Генеративные мутации это кратко

Обновлено: 04.07.2024

Мутации возникают в клетках любых тканей многоклеточного организма и на различных стадиях его развития. По типу клеток, в которых мутации произошли, различают: генеративные и соматические мутации [1].

Генеративные мутации возникают в половых клетках, не влияют на признаки данного организма, проявляются только в следующем поколении.

Соматические мутации возникают в соматических клетках, проявляются у данного организма и не передаются потомству при половом размножении. Мутации, возникающие в соматических клетках, наследуются дочерними клетками, которые образуются в процессе митотических делений. Фенотипические последствия таких изменений проявляются только у самой мутантной особи и только в том случае, если возникшие мутации препятствуют осуществлению специфических функций, свойственных данной клетке. Соматические мутации могут содержаться не во всех клетках организма, т.е. нормальные и мутантные клетки сосуществуют у одного индивидуума, что приводит к мозаицизму — наличию в организме клеток, отличающихся по своему генотипу и его фенотипическим проявлениям от других клеток этого же организма. Сохранить соматические мутации можно только путем бесполого размножения (прежде всего вегетативного).

В зависимости от того, выявлен ли мутаген, вызвавший данную мутацию, или нет, различают индуцированные и спонтанные мутации. Обычно спонтанные мутации возникают естественным путем, индуцированные — вызываются искусственно. В зависимости от уровня наследственного материала, на котором произошла мутация, выделяют: генные, хромосомные и геномные мутации.

Соматические мутации по своей природе ничем не отличаются от генеративных. Различие состоит лишь в проявлении и методах их обнаружения. Чем раньше в онтогенезе возникает соматическая мутация, тем больше оказывается участок ткани, несущие данную мутацию, и чем позднее — тем меньше. Соматическая мутация проявляется мозаично. Особи, несущие участки мутантной ткани, называют мозаиками, или химерами. В силу диплоидности набора хромосом в клетках соматической ткани, проявление мутации возможно только в тех случаях, когда мутантная аллель оказывается доминантной или будет рецессивна и будет находиться в гомозиготном состоянии.

Различий в частоте возникновения соматических и генеративных мутаций не обнаружено. Однако есть факты, что ряд генов мутирует с разной скоростью на разных стадиях онтогенеза. Так если у растений дельфиниума ген лавандовой окраски мутирует на поздней стадии развития цветка в лепестках встречаются одиночные клетки с измененной окраской, а при возникновении той же мутации на ранней стадии она может затрагивать большие по размеру участки — половину лепестка или даже целый цветок.

Ярким примером соматической мутации является окраска шерстного покрова у овцы: черное пятно на фоне коричневой окраски. Эта мутация могла проявиться либо как доминантная, либо как рецессивная при потере части или всей гомологичной хромосомы.

Подобные явления часто встречаются у самцов дрозофилы, у которых иногда часть глаза имеет красные фасетки, а часть — белые. Эта мозаичность связана с возникновением рецессивной мутации в локусе white половой хромосомы во время развития имагинальных дисков глаз. Но появляется она не только у самцов, у которых этот ген в Х-хромосоме находится в гомизиготном состоянии, но и у гетерозиготных самок в силу утраты целой хромосомы, несущей доминантную аллель w + , или потери части хромосомы (дефишенси), несущей ту же аллель. В этом случае рецессивная аллель, теперь уже находясь в гомозиготном состоянии, также может проявиться, но эта химерность будет не следствием мутации гена, а следствием изменений в числе или структуре хромосом.

Исследование соматических мутации в настоящее время приобретает важное значение для изучения причин возникновения рака у человека и животных. Предполагают, что ряд злокачественных опухолей возникает по типу соматических мутаций. Соматические мутации имеют прямое отношение также к выяснению причин старения человеческого организма, так как с возрастом может происходить накопление физиологических мутаций в популяции соматических клеток различных органов. Считают, что очень высокая частота заболеваний раком у людей старшего возраста обусловлена в какой-то мере накоплением соматических мутаций.

Наследственные заболеваний человека связаны с мутациями, приводящими к изменению уровней экспрессии генов [3]. Мутации в определенных генах нарушают функционирование биохимических систем, что приводит к развитию соответствующих патологических состояний организма (рисунок 1).

Рисунок 1 - Генетические последствия мутаций, происходящих в геноме соматических клеток человека на разных стадиях эмбриогенеза Черным цветом закрашены места лока-лизации клонов мутантных клеток разных размеров в организме человека [3].

Рисунок 1 — Генетические последствия мутаций, происходящих в геноме соматических клеток человека на разных стадиях эмбриогенеза Черным цветом закрашены места лока-лизации клонов мутантных клеток разных размеров в организме человека [3]. Если мутации происходят в геноме клеток зародышевой линии человека, все соматические клетки организма-потомка, который развивается из мутантной зиготы, образовавшейся от слияния мутантных гамет, будут содержать эту мутацию. Чем позже в онтогенезе возникает соматическая мутация, тем меньше размер клона мутантных клеток во взрослом организме. Если мутация доминантна, то возникает наследственное заболевание. Если мутация рецессивна, можно говорить о предрасположенности организма — гетерозиготы к соответствующему заболеванию и носительстве мутантного гена.

Организм, у которого действие рецессивной мутации маскируется функционированием полноценного аллеля, фенотипически выглядит нормальным, однако имеет больше шансов дать больное потомство в браке с носителем такого же мутантного гена. Кроме того, может произойти соматическая мутация в соответствующем аллельном гене соматических клеток, что станет причиной развития приобретенного генетического заболевания. Примером таких заболеваний может служить ретинобластома [3].

У организмов, размножающихся исключительно половым путем и имеющих раннее обособление зачаткового пути, соматические мутации не играют роли в эволюции и не представляют какой-либо ценности для селекции. Но у тех организмов, у которых есть бесполое размножение, соматические мутации могут иметь огромное значение, особенно в селекции, так как у таких форм из соматической ткани развиваются половые клетки. Так, например у плодовых и ягодных вегетативно размножаемых растений любая соматическая мутация может дать растение и целый клон с новым мутантным признаком.

Одним из видов соматических мутаций у растений являются почковые мутации, возникающие в меристемных клетках точки роста стебля. В этом случае весь побег, развившийся из этой клетки, будет нести мутантный признак. Многие сорта плодовых растений, винограда, картофеля являются соматическими мутантами. Эти сорта сохраняют свои свойства, если их воспроизводят вегетативным путем, к примеру, прививая обработанные мутагенами почки (черенки) в крону немутантных растений; таким путем размножают, к примеру, бессемянные апельсины. Почковые мутации были известны давно и назывались спортами; от такого спорта И. В. Мичурин получил сорт яблони, названный им Антоновка 600-граммовая

Соматические мутации используют для изучения частоты возникновения видимых мутаций. По мозаичности проявления мутантного признака в тканях можно обнаруживать соматические мутации вплоть до одиночных мутантных клеток. Растения чая в природных условиях характеризуются высокой пластичностью. При этом отмечаются как отдельные модификации, проявляющиеся на кусте, так и целиком измененные формы [4]. Спектр соматических мутаций представлен морфологическими (отклонения по длине, ширине, форме, морфологии листа, длине междоузлий), физиологическими (изменения окраски листа, вегетационного периода, генеративной активностью и урожайности) и пластидными (секториальные и периклинальные химеры) модификациями. Интересны формы с измененной фотосинтетической активностью, улучшенными биохимическими и органолептическими показателями [5]. При анализе растений сухумского района был установлен сорт с наибольшей частотой как соматических, так и структурных мутаций [6]. При этом кариологический анализ сорта и мутантных форм имели стандартный диплоидный набор хромосом (2n=30). В итоге в Сухумском районе были отобраны целиком измененные формы и выделены 23 мутантные формы чая с комплексом ценных признаков (урожайность и биохимические показатели).

Высокой пластичностью характеризуется также карельская береза, которая представлена группой переходных морфологических форм и не имеет четкого дендрологического описания. В естественных условиях B. pendula var. carelica представлена различными вариантами, включая деревья высотой до 25 м или сильно ветвящиеся кустарники с приподнимающимися стволиками до 3 м высотой. Биологические особенности карельской березы связаны с наличием аномальных процессов при делении и дифференцировки камбиальных клеток [7].

При выращивании в условиях Беларуси плантационные культуры березы карельской, представляют собой совокупность морфологических форм: высокоствольные (1а — крупноузорчатая и 1б — шаровидноутолщенная), короткоствольные (11а — пятнистоузорчатая и 11б — лироствольная), кустовидная, кустарниковая и безузорчатая. Соотношение узорчатых и безузорчатых растений в насаждениях березы карельской примерно одинаковое 50:50. Такое широкое формовое разнообразие по росту в высоту, диаметру, а, соответственно, и узорчатости древесины указывает на высокую пластичность данной березы, ее способность произрастать в различных условиях [7].

ВЕДЬМИНЫ МЕТЛЫ, СУВЕЛИ И КАПЫ У ДРЕВЕСНЫХ РАСТЕНИЙ

Ведьмины мётлы — фрагменты кроны растения с аномальным морфогенезом (рисунок 2). Проявляется как образование многочисленных тонких побегов, чаще бесплодных, прорастающих из спящих почек. Обильное ветвление приводит к образованию множества укороченных ветвей с недоразвитыми листьями, которые часто формируют плотные скопления в виде шара или бесформенные. Дерево с ведьминой метлой представляет собой химеру [9]. При этом, отношения между компонентами химеры всегда конкурентные. Метлы, образующиеся в кронах взрослых, вполне сформировавшихся, деревьев обычно недолговечны, а возникшие в верхней части кроны сравнительно молодых растений часто подавляют произведшую их крону и полностью замещают ее собой [10].

Рисунок 2 – Ведьмины метлы на сосне обыкновенной (А), лиственнице европейской (Б), берёзе (В) и ели обыкновенной (Г) [9]

Классической точкой зрения на происхождение ведьминой метлы является заражение растений ржавчинными грибами, микоплазмами, грибами рода Тафрина (на вишне, сливе, березе) или вирусами (на картофеле). По другой версии появление ведьминой метлы связано с инфицированием растений группой бактерий — фитоплазмой. Переносчиком которых являются насекомые. Однако кроме патологических встречаются ведьмины метлы с нормальной жизнеспособностью, высокой долговечностью и полным отсутствием каких-либо патогенов или следов их жизнедеятельности (рисунок 3). Причинами их возникновения являются соматические мутации. Такие нарушения играют решающую роль в видообразовании и выведении сортов.

Рисунок 3 – 5-летние ветви Abies sibirica: НК-П – контроль к паразитарной ведьминой метле; ВМ-П – ведьмина метла паразитарная, ВМ-М – ведьмина метла мутационная; НК-М – контроль к мутационной ведьминой метле [11].

Рисунок 3 – 5-летние ветви Abies sibirica: НК-П – контроль к паразитарной ведьминой метле; ВМ-П – ведьмина метла паразитарная, ВМ-М – ведьмина метла мутационная; НК-М – контроль к мутационной ведьминой метле [11]. Клоны ведьминых мётел хвойных растений используются в селекции для создания декоративных сортов так как отличаются ценными свойствами: высокой жизнеспособностью, замедленным ростом, скороплодностью, обильным плодоношением [12]. При этом в семенном потомстве ведьминых мётел, наблюдается расщепление сеянцев на растения с обычным габитусом и обильно ветвящимися карликами [13]. Установлено, что у растений сосны обыкновенной с ведьминой метлой число геномных и хромосомных мутаций выше, чем у нормальных деревьев. Они содержат триплоидные и тетраплоидные клетки, отличаются большей активностью ядрышкообразующих зон, а также нарушением структуры и функций ядрышек в интерфазных ядрах. В митозе отмечены отстающие и хаотически расходящиеся хромосомы, мосты, с-митоз, а в метафазе митоза обнаружены аномальные формы ядрышек [14].

Специфичная, оригинальная форма растений придает им декоративный вид, что используется в селекции, а получаемые сорта используются в ландшафтном дизайне и при озеленении населенных пунктов (рисунок 4 и 5).

Широко распространены в природе капы – тоже шаровидные или почти шаровидные наросты на стволах (чаще в комлевой части) и ветвях деревьев, поверхность капов покрыта многочисленными спящими почками. Скопление придаточных спящих почек и является причиной образования наплывов древесины. Анатомическое строение древесины капов, как и сувелей, сохраняет черты видоспецифичности. Способность образовывать капы, по мнению большинства исследователей [18], является адаптацией к условиям, затрудняющим семенное возобновление. Спящие почки, дающие в определенных условиях побеги, обеспечивают вегетативное возобновление.

Сувели, капы, ведьми метлы являются аномальностью строения, что проявляется во внешней морфологии, в то время как анатомические особенности проводящих элементов в основном сохраняют видовую специфику, меняются преимущественно их количественные и топологические особенности. Например, во вторичной ксилеме сувелей, капов и множества других наростов, образующихся на стеблях древесных растений под влиянием различных агентов и факторов среды, структурные изменения касаются в основном пространственной организации как паренхимных, так и прозенхимных клеток [9].

Подобные аномалии описаны у растений в зоне отчуждения вследствие аварии на Чернобыльской атомной станции в первые годы [20] и наблюдаются в настоящее время (рисунок 6).

Рисунок 6 – Изменение морфологических форм растений, произрастающих на лугу ур. Учитель (внп. Масаны): А – изменение хлорофильной пигментации хвои сеянцев сосны, Б-Г – морфозы сосны, Д – искривление стебля Oenothera biennis L.
(фотографии из личного архива Н.В. Шамаль)

Литература

© Наталья Шамаль, старший научный сотрудник лаборатории моделирования и минимизации антропогенных рисков

Мутация или мутационная изменчивость — это явление, которое подразумевает устойчивое изменение генетического аппарата: оно возникает внезапно и меняет определенные наследственные черты организма.

Известно, что мутации способны возникать в любой из периодов жизни организма, затрагивать не только половые, но и соматические клетки организма. При этом мутации, которые возникают в половых клетках, обязательно передаются по наследству.

Г. де Фриз высказал следующие положения:

  • возникновение мутаций носит внезапный характер;
  • мутационные изменения являются устойчивыми и способны передаваться по наследству;
  • мутации не являются направленными и не носят приспособительный характер. Поэтому они могут быть вредными, нейтральными или полезными для организма;
  • одни и те же мутации возникают неоднократно;
  • мутации являются универсальными свойствами любого живого организма.

Виды мутационной изменчивости

Мутации возникают в любых клетках организма, в результате чего происходят различные изменения в генетическом аппарате и фенотипе. Все мутации делятся на 2 группы: соматические и генеративные мутации.

Соматические мутации — это мутации, возникающие в неполовых или соматических клетках организма.

У них есть способность передаваться по наследству, но только в случае неполового или вегетативного размножения.

Генеративные мутации — это мутации, возникающие в половых клетках (гаметах) и наследуются в ходе полового размножения.

Есть еще одно деление мутаций — оно основано на влиянии мутаций на организм. В этом случае выделяют:

  1. Летальные мутации. Как видно из названия, в результате таких мутаций происходит гибель организма.
  2. Сублетальные мутации. Они снижают жизнеспособность организма, а в некоторых случаях могут стать причиной его гибели.
  3. Нейтральные мутации. В конкретных условиях среды не способны оказывать влияния на жизнеспособность организмов.

Также стоит остановиться на полезных мутациях. В данных условиях они приводят к появлению признаков, благодаря которым организм получает определенные преимущества (в первую очередь это касается выживания).

Однако стоит отметить, что полезные мутации возникают не так уж и часто. Это связано с тем, что мутационный процесс — явление ненаправленное и хаотичное.

Виды генеративных мутаций

В основе деления мутаций также лежит степень изменения наследственного аппарата. Здесь выделяют генные, хромосомные и геномные мутации.

Генные мутации представляют собой мутационные процессы, приводящие к изменению структуры ДНК в участке, соответствующем определенному гену.

Эти мутации также называются точечными. В случае такой мутации есть вероятность того, что одно азотистое основание заменится на другое, а это, в свою очередь, приведет к замене аминокислот при синтезе белка.

Хромосомные мутации или хромосомные перестройки — это процессы, приводящие к изменениям в строении хромосом.

Еще одно название таких мутаций — перестройки или аберрации. Есть несколько типов аберраций:

  • нехватка. Это случаи, когда хромосома теряет концевой участок;
  • деление. Под ним понимают потерю участка в средней части хромосомы;
  • дупликация. Случай, когда участок повторяется несколько раз;
  • инверсия. При ней участок хромосомы переставляется на 180 градусов;
  • транслокация. Здесь происходит обмен участками между негомологическими хромосомами;
  • фрагментация. Это распад хромосом на части.

Геномные мутации — это такие мутации, в результате которых происходит изменение набора хромосом.

Такие мутации случаются, когда в ходе деления хромосомы не расходятся к полюсам, а остаются в том же ядре.

Когда происходит кратное увеличение набора хромосом, речь идет о полиплоидии.

Причины мутаций

Довольно долго ученые не могли разгадать и понять причины мутаций. Все изменилось в 1927 году, когда один из сотрудников Т. Х. Моргана — Г. Меллер доказал, что мутации можно вызвать искусственным путем. Таким образом он получил мутации у дрозофил — в результате воздействия на них рентгеновских лучей.

Позже ученые установили факторы, способствующие появлению мутаций. Эти факторы получили название мутагенных. Условно их можно разделить на физические, к которым относят температуру и ионизирующее излучение, химические (химические вещества) и биологические, составляющие вирусы.


В данном видеоуроке описываются причины возникновения мутаций. Перечисляются мутагенные факторы, воздействующие на живые организмы. Рассказывается о том, что такое соматические и генеративные мутации. Также в уроке рассматриваются летальные, полулетальные, нейтральные и полезные мутации. В данном уроке приводятся следующие понятия: мутация, ионизирующее излучение, соматические мутации, генеративные мутации.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Причины мутаций. Соматические и генеративные мутации"

Мутация – это форма изменчивости меняющая наследственные задатки организма.

Мутации не возникают сами по себе. Они происходят под влиянием разнообразных факторов внешней и внутренней среды. Появляются мутации редко, но приводят они к внезапным скачкообразным изменениям признаков, которые передаются из поколения в поколение.

Значит, мутации возникают по каким-то причинам. Причины возникновения мутаций называются мутагенными факторами.

К мутагенным факторам относят некоторые физические воздействия на организм.

Это ионизирующее излучение, ультрафиолетовое излучение, температура, некоторые химические вещества и даже вирусы.

Первые физические мутагены, открытые учёными, — это разные виды излучений. Ещё в 1925 г. российский генетик Гео́ргий Адамович На́дсон показал, что при облучении дрожжей лучами радия возникают разнообразные новые формы.

Рассмотрим влияние ионизирующего излучения на организм.

Ионизирующее излучение – это излучение, которое вызывает ионизацию (образование ионов) вещества (среды).

Электромагнитные волны испускаются в виде отдельных порций (квантов), причём энергия кванта тем выше, чем короче длина волны. Кванты ионизирующего излучения проникают в ткани организма, повреждая различные молекулы, и в частности молекулы ДНК.

Обнаружено, что рентгеновские лучи вызывают мутации у самых разных животных, растений и микроорганизмов. При этом мутации, вызванные излучениями, могут затрагивать любые признаки организма.

Число возникающих мутаций тем больше, чем выше интенсивность излучения, то есть чем больше квантов или частиц попадало в клетку в единицу времени. Таким образом даже небольшие дозы излучения, которые не представляют прямой угрозы для организма, могут приводить к возникновению разнообразных врождённых уродств в потомстве организмов, подвергшихся облучению.

Строительство атомных электростанций, использование радиоактивных веществ в разных приборах, а также радиоактивных изотопов в исследовательских целях заметно увеличило вероятность воздействия на людей разнообразных физических мутагенов.

Некоторые другие виды электромагнитных волн с маленькой длиной волны — например ультрафиолетовое излучение — тоже вызывают мутации.

В отличие от рентгеновских, ультрафиолетовые лучи не действуют на половые клетки большинства многоклеточных организмов, поскольку проникают в ткани очень слабо.

Мутагенный эффект ультрафиолетовых лучей (возникновение генных мутаций и хромосомных перестроек) обнаруживается лишь в клетках, у которых поверхностный слой представлен монослоем. Например, у микроорганизмов и в клетках пыльцы.

Ультрафиолетовые лучи вызывают образование в клетках свободных радикалов и перекисей, обладающих мутагенными свойствами.

Перекиси возникают под действием ультрафиолетового света в жидких питательных средах для культивирования бактерий, что заметно увеличивает у них частоту мутаций.

Повышенная температура.

Она также может вызывать мутации.

В 1928 г. американский генетик Герман Джозеф Мёллер показал, что при культивировании мушек дрозофил в условиях повышенной температуры у особей повышается частота мутаций.

Сильнейшим мутагенным действием обладают соединения из многих классов химических веществ.

Например, мутации вызывают соли свинца и ртути, хлороформ, формальдегид, перекись водорода,

лекарственные препараты (например, цитостатики, препараты ртути, иммунодепрессанты, некоторые алкалоиды);

препараты для борьбы с сельскохозяйственными вредителями, некоторые пищевые добавки (например, ароматические углеводороды).

Некоторые красители из класса акридинов приводят к делециям и транслокациям в процессе репликации ДНК.

Половые клетки человека также несут те или иные мутации. Однако в большинстве случаев они не проявляются, так как являются рецессивными.

Также мутации могут и не проявится благодаря способности организмов защищать свой генотип от действия мутагенных факторов. Оказывается, если в клетке при репликации ДНК возникает мутация. Если межу между азотистыми основаниями аденином и тимином отсутствуют связи.

Перечислим характеристики мутационной изменчивости:

– мутационные изменения возникают непредсказуемо, и в результате в организме могут появиться новые свойства;

– мутации наследуются и передаются потомству;

– мутации не имеют направленного характера, то есть нельзя достоверно утверждать, какой именно ген мутирует под действием данного мутагенного фактора;

– мутации могут быть полезными или вредными для организма, доминантными или рецессивными.

Соматические и генеративные мутации

Мутации возникают в клетках любых тканей многоклеточного организма и на различных стадиях его развития.

Соматические мутации — это такие мутации, которые возникают в любых клетках тела, кроме половых.

Например, если мутировала одна клетка растения, из которой затем разовьётся почка, а впоследствии – побег, то все клетки этого побега будут мутантными.

Так, на кусте чёрной смородины может возникнуть ветка с белыми или красными ягодами. При вегетативном размножении – в данном случае черенком этого побега – новые свойства будут наблюдаться и у потомства. Таким образом можно вывести новый сорт смородины.

Соматические мутации у растения львиного зева вызваны ионизирующей радиацией (рентгеновские или гамма-лучи). Наблюдается появление белой окраски в красных цветках у львиного зева.

Если соматическая мутация возникла на ранних стадиях индивидуального развития (онтогенеза), то из мутированной клетки может развиться большой участок ткани, все клетки которого будут мутантными. Такие особи называют мозаиками. Например, кошка с глазами разного цвета является мозаикой.

При половом размножении новый признак, появившийся в результате соматической мутации, потомству не передаётся, так как в гаметах этой мутации нет.

Мутацию называют генеративной, если она произошла в первичных половых клетках или в образовавшихся из них гаметах. Такие мутации передаются следующему поколению.

При близкородственном скрещивании (браке между родственниками) рецессивные мутировавшие гены могут перейти в гомозиготное состояние и проявиться в фенотипе потомства.

По характеру воздействия на организм мутации делят на летальные, полулетальные, нейтральные и полезные.

Летальными во многих случаях являются хромосомные и генные мутации. Известны случаи, когда один летальный (смертельный) ген может оказывать влияние на несколько признаков, в том числе и на жизнеспособность.

Летальные мутации вызывают такие изменения в развитии, которые несовместимы с жизнедеятельностью. Поэтому обладатели летальных генов чаще всего погибают или в эмбриогенезе, или вскоре после рождения.

Например, у человека и у других млекопитающих определённый летальный ген вызывает образование внутренних спаек лёгких, что приводит к смерти при рождении.

Другой летальный ген влияет на формирование хряща и вызывает врождённые уродства, ведущие к смерти новорождённого.

Воздействие летального гена ясно видно на примере наследования окраски шерсти у мышей. У мышей дикого типа шерсть обычно серая, но у некоторых мышей шерсть белая и жёлтая. При скрещивании особей жёлтого цвета в потомстве получаются как жёлтые мыши, так и серые. Единственное возможное объяснение таких результатов состоит в том, что жёлтая окраска шерсти доминирует над серой, и что все жёлтые мыши гетерозиготны. Менделевское отношение объясняется гибелью гомозиготных жёлтых мышей до рождения.

Наглядный пример, иллюстрирующий летальное действие генов у растений, — явление хлорофильных мутаций. У гомозиготных по хлорофильной мутации растений нарушен синтез молекулы хлорофилла. Такие растения развиваются до тех пор, пока запасы питательных веществ в семени не иссякнут, поскольку они не способны к фотосинтезу.

Полулетальные мутации

Они приводят к резкому ухудшению каких-либо процессов жизнедеятельности, что в большинстве случаев также рано или поздно приводит к смерти.

При полулетальной мутации рецессивные гомозиготы какое-то время могут жить, но затем погибают из-за резко сниженной жизнеспособности (например, гемофилия и отсутствие оперения у кур и другие).

Нейтральные мутации – понятие относительное, так как любое изменение в генотипе едва ли может быть неважным для организма. К таким мутациям относят, например, мутации в участках хромосом, которые не кодируют белков.

Полезные мутации, по-видимому, лежат в основе эволюционного процесса, приводя к появлению полезных для вида признаков. Эти признаки, закрепляясь естественным отбором, могут привести к образованию новой систематической единицы – подвида или даже вида.

Роль мутаций в эволюции

Мутации затрагивают те или иные признаки организма и изменяют их в разных направлениях.

Постоянно возникающие у любого вида живых существ мутации многие, из которых к тому же длительно сохраняются в популяции в скрытом виде (рецессивные мутации), служат резервом наследственной изменчивости, который позволяет естественному отбору перестраивать наследственные признаки вида, приспосабливая его к меняющимся условиям среды (изменению климата или биоценоза, переселению в новый ареал и т. п.).

При этом мутации, бывшие в одних условиях вредными или нейтральными, могут оказаться полезными в изменившихся условиях.

Например, в лесу юга Англии обитают светлоокрашенные бабочки берёзовой пяденицы, гомозиготные по рецессивному аллелю. Из-за активного развития промышленности кора берёз покрывается чёрной сажей, и белые бабочки на тёмном фоне становятся очень заметны и быстро поедаются птицами.

Со временем стали появляться особи более темной окраски, сероватого тона, с большим количеством сливающихся темных пятен (гомозиготные по данному аллелю АА). Тёмноокрашенные бабочки хорошо маскируются и не поедаются птицами.

Но на протяжении длительного времени в покрытых чёрной сажей берёзовых лесах постоянно встречаются светлые бабочки берёзовой пяденицы.

Хотя большинство мутаций в данных конкретных условиях оказываются вредными и в гомозиготном состоянии мутации, как правило, снижают жизнеспособность особей, они сохраняются в популяциях благодаря отбору в пользу гетерозигот.

Оказалось, что гусеницы, гомозиготные по доминантному аллелю, плохо усваивают листья берёз, покрытые гарью и копотью, а гетерозиготные гусеницы растут на этом корме гораздо лучше. Следовательно, большая биохимическая гибкость гетерозиготных организмов приводит к их лучшему выживанию.

Виды мутаций у человека. Варианты

Последовательность ядерной ДНК у любых двух человек идентична почти на 99,9%. Только очень небольшая доля последовательности ДНК различается у разных людей, обеспечивая генетическую изменчивость. Некоторые различия в последовательности ДНК не имеют влияния на фенотип, тогда как другие — непосредственные причины болезней. Между двумя крайностями — изменения, ответственные за генетически предопределенную фенотипическую изменчивость в анатомии и физиологии, переносимость пищи, реакции на лечение или побочные эффекты медикаментов, восприимчивость к инфекциям, склонность к опухолям и, возможно, даже изменчивость в различных чертах личности, спортивных способностях и художественном таланте.

Одно из важных понятий генетики человека и медицинской генетики — то, что генетические болезни — только наиболее очевидное и часто крайнее проявление генетических различий, один конец непрерывного спектра изменений от редких вариантов, вызывающих болезнь, через более частые варианты, увеличивающие восприимчивость к болезни, до наиболее частых изменений, не имеющих явного отношения к болезни.

Виды мутаций у человека

Мутация — любое изменение в последовательности нуклеотидов или расположения ДНК. Мутации можно классифицировать на три категории: влияющие на количество хромосом в клетке (геномные мутации), изменяющие структуру отдельных хромосом (хромосомные мутации) и изменяющие индивидуальные гены (генные мутации). Геномные мутации — изменения числа неповрежденных хромосом (анеуплоидии), возникающие вследствие ошибок в расхождении хромосом в мейозе или митозе.

виды мутаций у человека

Хромосомные мутации — изменения, затрагивающие только часть хромосомы, например частичные дупликации, делеции, инверсии и транслокации, которые могут происходить спонтанно или возникать вследствие аномального расхождения транслоцированных хромосом в ходе мейоза. Генные мутации — изменения в последовательности ДНК ядерного или митохондриального генома, от мутации в единственном нуклеотиде до изменений, захватывающих много миллионов пар оснований. Множество типов мутаций представлены разнообразными аллелями в отдельных локусах при более чем тысяче разных генетических заболеваний, а также среди миллионов вариантов ДНК, обнаруживаемых во всем геноме в нормальной популяции.

Описание разных мутаций не только увеличивает осведомленность о генетическом разнообразии человека и хрупкости человеческого генетического наследия, но также содействует получению информации, необходимой для обнаружения и скрининга генетических болезней в конкретных семьях риска, а также — для некоторых болезней — в популяции в целом.

Геномная мутация, приводящая к утрате или дублированию целой хромосомы, изменяет дозу и, таким образом, уровень экспрессии сотен или тысяч генов. Аналогично затрагивающая большую часть одной или нескольких хромосом хромосомная мутация также может влиять на экспрессию сотен генов. Даже небольшая генная мутация может иметь большие последствия, в зависимости от того, какой ген затронут и к чему приводит изменение в экспрессии этого гена. Мутация гена в виде изменения единственного нуклеотида в кодирующей последовательности может вести к полной утере экспрессии гена или образованию белка с измененными свойствами.

Некоторые изменения ДНК, тем не менее, не имеют фенотипических эффектов. Хромосомная транслокация или инверсия может не влиять на критическую часть генома и абсолютно не иметь фенотипических эффектов. Мутация в пределах гена может не иметь эффекта вследствие того, что либо не изменяет аминокислотную последовательность полипептида, либо, даже если это происходит, изменение в закодированной аминокислотной последовательности не изменяет функциональные свойства белка. Следовательно, не все мутации имеют клинические последствия.

Все три типа мутаций происходят со значимой частотой во множестве разных клеток. Если мутация происходит в ДНК половых клеток, она может передаваться последующим поколениям. В отличие от этого, соматические мутации происходят случайным образом только в части клеток определенных тканей, приводя к соматическому мозаицизму, наблюдаемому, например, при многих опухолях. Соматические мутации не могут передаваться последующим поколениям.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Герминальными (от англ. germ – зародыш) мутациями называются врожденные изменения ДНК или мутации зародышевой линии.

Они:

  • присутствуют во всех клетках организма;
  • возникают вследствие изменения генетического материала половых клеток родителей, после чего эти изменения передаются детям;
  • могут свидетельствовать о наследственной природе заболевания;
  • могут обнаруживаться у родственников.

Для определения герминальных мутаций исследуется практически любая ткань организма.

Как правило, это кровь (ядросодержащие клетки – лимфоциты) или буккальный (щечный) эпителий по причине доступности и простоты работы с этим материалом.

Соматические (от греч. soma - тело) мутации – это изменение генетического материала одной соматической клетки (любой клетки организма, кроме половых), что приводит к возникновению клеточного клона (участка ткани, органа) с генотипом, который отличается от генотипа соседних “нормальных” клеток (соматический мозаицизм).

Они:

  • присутствуют только в “поврежденных” тканях;
  • возникают в течении жизни;
  • не передаются по наследству;
  • но могут встречаться при некоторых наследственных синдромах (например, синдром Протея), а также у пациентов со злокачественными новообразованиями;
  • позволяют индивидуально подобрать таргетные препараты.

Для определения соматических мутаций исследуется ДНК поврежденной ткани.


Чаще всего это материал биопсии.

Читайте также: