Где чаще обитают бактерии хемосинтетики кратко

Обновлено: 05.07.2024

Хемосинтез — это процесс синтеза органических соединений за счет химической энергии не­органических соединений.

Данный процесс был открыт выдающимся русским ученым С.Н. Виноградским в 1887 го­ду. К группе хемосинтетиков (хемотрофов) относятся в основном бактерии: нитрифицирующие, серобактерии, железобактерии и др. Они используют энергию окисления соединений азота, серы, ионов железа соотвественно. При этом донором электронов выступает не вода, а другие неоргани­ческие вещества.

Так, нитрифицирующие бактерии окисляют образованный из атмосферного азота азотфиксирующими бактериями аммиак до нитритов и нитратов:

2NH3 +302 → 2HNO2 + 2Н20 + 663 кДж,

2HN02 + 02 →2HN03 + 192 кДж.

Серобактерии окисляют сероводород до серы, а в некоторых случаях и до серной кислоты:

H2S + 02 → 2Н20 + 2S + 272 кДж,

2S + 302 + Н20 → H2S04 + 483 кДж.

Железобактерии окисляют соли железа:

4FeC03 + 02 + 6Н20 →4Fe(OH)3 + 4С02 + 324 кДж.

Водородные бактерии способны окислять молекулярный водород:

2Н2 + 02 → 2Н20 + 235 кДж.

Источником углерода для синтеза органических соединений у всех автотрофных бактерий вы­ступает углекислый газ.

Хемосинтезирующие бактерии наиболее значительную роль играют в биогеохимических цик­лах химических элементов в биосфере, так как в процессе их жизнедеятельности образовались залежи многих полезных ископаемых. Кроме того, они являются источниками органического ве­щества на планете, т. е. продуцентами, а также делают доступным и для растений, и для других организмов целый ряд неорганических веществ.

Хемосинтез, примеры хемосинтетических бактерий

Другой группой автотрофных организмов являются хемосинтезирующие бактерии, которые в качестве источника энергии для синтеза органических соединений из неорганических используют энергию ОВР.

Хемосинтез открыл в 1889–1890 гг. русский микробиолог С. Н. Виноградский.

Суть процесса заключается в том, что хемосинтезирующие бактерии окисляют различные неорганические вещества (водород, сероводород, аммиак, оксид железа и др.), а энергия, выделившаяся при этом, запасается в форме АТФ.

Примеры хемосинтезирующих бактерий:

  1. Бесцветные серобактерии обитают в водоемах, богатых сероводородом.

Энергию, необходимую для синтеза органических веществ они извлекают, окисляя сероводород:

2H2S + O2 → 2H2O + 2S +E

  • Выделяющаяся свободная сера накапливается в клетках бактерий. Если сероводорода не достаточно, то бесцветные серобактерии могут окислять свободную серу до серной кислоты:

2S + 3O2 + 2H2O → 2H2SО4 +E

  • Нитрифицирующие бактерии широко распространены в почве и водоемах.

Они окисляют аммиак и азотистую кислоту до азотной кислоты.

Бактерии, которые окисляют аммиак, выделяющийся при гниении белков, до азотистой кислоты называются нитросомонас:

2NH3+ 3O2 → 2HNO2 + 2H2O+E

  • Другая группа нитрифицирующих бактерий (нитробактер) окисляет азотистую кислоту до азотной кислоты:

2HNO2 + O2 → 2HNO3+E

  • Железобактерии во множестве обитающие в болотной воде окисляют двухвалентное железо до трехвалентного железа.

Этот процесс имеет большое значение для образования железных руд.

4FeO + 3O2 → 2Fe2O3+E

Хемосинтетические бактерии играют важную роль в круговороте веществ в биосфере.

Азотфиксирующие бактерии единственные организмы на Земле, которые усваивают свободный азот атмосферы и вовлекают его в круговорот веществ. Примером таких бактерий являются клубеньковые бактерии, поселяющиеся в клубеньках на корнях бобовых растений. В круговороте азота также большое значение имеют нитрифицирующие бактерии. Бактерии, окисляющие соединения железа и марганца, имеют значение для отложения железных и марганцевых руд.

Хемосинтез — древнейший тип автотрофного питания, который в процессе эволюции мог появиться раньше фотосинтеза. В отличие от фотосинтеза при хемосинтезе первичным источником энергии является не солнечный свет, а химические реакции окисления веществ, обычно неорганических.

Хемосинтез наблюдается только у ряда прокариот.

Многие хемосинтетики обитают в недоступных для других организмов местах: на огромных глубинах, в бескислородных условиях.

Хемосинтез в каком-то смысле уникальное явление. Хемосинтезирующие организмы не зависят от энергии солнечного света ни напрямую как растения, ни косвенно как животные. Исключением являются бактерии, окисляющие аммиак, т. к. последний выделяется в результате гниения органики.

Сходство хемосинтеза с фотосинтезом:

  • автотрофное питание,
  • энергия запасается в АТФ и потом используется для синтеза органических веществ.
  • источник энергии – различные окислительно-восстановительные химические реакции,
  • характерен только для ряда бактерий и архей;
  • клетки не содержат хлорофилла;
  • в качестве источника углерода для синтеза органики используется не только CO2, но также окись углерода (CO), муравьиная кислота (HCOOH), метанол (CH3OH), уксусная кислота (CH3COOH), карбонаты.

Хемосинтетики получают энергию при окислении серы, сероводорода, водорода, железа, марганца, аммиака, нитрита и др.

Как видно, используются неорганические вещества.

В зависимости от окисляемого субстрата для получения энергии хемосинтетиков делят на группы: железобактерии, серобактерии, метанообразующие археи, нитрифицирующие бактерии и др.

У аэробных хемосинтезирующих организмов акцептором электронов и водорода служит кислород, т. е. он выступает в роли окислителя.

Хемотрофы играют важную роль в круговороте веществ, особенно азота, поддерживают плодородие почв.

Железобактерии

Представители железобактерий: нитчатые и железоокисляющие лептотриксы, сферотиллюсы, галлионеллы, металлогениумы.

Распространены в пресных и морских водоемах. Образуют отложения железных руд.


Окисляют двухвалентное железо до трехвалентного:

4FeCO3 + O2 + 6H2O → Fe(OH)3 + 4CO2 + E (энергия)

Кроме энергии в этой реакции получается углекислый газ, который связывается в органические вещества.

Кроме бактерий окисляющих железо, существуют бактерии окисляющие марганец.

Серобактерии

Серобактерии также называются тиобактериями.

Это достаточно разнообразная группа микроорганизмов. Есть представители получающие энергию как от солнца (фототрофы), так и путем окисления соединений с восстановленной серой – пурпурные и зеленые серобактерии, некоторые цианеи.

2S + 3O2 + 2H2O → 2H2SO4 + E

В анаэробных условиях в качестве акцептора водорода используют нитрат.

Бесцветные серобактерии (беггиаты, тиотриксы, ахроматиумы, макромонасы, акваспириллюмы) обитают в содержащих сероводород водоемах.

Они 100%-ые хемосинтетики. Окисляют сероводород:

2H2S + O2 → 2H2O + 2S + E

Образующаяся в результате реакции сера накапливается в бактериях или выделяется в окружающую среду в виде хлопьев.

Энергетический и пластический обмен, их взаимосвязь

Если сероводорода недостаточно, что эта сера может также окисляться (до серной кислоты, см. реакцию выше).

Вместо сероводорода могут также окисляться сульфиды и др.

Нитрифицирующие бактерии

Типичные представители: азотобактер, нитрозомонас, нитрозоспира.

Нитрифицирующие бактерии обитают в почве и водоемах.

Энергию получают за счет окисления аммиака и азотистой кислоты, поэтому играют важную роль в круговороте азота.

Аммиак образуется при гниении белков. Окисление бактериями аммиака приводит к образованию азотистой кислоты:

2NH3 + 3O2 → HNO2 + 2H2O + E

Другая группа бактерий окисляет азотистую кислоту до азотной:

2HNO2 + O2 → 2HNO3 + E

Две реакции не равноценны по выделению энернгии.

Если при окислении аммиака выделяется более 600 кДж, то при окислении азотистой кислоты – только около 150 кДж.

Азотная кислота в почве образует соли — нитраты, которые обеспечивают плодородие почвы.

Водородные бактерии

В основном распространены в почве. Окисляют водород, образующийся при анаэробном разложении органики микроорганизмами.

2H2 + O2 → 2H2O + E

Данная реакция катализируется ферментом гидрогеназой.

Метанобразующие археи и бактерии

Типичные представители: метанобактерии, метаносарцины, метанококки.

Археи строгие анаэробы, обитают в бескислородной среде.

Хемосинтез идет без участия кислорода.

Чаще всего восстанавливают углекислый газ до метана водородом:

CO2 + 4H2 → CH4 + 2H2O + E

Особенности хемосинтезирующих бактерий

Выполнили: Гуляев Иван; Дружинин Михаил Руководитель: Агапова У.В., учитель биологии

Хемосинтез — тип питания многих прокариотов, основанный на усвоение углекислого газа за счет процессов окисления неорганических соединений.

К хемосинтезу способны только хемосинтезирующие бактерии: нитрифицирующие , водородные , железобактерии , серобактерии и др.

На земной поверхности молекулярный водород, да еще вместе с кислородом, встречается редко. Именно поэтому распространение хемосинтезирующих бактерий в природе весьма ограничено.

Нитрифицирующие бактерии , встречающиеся в жирной почве, навозе, окисляют аммоний ( комплексный неорганический катион) до нитрита, а нитрит – до нитрата. Они завершают распад органических азотистых веществ, возвращая азот в соединения, усваиваемые растениями. В то же время удаляется аммиак – неизбежный продукт разложения белков .

Тионовые бактерии — серобактерии, получающие энергию за счёт окисления серы и её восстановленных неорганических соединений (сероводорода, тиосульфата и др.).

Это мелкие, палочковидные, в большинстве подвижные грамотрицательные бактерии. Строгие аэробы, за исключением нескольких видов, которые могут развиваться и в анаэробных условиях.

Тионовые бактерии широко распространены в водоёмах, почве, рудных месторождениях. Участвуют в круговороте серы и многих других элементов.

С их жизнедеятельностью связано бактериальное выщелачивание металлов из руд, концентратов и горных пород, аэробная коррозия металлов, разрушение бетонных сооружений и т. д.

Водородные бактерии , бактерии, получающие для роста энергию в результате окисления молекулярного водорода постоянно образующимся при анаэробном разложении различных органических остатков микроорганизмами почвы.

Присутствуют в разных почвах и во многих водоёмах, способны расти за счёт окисления водорода в аэробных условиях, и используют образующуюся при этом энергию для усвоения углерода.

К ним относятся представители более 30 систематических групп.

Хемосинтезирующие бактерии

В последнее время активно используются в биотехнологии для получения кормового белка, ряда полисахаридов и некоторых аминокислот.

Железобактерии — бактерии, способные окислять двухвалентное железо до трёхвалентного и использовать освобождающуюся при этом энергию на усвоение углерода из углекислого газа или карбонатов.

Железобактерии находятся повсюду: в подземных и поверхностных водах, в колодцах и родниках. Ржавая масса на дне и берегах ручьев также образована железобактериями.

Ответ. Хотя вклад хемосинтетиков в аккумуляцию энергии и синтез органических веществ на Земле невелик по сравнению с фотосинтетиками, они имеют огромное экологическое значение, участвуя в круговороте веществ в биосфере.

В процессе их жизнедеятельности образовались залежи многих полезных ископаемых.

Хемосинтетики служат не только источником органического вещества на планете, то есть продуцентами, но также делают доступными и для растений, и для других организмов целый ряд неорганических веществ.

Возможно, хемосинтетические микроорганизмы были первыми на планете (Г.А. Заварзин).

2. К какому царству организмов относятся хемосинтетики?

Ответ. Организмы- хемосинтетики относят к царству бактерий.

Вопросы после §25

1. Какие бактерии – хемосинтетики особенно важны для сельского хозяйства?

Ответ. Наибольшее значение для сельского хозяйства имеют нитрифицирующие бактерии. Нитрифицирующие бактерии окисляют образующиеся при гниении органических остатков аммиак до нитрита, а затем до нитрата.

Нитрифицирующие бактерии относятся к самой распространенной группе хемолитотрофных микроорганизмов в природе, что связано с наличием восстановленных форм азота в различных экосистемах. Наиболее широко распространены аммонийокисляющие бактерии. Нитрифицирующие бактерии развиваются в почвах, рыхлых горных породах, термальных источниках, в морской и пресной воде, в илах.

Нитрифицирующие бактерии послужили фактором образования залежей селитры. Они участвуют в процессах выветривания горных пород и каменных сооружений. Огромную роль играют в процессе почвообразования. Процесс нитрификации происходит в почве в огромных масштабах и служит для растений источником нитратов. Жизнедеятельность бактерий представляет собой один из важнейших факторов плодородия почв.

2. Где чаще обитают бактерии хемосинтетики?

Ответ. Хемосинтетики - это хемосинтезирующие бактерии или хемотрофы. Углерод они как и в случае с фотосинтезом получают за счет углекислого газа, но используют в качестве энергии энергию окисления неорганических веществ и ферментов. Хемосинтезирующие бактерии - серобактерии, водородные, железобактерии, нитрифицирующие, марганцевые. Хемосинтезирующие бактерии встречаются во всех водоемах как пресных, так и морских. Они обитают в толще воды, на поверхности и в глубине грунта. В наибольшей степени они концентрируются там, где анаэробные условия сменяются аэробными, т.к. для своей жизнедеятельности нуждаются в кислороде и восстановленных соединениях, которые, в частности, образуются в результате анаэробного распада органических веществ. Наибольшее значение в водоемах имеют значение бактерии, окисляющие сероводород и серу. Так как хемосинтетики используют недоокисленные продукты анаэробного распада, наибольшее количество автотрофных анаэробных бактерий концентрируется в грунтах. Среди грунтов наиболее богаты ими илы, содержащие значительное количество органического вещества. Интенсивность хемосинтеза в толще воды обычно в десятки и сотни раз ниже, чем в грунтах. Хемосинтез в водоемах следует рассматривать как вторичный процесс, который в конечном итоге использует энергию органического вещества, создаваемого при фотосинтезе. Следовательно роль хемосинтетиков заключается не столько в создании первопищи, а сколько в трансформации энергии, аккумулированной фотосинтетиками.

Как устроены и осуществляют процессы жизнедеятельности бактерии, хемосинтезирующие различные вещества? Чтобы ответить на эти вопросы, необходимо разобраться с целым рядом биологических понятий.

бактерии хемосинтезирующие

Характерные черты бактерий

Сначала выясним, кто же такие бактерии. Это целое Царство живой природы. Они представляют собой одноклеточные организмы микроскопических размеров, которые лишены ядра. Но это не значит, что у бактерий вообще нет структур, отвечающих за передачу наследственной информации. Она просто имеет более примитивную организацию. Это кольцевые молекулы ДНК, которые сосредоточены в определенной части цитоплазмы, называемой нуклеоидом.

Суть автотрофного питания

Хемосинтезирующие бактерии, примеры которых будут рассмотрены в нашей статье, самостоятельно производят органические вещества. Они являются автотрофами, подобно растениям. Однако последние используют для этого энергию солнечного света. Наличие зеленых пластид хлоропластов позволяет им осуществлять процесс фотосинтеза. Его суть заключается в образовании углевода глюкозы из неорганических веществ - воды и углекислого газа. Еще одним продуктом данной химической реакции является кислород. Бактерии также являются автотрофами. Но для получения энергии им не нужен солнечный свет. Они осуществляют другой процесс - хемосинтез.

Что такое хемосинтез

Хемосинтезом называют процесс образования органических веществ за счет протекания окислительно-восстановительных реакций. Его в природе осуществляют только прокариоты. Хемосинтезирующие бактерии могут использовать для синтеза органических веществ соединения серы, азота и железа. При этом выделяется энергия, которая сначала аккумулируется в связях АТФ, после чего может использоваться клетками бактерий.

хемосинтезирующими бактериями являются

Бактерии хемосинтезирующие: среда обитания

Поскольку жизнь хемотрофов не зависит от наличия солнечного света, ареал их распространения достаточно широк. К примеру, серобактерии могут жить на больших глубинах, иногда являясь там единственными представителями живых существ. Средой обитания данных прокариот чаще всего является почва, сточные воды и субстраты, богатые определенными химическими соединениями.

Железобактерии

К хемосинтезирующим бактериям относят прокариот, изменяющих состав соединений железа. Они были открыты выдающимся русским микробиологом Сергеем Николаевичем Виноградским в 1950 году. Этот вид бактерий в ходе реакции окисления изменяет степень окисления железа, делая его трехвалентным. Они обитают в пресных, и соленых водоемах. В природе они осуществляют круговорот железа в природе, а в промышленности используются для производства чистой меди. Этот вид бактерий также относится к литоавтотрофам, способным синтезировать из улекислоты некоторые элементы своей клетки.

к хемосинтезирующим бактериям относят

Серобактериии

Бактерии, хемосинтезирующие вещества из соединений серы, могут существовать отдельно на дне водоемов или образовывать симбиоз с моллюсками и морскими беспозвоночными. В качестве источника окисления они используют сероводород, сульфиды, тионовые кислоты или молекулярную серу. Этот вид бактерий был главным объектом при открытии и изучении процесса хемосинтеза. К этой группе прокариот относят и некоторых фототрофных прокариот. К примеру, таких как пурпурные или зеленые серобактерии.

хемосинтезирущие бактерии примеры

Нитрифицирующие бактерии

На корнях бобовых растений поселяются нитрифицирущие бактерии. Хемосинтезирующие прокариоты этой группы окисляют аммиак до азотной кислоты. Эта реакция осуществляется в несколько этапов с образованием промежуточных веществ. В почве находятся также азотфиксирующие бактерии. Они поселяются на корнях бобовых растений. Внедряясь в ткани подземного органа, они образуют характерные утолщения. Внутри таких образований создается благоприятная среда для протекания хемосинтеза. Симбиоз растений с клубеньковыми бактериями является взаимовыгодным. Первые обеспечивают прокариот органикой, полученной в ходе фотосинтеза. Бактерии же способны фиксировать атмосферный азот и переводить его в форму, доступную для растений.

Почему данный процесс имеет такое важное значение? Ведь в атмосфере концентрация азота достаточна велика и составляет 78%. Но в таком виде растения не могут усваивать это вещество. А азот необходим растениям для развития корневой системы. В этой ситуации на помощь и приходят клубеньковые бактерии, которые превращают его в нитратную и аммонийную форму.

роль хемосинтезирующих бактерий

Тионовые бактерии

Хемосинтезирующими бактериями являются и тионовые прокариоты. Их источником энергии служат различные соединения серы. Этот вид бактерий восстанавливает их до серной кислоты. Эта реакция сопровождается значительным понижением водородного показателя среды. Тионовые бактерии входят в группу ацидофилов. К ним относятся организмы, способные выживать в условиях повышенной кислотности. Такие условия характерны для болот. Вместе с тиановыми эту группу составляют молочно- и уксуснокислые бактерии, жгутиконосцы и коловратки.

Водородные бактерии

Эти виды прокариотов являются почвенными обитателями. Они окисляют молекулярный водород до воды с выделением энергии. Такие бактерии также входят в группу термофилов. Это значит, что они способны сохранять жизнеспособность при высоких температурах, показатель которых можетдо стигать 50 градусов по шкале Цельсия. Эта способность водородных бактерий обусловлена тем, что они выделяют специальные ферменты, функционирующие даже в таких условиях.

хемосинтезирующие бактерии могут использовать для синтеза органических

Роль хемосинтезирующих бактерий

Хемотрофы играют главную роль в сложных процессах превращения и круговорота соответствующих химических веществ в природе. Поскольку сероводород и аммиак являются достаточно токсичными веществами, существует необходимость в их нейтрализации. Это также осуществляют хемотрофные бактерии. В ходе химических превращений образуются вещества, необходимые другим организмам, что делает возможным их нормальный рост и развитие. Крупные месторождения руд железа и марганца на дне морей и болот возникают благодаря деятельности хемотрофов. А именно - железобактерий.

Человек научился использовать уникальные свойства хемотрофов и в своей деятельности. К примеру, с помощью серобактерий очищают сточные воды от сероводорода, защищают металлические и бетонные трубы от коррозии, а почвы от закисления.

Итак, бактерии хемосинтезирующие являются особыми прокариотами, способными осуществлять соответствующие химические реакции в анаэробных условиях. Эти организмы окисляют вещества. Энергию, которая при этом выделяется, они сначала запасают в связях АТФ, а потом используют для осуществления процессов жизнедеятельности. Основными из них являются железо- , серо- и азотфиксирующие бактерии. Они обитают как в водной, так и в почвенной среде. Хемотрофы являются незаменимым звеном в круговороте веществ, обеспечивают живые организмы необходимыми веществами и широко используются человеком в его хозяйственной и промышленной деятельности.


Фотосинтез происходит в две фазы – световую и темновую. Во время световой фазы накапливается энергия, необходимая для синтеза органических веществ, происходящего в темновой фазе.


Рис. 41. Схема фотосинтеза у растений

Световая фаза. Процесс световой фазы фотосинтеза растений включает в себя нециклическое фосфорилирование и фотолиз воды (рис. 41). Реакции происходят на мембранах хлоропластов.

Фотосистема I. Молекулы хлорофилла аI поглощают свет с длиной волны 700 нм. Электроны, получившие избыток энергии, участвуют в реакции диссоциации воды (Н2О = Н + + ОН - ). Электроны и ионы водорода реагируют с НАДФ + (никотинамидадениндинуклеотидфосфата):

НАДФ + + 2е + 2Н + = НАДФ · Н + Н + .

Полученное в данной реакции вещество НАДФ · Н играет роль восстановителя в реакциях темновой фазы.

Процесс распада воды до Н + и ОН - , протекающий при участии электронов, имеющих избыток энергии за счёт фотореакций, получил название фотолиза воды.

Фотосистема II. Молекулы хлорофилла аII поглощают свет с длиной волны 680 нм. Электроны с избыточной энергией по системе цитохромов переносятся на молекулы хлорофилла аI и занимают пустующие орбитали, которые раньше занимали электроны, связавшиеся с ионами водорода в ходе фотолиза воды. (При прохождении электронов по цепочке цитохромов часть их энергии используется для синтеза АТФ.) В результате возникает нехватка электронов в молекулах хлорофилла аII. Эта нехватка восполняется электронами гидроксид-анионов (ОН - ), которые образовались в ходе того же фотолиза воды. Отдавая электроны молекулам хлорофилла аII, эти ионы превращаются в гидроксид-радикалы:

ОН - – e = ОН.

Гидроксид-радикал – это чрезвычайно неустойчивое химическое соединение, поэтому, только образовавшись, оно самопроизвольно превращается в воду и свободный кислород, выделяемый растением во внешнюю среду:

Таким образом, кислород, которым дышит подавляющее большинство живых организмов на Земле, представляет собой побочный продукт фотосинтеза, образующийся вследствие фотолиза воды.

В реакциях световой фазы фотосинтеза накапливается энергия (НАДФ·Н и АТФ), которая тратится в процессах темновой фазы. Синтез АТФ из АДФ за счёт энергии света – очень эффективный процесс: за одно и то же время в хлоропластах образуется в 30 раз больше АТФ, чем в митохондриях.

Темновая фаза. Если световая фаза может протекать только при освещении растения, то реакции темновой фазы протекают независимо от света. Эти реакции осуществляются в строме хлоропластов, куда из тилакоидов поступают богатые энергией вещества: НАДФ·Н и АТФ. Источник углерода – СО2 – растение получает из воздуха через устьица. В реакциях темновой фазы СО2 восстанавливается до глюкозы, причём этот процесс протекает с затратами энергии, запасённой в молекулах АТФ и НАДФ·Н. Превращение углекислого газа в глюкозу в ходе темновой фазы фотосинтеза получило название цикла Кальвина, по имени его открывателя.

Суммарные уравнения и частные реакции фотосинтеза представлены в таблице 5.

Продуктивность фотосинтеза весьма высока: за один час на 1 м 2 площади листа синтезируется до 1 г Сахаров; при этом часть энергии выделяется в виде тепла.

В результате фотосинтеза растения накапливают органические вещества и обеспечивают постоянство уровня СO2 и O2 в атмосфере. В верхних слоях воздушной оболочки (на высоте 15–20 км) Земли из кислорода образуется озон, имеющий химическую формулу O3. Озоновый слой защищает все живые организмы от опасных для жизни ультрафиолетовых лучей.

Таблица 5. Суммарные уравнения и частные реакции фотосинтеза


По расчётам учёных, точка Пастера была пройдена 600–700 млн лет назад, т. е. к началу кембрийского периода палеозойской эры, а освоение суши началось приблизительно 420 млн лет назад, в конце ордовикского периода той же эры.

Из сказанного видно, что жизнь во всём своём современном многообразии смогла сформироваться только благодаря процессу фотосинтеза, приведшему к образованию кислородной атмосферы и накоплению огромной массы органических соединений, ставших основой питания для гетеротрофных организмов.

Световая и темновая фазы, фотосинтеза. Фотосистема I. Фотосистема II.

§ 25. Автотрофное питание. Хемосинтез

1. Каких видов организмов на Земле больше – хемосинтетиков или фотосинтетиков?

2. К какому царству организмов относятся хемосинтетики?

Хемосинтез – это способ автотрофного питания, при котором источником энергии для синтеза органических веществ служат реакции окисления неорганических соединений. Подобный вариант получения энергии используется только бактериями. Явление хемосинтеза было открыто в 1887 г. русским учёным С. Н. Виноградовым. Выделяют несколько групп хемотрофных организмов. Железобактерии окисляют двухвалентное железо до трёхвалентного, серобактерии – сероводород до молекулярной серы или до солей серной кислоты. Очень важной группой хемосинтетиков являются нитрифицирующие бактерии, окисляющие аммиак, образующийся в процессе гниения органических веществ, до азотистой и азотной кислот, которые, взаимодействуя с почвенными минералами, образуют нитриты и нитраты.

Необходимо отметить, что выделяющаяся в реакциях окисления неорганических соединений энергия не может быть непосредственно использована бактериями в процессах ассимиляции. Сначала эта энергия переводится в энергию макроэргических связей АТФ и только затем тратится на синтез органических соединений.

Хемосинтезирующие организмы (например, серобактерии) могут жить в океанах на огромной глубине, в тех местах, где из разломов земной коры в воду выходит сероводород. Конечно же кванты света не могут проникнуть в воду на глубину около 10 км. Таким образом, хемосинтетики – единственные организмы на Земле, не зависящие от энергии солнечного света.

С другой стороны, аммиак, который используется нитрифицирующими бактериями, выделяется в почву при гниении остатков растений или животных. В этом случае жизнедеятельность хемосинтетиков косвенно зависит от солнечного света, так как аммиак образуется при распаде органических соединений, полученных за счёт энергии Солнца.

Роль хемосинтетиков для всех живых существ очень велика, так как они являются непременным звеном природного круговорота важнейших элементов: серы, азота, железа и др. Хемосинтетики важны также в качестве природных усвоителей таких ядовитых веществ, как аммиак и сероводород. Огромное значение имеют нитрифицирующие бактерии, которые обогащают почву нитритами и нитратами, в форме которых растениями усваивается азот. Некоторые хемосинтетики (в частности, серобактерии) используются для очистки сточных вод.

Хемосинтез. Железобактерии. Серобактерии. Нитрифицирующие бактерии.

1. Какие бактерии-хемосинтетики особенно важны для сельского хозяйства?

2. Где чаще обитают бактерии-хемосинтетики?

Особая группа хемосинтезирующих бактерий способна, питаясь компонентами нефти, выделять сероводород, снижая качество нефти.

Существуют такие виды серобактерий, которые образовали огромное количество сероводорода, растворённого в воде придонных слоёв Чёрного моря. Если количество H2S в Чёрном море будет возрастать, то всё живое в нём погибнет.

Обнаружены группы бактерий, способных питаться за счёт веществ, содержащихся в асфальте, кирпичах, мраморе. Такие бактерии могут приносить ощутимый вред дорогам и постройкам.

§ 26. Генетический код. Транскрипция. Синтез белков в клетке

1. Какие функции выполняют в клетке белки?

2. Из чего состоят белки?

Генетическая информация. Важнейшим процессом ассимиляции в клетке является синтез белков. Так как белки выполняют в организме целый ряд функций, то необходимо синтезировать тысячи различных белков, тем более что большинство белков имеют ограниченный срок функционирования и синтез таких белков (компонентов мембран, гормонов, ферментов) не прекращается ни на минуту. Так, например, за сутки в организме человека распадается около 400 г различных белков, следовательно, такую же массу нужно синтезировать снова.

Каждый вид живых существ имеет свой собственный, строго определённый набор белков. Белки являются основой уникальности каждого вида, хотя некоторые белки, выполняющие одну и ту же функцию в разных организмах, могут быть похожими и даже одинаковыми.

С другой стороны, все особи одного вида хоть немного, но отличаются друг от друга. На Земле нет, например, двух абсолютно одинаковых людей или амёб. Индивидуальную неповторимость каждой особи определяют различия в структуре белков.

Свойства белков определяются прежде всего их первичной структурой, т. е. последовательностью аминокислот в молекуле белка. Наследственная информация о первичной структуре белка заключена в последовательности нуклеотидов в молекулах двуцепочечной ДНК. Следовательно, информация о строении и жизнедеятельности как каждой клетки, так и всего многоклеточного организма в целом заключена в нуклеотидной последовательности ДНК. Эта информация получила название генетической информации, а участок ДНК, в котором содержится информация о первичной структуре одного белка, называется геном.

Генетический код. Каждой аминокислоте белка соответствует последовательность из трёх расположенных друг за другом нуклеотидов ДНК – триплет, или кодон. К настоящему времени составлена карта генетического кода, т. е. известно, какие триплеты в ДНК соответствуют той или иной из 20 аминокислот, входящих в состав белков (табл. 6). Как известно, в состав ДНК могут входить четыре азотистых основания: аденин (А), гуанин (Г), тимин (Т) и цитозин (Ц). Число сочетаний из 4 по 3 составляет 4 3 = 64, т. е. ДНК может кодировать 64 аминокислоты. Однако всего кодируется только 20 аминокислот. Оказалось, что многим аминокислотам соответствует не один, а несколько кодонов. Предполагается, что такое свойство генетического кода – вырожденность – повышает надёжность хранения и передачи генетической информации при делении клеток. Например, аминокислоте аланину соответствуют 4 кодона – ЦГА, ЦГГ, ЦГТ и ЦГЦ. Получается, что случайная ошибка в третьем нуклеотиде кодона не сможет привести к изменениям в структуре белка – всё равно это будет кодон аланина.

Таблица 6. Генетический код


Примечание: первый нуклеотид триплета берут из левого вертикального ряда, второй – из горизонтального ряда, третий – из правого вертикального.

Очень важное свойство генетического кода – специфичность, т. е. один триплет всегда кодирует только одну аминокислоту. Генетический код универсален для всех живых организмов от бактерии до человека.


Рис. 42. Схема процесса транскрипции


Рис. 43. Взаимосвязь между процессами транскрипции и трансляции

У прокариот синтезированные молекулы иРНК сразу же могут взаимодействовать с рибосомами и участвовать в синтезе белков. У эукариот иРНК синтезируется в ядре, поэтому сначала она взаимодействует со специальными ядерными белками и переносится через ядерную мембрану в цитоплазму.

В цитоплазме обязательно должен иметься полный набор аминокислот, необходимых для синтеза белков. Эти аминокислоты образуются в результате расщепления белков, получаемых организмом с пищей, а некоторые могут синтезироваться в самом организме.

Необходимо помнить, что любая аминокислота может попасть в рибосому, только прикрепившись к специальной транспортной РНК (тРНК).


Рис. 44. Схема процесса трансляции

Все описываемые реакции происходят за очень маленькие промежутки времени. Подсчитано, что на синтез крупной молекулы белка уходит всего около двух минут.

Клетке необходима не одна, а много молекул каждого белка. Поэтому как только рибосома, первой начавшая синтез белка на молекуле иРНК, продвигается вперёд, тут же на эту иРНК нанизывается вторая рибосома, которая начинает синтезировать такой же белок. На ту же иРНК может быть нанизана и третья, и четвертая рибосома, и т. д. Все рибосомы, синтезирующие белок на одной молекуле иРНК, называются полисомой. Когда синтез белка окончен, рибосома может связаться с другой молекулой иРНК и начать синтезировать новый белок, закодированный в этой молекуле иРНК. Таким образом, последовательность аминокислот в первичной структуре белка не зависит от рибосом, а определяется только последовательностью нуклеотидов иРНК.

Таким образом, трансляция – это перевод последовательности нуклеотидов молекулы иРНК в последовательность аминокислот молекулы белка.

Генетический код. Кодон. Антикодон. Транскрипция. Промотор. Терминатор. Трансляция. Стоп-кодон. Полисома.

1. Что такое ген?

2. Какой процесс называется транскрипцией?

3. Где и как происходит биосинтез белка?

4. Что такое стоп-кодон?

5. Сколько видов тРНК участвует в синтезе белков в клетке?

6. Из чего состоит полисома?

7. Требуют ли процессы синтеза белка затрат энергии? Или, наоборот, в процессах синтеза белка происходит выделение энергии?

То, что ДНК и РНК содержатся как в клетках животных, так и в клетках растений, выяснилось только к концу 30-х годов XX в. До того полагали, что ДНК содержится только в клетках животных, а РНК – в клетках растений. То, что РНК содержится во всех клетках, причём не столько в ядре, сколько в цитоплазме, было показано только в 40-е годы XX в.

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читайте также: