой важной и многообразной технологии в арсенале современного биолога. Наиболее часто используемым организмом в ГИ являются бактерии.

Что такое ГИ и зачем она нам нужна? Почему бактерии так популярны у генных инженеров? В каком виде проще всего внести нужный ген в бактерию? С какими трудностями можно столкнуться, работая с этими организмами? Что произошло раньше: создание первой генноинженерной бактерии или открытие структуры ДНК и генома? Об этом и многом другом читайте под катом.

0. Краткий ликбез по биологии

В данном пункте приведено краткое описание так называемой Центральной догмы молекулярной биологии. Если вы обладаете базовыми знаниями в молекулярной биологии, то смело переходите к пункту 1.



Центральная догма молекулярной биологии в одной картинке

Итак, начнём. Вся информация о всех стадиях развития и свойствах любого организма, будь то прокариоты (бактерии), археи или эукариоты (все остальные одно- и многоклеточные), закодирована в геномной ДНК, которая представляет собой комплекс двух комплементарных друг другу полинуклиотидных цепей, образующих двойную спираль (комплементарные нуклеотиды ДНК: A-T и G-C). Хромосомы эукариот представляют собой линейные двухцепочечные молекулы ДНК, а хромосомы прокариот закольцованы. Зачастую гены составляют лишь небольшую часть всего генома (у человека — около 1,5%).



Две комплементарные друг другу цепи ДНК. Пунктирными линиями показаны водородные связи между основаниями. Как видно, аденин и тимин образуют между собой две водородные связи, а гуанин и цитозин — три. Поэтому связь G-C прочнее и GC-богатые участки двухцепочечной ДНК сложнее разделить на две цепочки.


Цепочки ДНК и РНК.

Последовательности ДНК и РНК всегда записывают от 5'-конца к 3'-концу. На то есть ряд причин:

  • Синтез новых цепочек ДНК и РНК начинается с 5'-конца (ДНК-полимеразы (ферменты, синтезирующие комплементарную цепь ДНК на матрице ДНК или РНК) и РНК-полимеразы (ферменты, синтезирующие комплементарную цепь РНК на матрице ДНК или РНК) идут по матрице в направлении 3' -> 5', стало быть новая цепь синтезируется в направлении 5' -> 3');
  • Рибосома читает кодоны, передвигаясь по мРНК в направлении 5' -> 3';
  • Последовательность аминокислот записана в кодирующей цепи ДНК в направлении 5' -> 3' (значащая часть мРНК представляет собой точную копию участка кодирующей цепи ДНК с заменой тимина на урацил и с гидроксильной группой (-OH) вместо водорода в положении 2', разумеется);



Процесс трансляции, катализируемый рибосомой. На рисунке находящиеся в составе мРНК кодоны UUU и UCG распознаются находящимися в составе молекул тРНК антикодонами AAA и AGC. Транспортная РНК с антикодоном CCC уже отдала свою аминокислоту растущей белковой цепочке, а тРНК с антикодоном CAG ждёт своей очереди. Показанный на рисунке участок молекулы мРНК состоит из четырёх кодонов: GGGUUUUCGGUC. Кодон GGG соответствует аминокислоте глицину, UUU — фенилаланину, UCG — серину, GUC — валину. Значит данный участок мРНК кодирует фрагмент белка с аминокислотной последовательностью глицин-фенилаланин-серин-валин.

Рибосомные РНК — незаменимые компоненты рибосомы. Основной функцией рРНК является обеспечение процесса трансляции: она участвует в считывании информации с мРНК при помощи адапторных молекул тРНК и катализе образования пептидных связей между присоединёнными к тРНК аминокислотами и растущей цепью белка.



Основные типы молекул РНК (на самом деле их куда больше).




В случае с генами, кодирующими белок процесс расшифровки генетической информации выглядит так:



Прокариотический транскприпционный комплекс. Указанные на рисунке буквы являются общепринятыми обозначениями соответствующих субъединиц. σ70 — сигма фактор генов домашнего хозяйства E. coli



Кодоны в стандартном генетическом коде. Спасибо википедии за картинку.

1) Для каких целей используются бактерии в генной инженерии и почему именно они

Бактерия в генной инженерии — это потенциальный исходный материал для создания:

Интересным является тот факт, что первые успешные опыты в области генной инженерии бактерий произошли задолго до эпохальной работы Уотсона и Крика. Более того, на основании этих опытов был доказан сам факт того, что информация содержится именно в ДНК, после чего учёные могли не тратить своё время на гипотезы об РНК и белке.

Таким образом, было доказано, что носителем информации о признаках является именно ДНК. Кроме того, было наглядно показано, что возможно самопроизвольное проникновение инородной молекулы ДНК в бактериальную клетку.

Почему бактерии так популярны при очевидных недостатках (например, отсутствие эукариотических посттрансляционных модификаций)? Всё просто. Они неприхотливы в работе, просты в использовании и не требуют дорогих питательных сред.

2) Как создаётся генетическая конструкция, которую внедряют в бактерию

Современная генная инженерия бактерий в основном представляет собой внедрение плазмидного вектора (модифицированной бактериальной плазмиды, содержащей целевой ген и набор других необходимых элементов, о которых речь пойдёт ниже). Изменение хромосомы бактерии менее типично, но эта процедура также не является чем-то диковинным: например, ген РНК-полимеразы бактериофага Т7 был введёт в хромосому кишечной палочки с помощью вектора на основе профага λ в процессе создания одного из популярных в лабораторной плактике штаммов. Причин, по которым зачастую исследователь выберет внедрение гена в составе плазмидного вектора три:

  • во-первых, внедрить плазмидный вектор в бактерию дешевле, чем встроить что-то в хромосому;
  • во-вторых, методология обеспечения стабильности и наследования плазмидного вектора в бактериальной клетке, а также сама процедура создания нужной генетической конструкции хорошо отработана и проста в исполнении;
  • в-третьих, с плазмидными векторами всё и так прекрасно работает.

Кроме гена и промотора основными элементами плазмидного вектора являются:

    — область начала репликации плазмиды. Нужна для поддержания постоянного количества плазмиды и её наследования дочерними клетками;

Другим примером может служить, использование гена β-глюкуронидазы (GUS). Данный фермент превращает определённые соединения в окрашенные или флуоресцирующие, что может быть обнаружено визуально по окрашенности колонии. Естественно, данные соединения нужно добавлять в питательную селективную среду. Ещё один пример — использование гена зелёного флуоресцентного белка (GFP) (хотя использование GUS и GFP более типично для работ с клетками растений и животных);


Упрощённая схема плазмидного вектора. На рисунке обозначены ori, ген резистентности к антибиотику и полилинкер, содержащий 10 сайтов рестрикции эндонуклеазами.

Что ж, вектор у нас на руках. Как в него встроить ген? И вообще, где этот ген взять?
Допустим, что мы знаем последовательность нуклеотидов нужного нам гена. Тогда поступают следующим образом:

  1. Химически синтезировать короткие одноцепочечные полинуклеотиды таким образом, чтобы они частично перекрывались;
  2. Объединить эти фрагменты с помощью ПЦР.


Слева изображён процесс сборки гена методом перекрывающихся праймеров (более подробно процедура описана в спойлере ниже). Справа изображён процесс вставки гена в вектор.





На рисунке синими полосками показаны частоты кодонов у землеройки, тупайи, домашней кошки, лошади, мышиного лемура, шимпанзе и человека. Красной полосой отмечена частота кодонов у кишечной палочки E. coli.

    Система на основе регуляторных элементов лактозного оперона E. coli (lac-оперона) и сильного промотора.

Дело в том, что у кишечной палочки есть свои правила питания. Во-первых, существует механизм подавления активности lac-оперона, который включён только тогда, когда в клетку не поступает лактоза. Это логично: зачем тратить силы на синтез того, что не пригодится? Но как только лактоза начинает поступать в клетку в достаточном количестве этот механизм выключается.

Однако, есть второй механизм подавления активности lac-оперона. Если в среде есть глюкоза, то клетка питается исключительно глюкозой, так как она активирует второй механизм ингибирования транскрипции lac-оперона. Таким образом, lac-оперон активен только тогда, когда в окружающем клетку пространстве есть только лактоза. Минусом лактозного оперона является крайне слабый промотор, поэтому в штаммах продуцентах он заменён на сильный. Сильные промоторы часто получают из патогенов. Наиболее широко используемые в генной инженерии прокариот сильные промоторы выделены из бактериальных вирусов — бактериофагов. Например, широко используется промотор фага Т7.

К слову, некоторые сильные промоторы для генной инженерии растений также выделены из вирусов, например, это промотор вируса мозаики цветной капусты.


Как было указано выше, у E. coli нет РНК-полимеразы, которая бы узнавала промоторы бактериофагов, поэтому предварительно в продуцент встраивают ген РНК-полимеразы соответствующего бактериофага.

Можно поступить и по-другому: вообще не добавлять в питательную среду глюкозу и лактозу, а потом, когда культура дорастёт до нужной плотности, добавить то, что клетка примет за лактозу, но не сможет метаболизировать или разрушить. Сейчас в качестве такого индуктора используют ИПТГ.

Традиционная селекция микроорганизмов (в основном бактерий и грибов) основана на экспериментальном мутагенезе и отборе наиболее продуктивных штаммов. Но и здесь есть свои особенности. Геном бактерий гаплоидный, любые мутации проявляются уже в первом поколении. Хотя вероятность естественного возникновения мутации у микроорганизмов такая же, как и у всех других организмов (1 мутация на 1 млн. особей по каждому гену), очень высокая интенсивность размножения дает возможность найти полезную мутацию по интересующему исследователя гену.

В результате искусственного мутагенеза и отбора была повышена продуктивность штаммов гриба пеницилла более чем в 1000 раз. Продукты микробиологической промышленности используются в хлебопечении, пивоварении, виноделии, приготовлении многих молочных продуктов. С помощью микробиологической промышленности получают антибиотики, аминокислоты, белки, гормоны, различные ферменты, витамины и многое другое.

Микроорганизмы используют для биологической очистки сточных вод, улучшений качеств почвы. В настоящее время разработаны методы получения марганца, меди, хрома при разработке отвалов старых рудников с помощью бактерий, где обычные методы добычи экономически невыгодны.

Биотехнология — использование живых организмов и их биологических процессов в производстве необходимых человеку веществ. Объектами биотехнологии являются бактерии, грибы, клетки растительных и животных тканей. Их выращивают на питательных средах в специальных биореакторах.

Новейшими методами селекции микроорганизмов, растений и животных являются клеточная, хромосомная и генная инженерия.

Генная инженерия

Процесс создания трансформированных бактерий включает в себя следующие этапы.

Образование рекомбинантных плазмид

Образование рекомбинантных плазмид:
1 — клетка с исходной плазмидой; 2 — выделенная плазмида; 3 — создание вектора; 4 — рекомбинантная плазмида (вектор); 5 — клетка с рекомбинантной плазмидой.

Эукариотические гены, в отличие от прокариотических, имеют мозаичное строение (экзоны, интроны). В бактериальных клетках отсутствует процессинг, а трансляция во времени и пространстве не отделена от транскрипции. В связи с этим для пересадки эффективнее использовать искусственно синтезированные гены. Матрицей для такого синтеза является иРНК. С помощью фермента обратная транскриптаза на этой иРНК сперва синтезируется цепь ДНК. Затем на ней с помощью ДНК-полимеразы достраивается вторая цепь.

Хромосомная инженерия

Клеточная инженерия

Клеточная инженерия — конструирование клеток нового типа на основе их культивирования, гибридизации и реконструкции.

Клетки растений и животных, помещенные в питательные среды, содержащие все необходимые для жизнедеятельности вещества, способны делиться, образуя клеточные культуры. Клетки растений обладают еще и свойством тотипотентности, то есть при определенных условиях они способны сформировать полноценное растение. Следовательно, можно размножать растения в пробирках, помещая клетки в определенные питательные среды. Это особенно актуально в отношении редких или ценных растений.

С помощью клеточных культур можно получать ценные биологически активные вещества (культура клеток женьшеня). Получение и изучение гибридных клеток позволяет решить многие вопросы теоретической биологии (механизмы клеточной дифференцировки, клеточного размножения и др.). Клетки, полученные в результате слияния протопластов соматических клеток, относящихся к разным видам (картофеля и томата, яблони и вишни и др.), являются основой для создания новых форм растений. В биотехнологии для получения моноклональных антител используются гибридомы — гибрид лимфоцитов с раковыми клетками. Гибридомы нарабатывают антитела, как лимфоциты, и обладают возможностью неограниченного размножения в культуре, как раковые клетки.

Метод пересадки ядер соматических клеток в яйцеклетки позволяет получить генетическую копию животного, то есть делает возможным клонирование животных. В настоящее время получены клонированные лягушки, получены первые результаты клонирования млекопитающих.

Метод слияния эмбрионов на ранних стадиях делает возможным создание химерных животных. Таким способом были получены химерные мыши (слияние эмбрионов белых и черных мышей), химерное животное овца-коза.

Фото: Pixabay

Содержание:

Генная инженерия — это современное направление биотехнологии, объединяющее знания, приемы и методики из целого блока смежных наук — генетики, биологии, химии, вирусологии и так далее — чтобы получить новые наследственные свойства организмов.

Перестройка генотипов происходит путем внесения изменений в ДНК (макромолекулу, обеспечивающую хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов) и РНК (одну из трех основных макромолекул, содержащихся в клетках всех живых организмов).

Если внести в растение, микроорганизм, организм животного или даже человека новые гены, можно наделить его новой желательной характеристикой, которой до этого он никогда не обладал. С этой целью сегодня генная инженерия используется во многих сферах. Например, на ее основе сформировалась отдельная отрасль фармацевтической промышленности, представляющая собой одну из современных ветвей биотехнологии.

Фото:Unsplash

История развития

Истоки

Параллельно с этим шел процесс формирования знаний о ДНК. Так, в 1869 году швейцарский биолог Фридрих Мишер открыл факт существования макромолекулы, а в 1910 году американский биолог Томас Хант Морган обнаружил на основе характера наследования мутаций у дрозофил, что гены расположены линейно на хромосомах и образуют группы сцепления. В 1953 году было сделано важнейшее открытие — американец Джон Уотсон и британец Фрэнсис Крик установили молекулярную структуру ДНК.

На подъеме

К концу 1960-х годов генетика активно развивалась, а ее важными объектами стали вирусы и плазмиды. Были разработаны методы выделения высокоочищенных препаратов неповрежденных молекул ДНК, плазмид и вирусов, а в 1970-х годах был открыт ряд ферментов, катализирующих реакции превращения ДНК.

Генная инженерия как отдельное направление исследовательской работы зародилась в США в 1972 году, когда в Стэнфордском университете ученые Пол Берг, Стэнли Норман Коэн, Герберт Бойер и их научная группа внедрили новый ген в бактерию кишечной палочки (E. coli), то есть создали первую рекомбинантную ДНК.

Техника ПЦР была впервые разработана в 1980-х годах американским биохимиком Кэри Маллисом. Будущий лауреат Нобелевской премии по химии (1993 года), обнаружил в специфический фермент — ДНК-полимеразу, который участвует в репликации ДНК. Этот фермент буквально считывает отрезки цепи нуклеотидов молекулы и использует их в качестве шаблона для последующего копирования генетической информации.

Новая эра

В 1996 году методом пересадки ядра соматической клетки в цитоплазму яйцеклетки на свет появилось первое клонированное млекопитающее — овца Долли. Это событие стало революционным в истории развития генной инженерии, потому что впервые стало возможным серьезно говорить о создании клонов и выращивании живых организмов на основе молекул.

Технологии генной инженерии

Генная инженерия за короткий срок оказала огромное влияние на развитие различных молекулярно-генетических методов и позволила существенно продвинуться на пути познания генетического аппарата.

Фото:Vladislav Gajic / Shutterstock

Теоретически, технология CRISPR может позволить редактировать любую генетическую мутацию и излечивать заболевание, которое она вызывает. Но практические разработки CRISPR в качестве терапии еще только в начальной стадии, и многое еще непонятно.

Есть и другие методы генной инженерии, например, ZFN и TALEN.

  • ZFN разрезает ДНК и вставляет туда заготовленный заранее новый фрагмент с помощью белков с ионами цинка (отсюда название — Zinc Finger Nuclease).
  • TALEN делает то же самое, только используя TAL-белки. Для обеих технологий приходится создавать отдельные белки, а это очень долгая работа, поэтому пока два этих метода особого применения не нашли.

Где и как применяется генная инженерия

Медицина

Уже сейчас активно применяется инсулин человека (хумулин), полученный посредством рекомбинантных ДНК. Клонированные гены человеческого инсулина были введены в бактериальную клетку, где начался синтез гормона, который природные микробные штаммы никогда не синтезировали. С 1982 года компании США, Японии, Великобритании и других стран производят генно-инженерный инсулин.

Кроме того, несколько сотен новых диагностических препаратов уже введены в медицинскую практику. Среди лекарств, находящихся в стадии клинического изучения, препараты, потенциально лечащие артрозы, сердечно-сосудистые заболевания, онкологию и СПИД. Среди нескольких сотен генно-инженерных компаний 60% заняты именно разработкой и производством лекарственных и диагностических средств.

Сельское хозяйство

В сельском хозяйстве одна из важнейших задач генной инженерии — получение растений и животных, устойчивых к вирусам. В настоящее время уже есть виды, способные противостоять воздействию более десятка различных вирусных инфекций.

Еще одна задача связана с защитой растений от насекомых-вредителей. Путем генетической модификации растений можно уменьшить интенсивность обработки полей пестицидами. Например, трансгенные растения картофеля и томатов стали устойчивы к колорадскому жуку, растения хлопчатника — к разным насекомым, в том числе и к хлопковой совке.

Использование генной инженерии позволило сократить применение инсектицидов (препаратов для уничтожения насекомых) на 40–60%.

С помощью генной инженерии пытаются решить и экологические проблемы. Так, уже созданы особые сорта растений с функцией очистки почвы. Они поглощают цинк, никель, кобальт и иные опасные вещества из загрязненных промышленными отходами почв.

Скотоводство

В Кемеровской области работа генетиков позволила получить устойчивое к вирусу лейкоза племенное поголовье высокопродуктивных животных. Для проведения эксперимента кузбасские ученые отобрали здоровых коров черно-пестрой породы массой до 500 кг. Животным трансплантировали модифицированные эмбрионы, устойчивые к вирусу лейкоза. В середине сентября 2020 года родилось 19 телят с измененными генами.

По словам Зубовой, лейкоз крупного рогатого скота — вирусная хронически неизлечимая болезнь, при которой возникают поражение кроветворной системы и новообразования. Данное заболевание наносит значительный ущерб генофонду пород и мясной промышленности в целом, потому что мясо зараженных животных запрещено употреблять в пищу. Единственным доступным методом борьбы с лейкозом ранее было только уничтожение зараженного скота.

Этот успех позволяет говорить о том, что в дальнейшем будет возможно редактировать гены крупного рогатого скота и от других болезней.

С прицелом на человека

В 2009 году группа ученых под руководством молодого исследователя Джея Нейтца из Вашингтонского университета сумели с помощью генной терапии вернуть обезьянам способность различать оттенки зеленого и красного, которой они были лишены от рождения.

В область сетчатки глаза двух подопытных обезьян был введен безвредный вирус, несущий недостающий ген фоточувствительного рецептора. Вскоре после процедуры обе обезьяны начали различать оттенки красного и зеленого на сером фоне. Два года наблюдения не выявили у них каких-либо нарушений, поэтому ученые не исключают, что данную методику уже вскоре можно будет применять у людей, страдающих дальтонизмом.

Ученые шагнули еще дальше и уже пробуют выращивать в теле животных органы для трансплантации людям. Для минимизации риска отторжения тканей животным вводят специальные гены. Этими опытами занимается научная лаборатория Рослинского института в Великобритании, которая представила миру овцу Долли.

В 2019 году британские ученые вывели кур, яйца которых содержат два вида человеческих белков, способных противодействовать артриту и некоторым видам онкологических заболеваний. В яйцах содержится человеческий белок под названием IFNalpha2a, обладающий мощными противовирусными и противораковыми свойствами, а также человеческий и свиной вариант белка под названием макрофаг-CSF, который планируют использовать для создания препарата, стимулирующего самостоятельное заживление поврежденных тканей.


Изменение ДНК человека

Первые клинические испытания методов генной терапии были предприняты 22 мая 1989 года с целью генетического маркирования опухоль-инфильтрующих лимфоцитов в случае прогрессирующей меланомы.

14 сентября 1990 года в Бетесде (США) четырехлетней девочке, страдающей наследственным иммунодефицитом, обусловленным мутацией в гене аденозиндезаминазы (АDA), были пересажены ее собственные лимфоциты.

Работающая копия гена ADA была введена в клетки крови с помощью модифицированного вируса, в результате чего клетки получили возможность самостоятельно производить необходимый белок. Через шесть месяцев количество белых клеток в организме девочки поднялось до нормального уровня.

После этого область генной терапии получила толчок к дальнейшему развитию. С 1990-х годов сотни лабораторий ведут исследования по использованию генной терапии для лечения различных заболеваний. Уже сегодня с помощью генной терапии можно лечить диабет, анемию и некоторые виды онкологии.

Генная терапия

Генная терапия — введение, удаление или изменение генетического материала, в частности ДНК или РНК, в клетке пациента для лечения определенного заболевания.

Существует три основных стратегии использования генной терапии:

В 2015 году впервые была проведена процедура изменения ДНК человека с целью продления молодости клеток, когда американке Элизабет Пэрриш 44 лет ввели в организм препарат, влияющий на ДНК, а в 2018 году китайский ученый Хэ Цзянькуй заявил, что с его помощью у двух детей-близнецов якобы изменены гены для выработки у них иммунитета к вирусу ВИЧ, носителем которого являлся их отец.

Фото:Антон Новодережкин / ТАСС

Все это, с одной стороны, выглядит грандиозно и обнадеживает, но с другой, — вызывает опасения, ведь генетические манипуляции, теоретически, возможно использовать не только в благих и мирных целях.

После эксперимента с ДНК близнецов в Китае, ЮНЕСКО выступила с инициативой о запрете изменения генов у новорожденных до того момента, пока достоверно не будет доказана безопасность таких манипуляций.

Этическая сторона вопроса

В 1997 году ЮНЕСКО выпустила Всеобщую декларацию о геноме человека и его правах, рекомендовав мораторий на генетическое вмешательство в зародышевую линию человека, а в декабре 2015 года на международном саммите по геномному редактированию человека изменение гаметоцитов и эмбрионов для генерации наследственных изменений у людей было объявлено безответственным.

Российское сообщество генетиков в большинстве своем считает, что такие эксперименты на данный момент преждевременны и требуют более глубокого исследования и обсуждений.

Страх неизвестности

Вариантов развития событий в области генной инженерии существует множество, и далеко не все они изучены и, в принципе, известны. Поэтому они должны быть последовательно зафиксированы и регламентированы.

Естественно, больше всего опасений вызывают плохие сценарии развития событий. Как правило, все начинается с помощи людям и изобретения новых лекарств. Но потом человек может прийти к желанию сделать своего ребенка светловолосым и зеленоглазым или создать армию универсальных солдат, не боящихся боли и не ведающих страха.

Эксперты убеждены, что генная инженерия — это будущее медицины. Возможность избавить младенца от пожизненного гнета заболевания, излечить людей от рака, найти лекарство против ВИЧ — за всем этим будет стоять генная инженерия. При этом желание человека изменить, например, цвет глаз или предотвратить наследственное заболевание, несмотря на все риски, будет только расти. И похоже, что остановить этот процесс уже не представляется возможным.

Читайте также: