Фракталы в физике кратко

Обновлено: 04.07.2024

.
Фрактал, это геометрический объект с дробной размерностью. Отсюда и происходит его название. Фрактал, значит, дробный.

Фракталы часто путают с самоподобными (рекурсивными) объектами. Самоподобные рекурсивные объекты, это такие геометрические объекты, которые повторяют сами себя в более мелком масштабе. В сфере искусства название фрактал закрепилось не за объектами с дробной размерностью, а как раз за самоподобными объектами. (Люди от искусства плохо понимают, как может у объекта быть дробная размерность, так как это сложная математическая абстракция.)

На самом деле, фракталы не всегда бывают самоподобными. И точно также самоподобные фигуры не всегда имеют дробную размерность.

Первые фракталы были открыты на самоподобных фигурах во второй половине 19 века. Именно поэтому их часто их путают и самоподобные фигуры ошибочно называют фракталами. А сами самоподобные фигуры рисовали давным-давно еще в античные времена.

Провокационный вопрос. Множество Мандльброта - фрактал? И как у множества Мандельброта (или его границы) обстоят дела с размерностями?
У границы размерность Хаусдорфа - 2.

Нецелую размерность для него интересно найти.

Я вот не знаю хорошего определения фрактала. Мандельброт, вроде, пытался дать определение фрактала через несоответствие размерностей Хаусдорфа и Лебега, но что-то ему не понравилось в таком определении.

Очень кратко: штука свежая, насчет применения. кое-что интересное есть, но, возможно, всё еще впереди. Ф. вылезают во всяких нелинейных динамических системах, дискретных или не очень. При моделировании чего-нибудь. Впрочем, теорию хаоса можно туда же записать.

Если определять их нестрого, то как "приближенно самоподобные". И обклеиться картинками с множеством Мандельброта.


Фрактал (лат. fractus — дробленый) — термин, означающий геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре целиком. В более широком смысле под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, строго большую топологической.


  • Обладает нетривиальной структурой на всех шкалах. В этом отличие от регулярных фигур (таких, как окружность, эллипс, графикгладкой функции): если мы рассмотрим небольшой фрагмент регулярной фигуры в очень крупном масштабе, он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведёт к упрощению структуры, на всех шкалах мы увидим одинаково сложную картину.
  • Является самоподобной или приближённо самоподобной.
  • Обладает дробной метрической размерностью или метрической размерностью, превосходящей топологическую.
  • Может быть построена при помощи рекурсивной процедуры.

Многие объекты в природе обладают фрактальными свойствами, например побережья, облака, кроны деревьев, кровеносная система и система альвеол человека или животных.

Фракталы, особенно на плоскости, популярны благодаря сочетанию красоты с простотой построения при помощи компьютера.

Содержание

История

Примеры

Самоподобные множества с необычными свойствами в математике

Начиная с конца XIX века, в математике появляются примеры самоподобных объектов с патологическими с точки зрения классического анализа свойствами. К ним можно отнести следующие:

    — нигде не плотное несчётное совершенное множество. Модифицировав процедуру, можно также получить нигде не плотное множество положительной длины. и ковёр Серпинского — аналоги множества Кантора на плоскости. — аналог множества Кантора в трёхмерном пространстве;
  • примеры Вейерштрасса и Ван дер Вардена нигде не дифференцируемой непрерывной функции. — несамопересекающаяся непрерывная кривая бесконечной длины, не имеющая касательной ни в одной точке; — непрерывная кривая, проходящая через все точки квадрата.
  • траектория броуновской частицы также с вероятностью 1 нигде не дифференцируема. Её хаусдорфова размерность равна двум.

Рекурсивная процедура получения фрактальных кривых


Существует простая рекурсивная процедура получения фрактальных кривых на плоскости. Зададим произвольную ломаную с конечным числом звеньев, называемую генератором. Далее, заменим в ней каждый отрезок генератором (точнее, ломаной, подобной генератору). В получившейся ломаной вновь заменим каждый отрезок генератором. Продолжая до бесконечности, в пределе получим фрактальную кривую. На рисунке справа приведены три первых шага этой процедуры для кривой Коха.

Примерами таких кривых служат:

    ; ; ; ; .
  • с помощью похожей процедуры получается дерево Пифагора.

Фракталы как неподвижные точки сжимающих отображений

Свойство самоподобия можно математически строго выразить следующим образом. Пусть — сжимающие отображения плоскости. Рассмотрим следующее отображение на множестве всех компактных (замкнутых и ограниченных) подмножеств плоскости: ^n\psi_i(K)" width="" height="" />

Можно показать, что отображение Ψ является сжимающим отображением на множестве компактов с метрикой Хаусдорфа. Следовательно, по теореме Банаха, это отображение имеет единственную неподвижную точку. Эта неподвижная точка и будет нашим фракталом.

\psi_i,\,i=1,\dots,n

Рекурсивная процедура получения фрактальных кривых, описанная выше, является частным случаем данной конструкции. В ней все отображения — отображения подобия, а n — число звеньев генератора.

Для треугольника Серпинского n = 3 и отображения ψ1 , ψ2 , ψ3 — гомотетии с центрами в вершинах правильного треугольника и коэффициентом 1/2. Легко видеть, что треугольник Серпинского переходит в себя при отображении Ψ .

r_1^s+r_2^s+\dots+r_n^s=1

В случае, когда отображения ψi — преобразования подобия с коэффициентами ri > 0 , размерность s фрактала (при некоторых дополнительных технических условиях) может быть вычислена как решение уравнения . Так, для треугольника Серпинского получаем s = ln3 / ln2 .

По той же теореме Банаха, начав с любого компактного множества и применяя к нему итерации отображения Ψ , мы получим последовательность компактов, сходящихся (в смысле метрики Хаусдорфа) к нашему фракталу.

Фракталы в комплексной динамике


Фракталы естественным образом возникают при изучении нелинейных динамических систем. Наиболее изучен случай, когда динамическая система задаётся итерациями многочлена или голоморфной функции комплексной переменной на плоскости. Первые исследования в этой области относятся к началу XX века и связаны с именами Фату и Жюлиа.

Пусть F(z) — многочлен, z0 — комплексное число и рассмотрим следующую последовательность:

 z_0, z_1=F(z_0), z_2=F(z_1), z_3=F(z_2), \dots

.

n\rightarrow\infty

Нас интересует поведение этой последовательности при . Эта последовательность может:

Множества значений z0 , для которых последовательность демонстрирует один конкретный тип поведения, а также множества точек бифуркации между различными типами, часто обладают фрактальными свойствами.

Так, множество Жюлиа на картинке справа — множество точек бифуркации для многочлена F(z) = z 2 + c , то есть тех значений z0 , для которых поведение последовательности zn может резко меняться при сколь угодно малых изменениях z0 .

c\in\mathbb<C></p>
<p>Другой вариант получения фрактальных множеств — введение параметра в многочлен <i>F</i>(<i>z</i>) и рассмотрение множества тех значений параметра, при которых последовательность <i>z</i><sub><i>n</i></sub> демонстрирует определённое поведение при фиксированном <i>z</i><sub>0</sub> . Так, множество Мандельброта — это множество всех
, при которых zn для F(z) = z 2 + c и z0 = 0 не стремится к бесконечности.

Ещё один известный пример такого рода — бассейны Ньютона.

Популярно создание красивых графических образов на основе комплексной динамики путём раскрашивания точек плоскости в зависимости от поведения соответствующих динамических систем. Например, для дополнения множества Мандельброта можно раскрасить точки в зависимости от скорости стремления zn к бесконечности (определяемой, скажем, как наименьший номер n , при котором | zn | превысит фиксированную большую величину A ).

Биоморфы — фракталы, построенные на основе комплексной динамики и напоминающие живые организмы.

Стохастические фракталы


Природные объекты часто имеют фрактальную форму. Для их моделирования могут применяться стохастические (случайные) фракталы. Примеры стохастических фракталов:

  • траектория броуновского движения на плоскости и в пространстве;
  • граница траектории броуновского движения на плоскости. В 2001 году Лоулер, Шрамм и Вернер доказали предположение Мандельборта о том, что её размерность равна 4/3.
  • эволюции Шрамма-Лёвнера — конформно-инвариантные фрактальные кривые, возникающие в критических двумерных моделях статистической механики, например в модели Изинга и перколяции.
  • различные виды рандомизированных фракталов, то есть фракталов, полученных с помощью рекурсивной процедуры, в которую на каждом шаге введён случайный параметр. Плазма — пример использования такого фрактала в компьютерной графике.

Фрактальная монотипия, или стохатипия — направления в изобразительном искусстве, состоящие в получении изображения случайного фрактала.

Елена Владимировна Чернова — ведущий программист Института общей физики им. А. М. Прохорова РАН. Область научных интересов — рост кристаллов, базы данных, обработка изображений.

Хаос — это порядок, который нужно расшифровать.

Новое — это хорошо забытое старое

Позволю себе еще одну цитату из Глейка:

Ретроспективу подобных воззрений можно обратить гораздо дальше в глубь истории. Один из основных принципов магии — неотъемлемой ступени развития любого общества — состоит в постулате: часть подобна целому. Он проявлялся в таких действиях, как захоронение черепа животного вместо всего животного, модели колесницы вместо самой колесницы и т. д. Сохраняя череп предка, родственники считали, что он продолжает жить рядом с ними и принимать участие в их делах.

А наш современник, американский кибернетик Рон Эглэш, исследуя культуру африканских племен и южноамериканских индейцев, сделал открытие: с древних времен некоторые из них использовали фрактальные принципы построения в орнаментах, узорах, наносимых на одежду и предметы быта, в украшениях, ритуальных обрядах и даже в архитектуре. Так, структура деревень некоторых африканских племен представляет собой круг, в котором находятся маленькие круги — дома, внутри которых еще более мелкие круги — дома духов. У иных племен вместо кругов элементами архитектуры служат другие фигуры, но они также повторяются в разных масштабах, подчиненных единой структуре. Причем эти принципы построения не были простым подражанием природе, но согласовывались с бытующим мировоззрением и социальной организацией [3].

Наша цивилизация, казалось бы, ушла далеко от первобытного существования. Однако мы продолжаем жить в том же мире, нас по-прежнему окружает природа, живущая по своим законам, несмотря на все попытки человека приспособить ее к своим нуждам. Да и сам человек (не будем забывать об этом) остается частью этой природы.

Герт Эйленбергер, немецкий физик, занявшийся изучением нелинейности, как-то заметил:

У истоков теории хаоса

Что мы понимаем под хаосом? Невозможность предсказать поведение системы, беспорядочные скачки в разных направлениях, которые никогда не превратятся в упорядоченную последовательность.

Первым исследователем хаоса считается французский математик, физик и философ Анри Пуанкаре. Еще в конце XIX в. при изучении поведения системы с тремя телами, взаимодействующими гравитационно, он заметил, что могут быть непериодические орбиты, которые постоянно и не удаляются от конкретной точки, и не приближаются к ней.

Рис. 1. Аттрактор Лоренца — набор траекторий в фазовом пространстве [5]

В 1972 г. математик из Мэрилендского университета Джеймс Йорк прочитал вышеупомянутую статью Лоренца, которая поразила его. Йорк увидел в статье живую физическую модель и посчитал своей святой обязанностью донести до физиков то, чего они не разглядели в работах Лоренца и Смэйла. Он направил копию статьи Лоренца Смэйлу. Тот изумился, обнаружив, что безвестный метеоролог (Лоренц) десятью годами раньше обнаружил ту неупорядоченность, которую он сам посчитал однажды математически невероятной, и разослал копии всем своим коллегам.

Биолог Роберт Мэй, друг Йорка, занимался изучением изменений численности популяций животных. Мэй шел по стопам Пьера Ферхлюста, который еще в 1845 г. обратил внимание на непредсказуемость изменения численности животных и пришел к выводу, что коэффициент прироста популяции — величина непостоянная. Иными словами, процесс оказывается нелинейным. Мэй пытался уловить, что случается с популяцией в момент приближения колебаний коэффициента роста к некоторой критической точке (точке бифуркации). Варьируя значения этого нелинейного параметра, он обнаружил, что возможны коренные перемены в самой сущности системы: увеличение параметра означало возрастание степени нелинейности, что, в свою очередь, изменяло не только количественные, но и качественные характеристики результата. Подобная операция влияла как на конечное значение численности популяции, находившейся в равновесии, так и на ее способность вообще достигнуть последнего. При определенных условиях периодичность уступала место хаосу, колебаниям, которые никогда не затухали.

К середине 80-х годов ситуация сильно изменилась. Идеи фрактальной геометрии объединили ученых, озадаченных собственными наблюдениями и не знавшими, как их интерпретировать. Для исследователей хаоса математика стала экспериментальной наукой, компьютеры заменили собой лаборатории. Графические изображения приобрели первостепенную важность. Новая наука дала миру особый язык, новые понятия: фазовый портрет, аттрактор, бифуркация, сечение фазового пространства, фрактал.

Бенуа Мандельброт, опираясь на идеи и работы предшественников и современников, показал, что такими сложными процессами, как рост дерева, образование облаков, вариации экономических характеристик или численности популяций животных управляют сходные, по сути, законы природы. Это определенные закономерности, по которым живет хаос. С точки зрения природной самоорганизации они намного проще, чем искусственные формы, привычные цивилизованному человеку. Сложными их можно признать лишь в контексте евклидовой геометрии, поскольку фракталы определяются посредством задания алгоритма, и, следовательно, могут быть описаны с помощью небольшого объема информации.

Фрактальная геометрия природы

Капуста Романеско, родственница хорошо всем знакомой цветной капусты. Фото В. Ц. Бонджоловой

Слово фрактал происходит от латинского fractus — дробленый, сломанный, разбитый на куски. Под фракталом подразумевается математическое множество, обладающее свойством самоподобия, т. е. масштабной инвариантности.

Математическое понятие фрактала выделяет объекты, обладающие структурами различных масштабов, как больших, так и малых, и, таким образом, отражает иерархический принцип организации. Конечно, различные ветви дерева, например, не могут быть точно совмещены друг с другом, но их можно считать подобными в статистическом смысле. Точно так же формы облаков, очертания гор, линия морского берега, рисунок пламени, сосудистая система, овраги, молния, рассматриваемые при различных масштабах, выглядят подобными. Хотя эта идеализация и может оказаться упрощением действительности, она существенно увеличивает глубину математического описания природы.

Рис. 3. Множество Мандельброта для процесса х → х 2 + C . Изображенная фигура показывает соответствие различным значениям параметра C различных типов множеств Жюлиа. Оттенки цвета соответствуют линиям, отражающим динамику критической точки x = 0 [5]

Интересно проследить путь, которым Мандельброт шел к своим открытиям. Бенуа родился в Варшаве в 1924 г., в 1936 семья эмигрировала в Париж. Окончив Политехническую школу, а затем и университет в Париже, Мандельброт переехал в США, где отучился еще и в Калифорнийском технологическом институте. В 1958 г. он устроился в научно-исследовательский центр IBM в Йорктауне. Несмотря на чисто прикладную деятельность компании, занимаемая должность позволяла ему вести исследования в самых разных областях. Работая в области экономики, молодой специалист занялся изучением статистики цен на хлопок за большой период времени (более 100 лет). Анализируя симметрию длительных и кратковременных колебаний цен, он заметил, что эти колебания в течение дня казались случайными и непредсказуемыми, однако последовательность таких изменений не зависела от масштаба. Для решения этой задачи он впервые использовал свои разработки будущей фрактальной теории и графическое отображение исследуемых процессов.

Для описания подобных явлений Мандельброту пришло в голову отталкиваться от идеи размерности. Фрактальная размерность объекта служит количественной характеристикой одной из его особенностей, а именно — заполнения им пространства.

Лес, нарисованный на оконном стекле художником-морозом (дендриты кристаллов льда)

Итак, с математической точки зрения, фракталом называется множество, для которого размерность Хаусдорфа — Безиковича строго больше его топологической размерности и может быть (а чаще всего и является) дробной.

Необходимо особо подчеркнуть, что фрактальная размерность объекта не описывает его форму, и объекты, имеющие одинаковую размерность, но порожденные различными механизмами образования, зачастую совершенно не похожи друг на друга. Физические фракталы обладают скорее статистическим самоподобием.

Дробное измерение позволяет вычислять характеристики, которые не могут быть четко определены иным путем: степени неровности, прерывистости, шероховатости или неустойчивости какого-либо объекта. Например, извилистая береговая линия, несмотря на неизмеримость ее длины, обладает присущей только ей шероховатостью. Мандельброт указал пути расчета дробных измерений объектов окружающей действительности. Создавая свою геометрию, он выдвинул закон о неупорядоченных формах, которые встречаются в природе. Закон гласил: степень нестабильности постоянна при различных масштабах.

Хаотические явления, такие как турбулентность атмосферы, подвижность земной коры и т. д., демонстрируют сходное поведение в различных временных масштабах подобно тому, как объекты, обладающие инвариантностью к масштабу, обнаруживают сходные структурные закономерности в различных пространственных масштабах.

Микрофотографии различных веществ, сделанные с помощью электронного микроскопа: фторид иттрия (а), алюмоиттриевый гранат (б), окись магния (в), фторид бария (г). Фото С. В. Лаврищева

Поскольку фракталы выражаются не в первичных геометрических формах, а в алгоритмах, наборах математических процедур, понятно, что такая область математики стала развиваться семимильными шагами вместе с появлением и развитием мощных компьютеров. Хаос, в свою очередь, вызвал к жизни новые компьютерные технологии, специальную графическую технику, которая способна воспроизводить удивительные структуры невероятной сложности, порождаемые теми или иными видами беспорядка. В век Интернета и персональных компьютеров то, что представляло значительную сложность во времена Мандельброта, стало легко доступным любому желающему. Но самым важным в его теории стало, разумеется, не создание красивых картинок, а вывод, что данный математический аппарат пригоден для описания сложных природных явлений и процессов, которые раньше не рассматривались в науке вообще. Репертуар алгоритмических элементов неисчерпаем.

В заключение позвольте представить вашему вниманию набор фотографий, иллюстрирующих этот вывод, и фракталов, построенных с помощью компьютерной программы Fractal Explorer. А проблеме использования фракталов в физике кристаллов будет посвящена наша следующая статья.

Фотографии природных объектов, демонстрирующих фрактальное строение, и фракталы, построенные с помощью компьютерной программы Fractal Explorer: вид на Землю с самолета (а, участки земли, расчерченные на многоугольники, береговая линия протоков и рукавов рек, так же, как и облака, демонстрируют статистическое самоподобие); переплетение древесных ветвей (б); завихрения водного потока (в); морозные узоры на стекле (г); колонии водорослей и моллюсков (д); типичные дендриты, часто встречающиеся в природе, здесь — гриб Hericium coralloides (е). Фото автора

Post Scriptum

* Диффеоморфизмы Аносова — введенный Д. В. Аносовым класс отображений с хаотической динамикой, устойчивой относительно малых возмущений.

Природа всегда поражала исследователей своей красотой и необычайностью своих изобретений. Фракталы - одно из чудес природы, о котором слышали немногие.

Снежинка Коха.
Начертим прямую линию (рис а). В середине этой линии построим равносторонний треугольник (рис б). Данная фигура будет нашим "генератором" или образцом.

Далее к (рис б). применим наш генератор, т.е. тот же рисунок, получим (рис в). К (рис в) опять применяем генератор и так далее до бесконечности. В итоге мы получаем фигуру, обладающую свойством самоподобия (объект, в точности или приближённо совпадающий с частью себя самого, то есть целое имеет ту же форму, что и одна или более частей).

Приближая отдельный участок, мы все равно получаем исходную фигуру и так продолжается до бесконечности. Такая фигура и будет называться Фракталом .
Фракталы - это не только математические или абстрактные фигуры, природа наделила свойствами фракталов множество реальных объектов. Многие объекты в природе обладают свойствами фрактала, например: побережья, облака, кроны деревьев, снежинки, система кровообращения, альвеолы.
Деревья в окне, так же ничто иное как фрактал, посмотрите на строение его ствола.

Это, конечно рисунок, но в идеале дерево бы получилось такое, если бы существовали идеальные условия вокруг. Ствол идя от корня, поднимается вверх, раздваиваться, образовывая наш "генератор", далее этот "генератор" применяется ко все более мелким и мелким участкам. Взяв любую отдельную часть дерева с рисунка, мы можем получить объект, в точности или приближённо совпадающий с частью себя самого.

Примеры из реального мира:

В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и тому подобное. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов). После создания кривой Коха было предложено использовать её при вычислении протяжённости береговой линии.
В Америке в одно время существовал запрет на установку внешних антенн на здания. Инженером Натан Коэн нашел выход из этого положения, сделав антенну в виде Кривой Коха. Он вырезал из алюминиевой фольги фигуру в форме кривой Коха и наклеил её на лист бумаги, затем присоединил к приёмнику. Он кстати основал свою компанию и наладил производство таких антенн.
Фракталы широко применяются в компьютерной графике для построения изображений природных объектов, таких как деревья, кусты, горные ландшафты, поверхности морей и так далее. Добиваясь очень правдоподобной реалистичностью и небольших объемов данных.

Говоря о фракталах, я просто обязан упомянуть о Множестве Мандельброта.

Множество Мандельброта является одним из самых известных фракталов, в том числе за пределами математики, благодаря своим цветным визуализациям. Его фрагменты не строго подобны исходному множеству, но при многократном увеличении определённые части всё больше похожи друг на друга.

Фракталы - необычное явление природы, имеющее огромный потенциал. И как всегда все сложное таиться в простых деталях.

Надеюсь было полезно и интересно.

Читайте также: