Физические свойства органических веществ кратко

Обновлено: 04.07.2024

ОРГАНИЧЕСКАЯ ХИМИЯ

Основные понятия органической химии

Органическая химия – это область химии, изучающая соединения углерода. Углерод выделяется среди всех элементов тем, что его атомы могут связываться друг с другом в длинные цепи или циклы. Именно это свойство позволяет углероду образовывать миллионы соединений, изучением которых занимается органическая химия.

Теория химического строения А. М. Бутлерова.

Современная теория строения молекул объясняет и огромное число органических соединений, и зависимость свойств этих соединений от их химического строения. Она же полностью подтверждает основные принципы теории химического строения, разработанные выдающимся русским ученым А. М. Бутлеровым.

Основные положения этой теории (иногда ее называют структурной):

1) атомы в молекулах соединены между собой в определенном порядке химическими связями согласно их валентности;

2) свойства вещества определяются не только качественным составом, но и строением, и взаимным влиянием атомов.

3) по свойствам вещества можно определить его строение, а по строению – свойства.

Важным следствием теории строения был вывод о том, что каждое органическое соединение должно иметь одну химическую формулу, отражающую ее строение. Такой вывод теоретически обосновывал хорошо известное уже тогда явление изомерии,— существование веществ с одинаковым молекулярным составом, но обладающих различными свойствами.

Изомеры – вещества, одинаковые по составу, но разные по строению

Структурные формулы. Существование изомеров потребовало использования не только простых молекулярных формул, но и структурных формул, отражающих порядок связи атомов в молекуле каждого изомера. В структурных формулах ковалентная связь обозначается черточкой. Каждая черточка означает общую электронную пару, связывающую атомы в молекуле.

Структурная формула — условное изображение строения вещества с учетом химических связей.

Классификация органических соединений.

Для классификации органических соединений по типам и построения их названий в молекуле органического соединения принято выделять углеродный скелет и функциональные группы.

Углеродный скелет представляет собой последовательность химически связанных между собой атомов углерода.

Типы углеродных скелетов. Углеродные скелеты разделяют на ациклические (не содержащие циклов), циклические и гетероциклические.

В гетероциклическом скелете в углеродный цикл включается одни или несколько атомов, отличных от углерода. В самих углеродных скелетах нужно классифицировать отдельные атомы углерода по числу химически связанных с ними атомов углерода. Если данный атом углерода связан с одним атомом углерода, то его называют первичным, с двумя — вторичным, тремя — третичным и четырьмя — четвертичным.

Поскольку атомы углерода могут образовывать между собой не только одинарные, но и кратные (двойные и тройные) связи, то соединения, содержащие только одинарные связи С––С , называют насыщенными, соединения с кратными связями называют ненасыщенными.

Углеводороды – соединения, в которых атомы углерода связаны только с атомами водорода.

Углеводороды признаны в органической химии родоначальными. Разнообразные соединения рассматриваются как производные углеводородов, полученные введением в них функциональных групп.

Функциональные группы. В большинстве органических соединений, кроме атомов углерода и водорода, содержатся атомы других элементов (не входящие в скелет). Эти атомы или их группировки, во многом определяющие химические и физические свойства органических соединений, называют функциональными группами.

Функциональная группа оказывается окончательным признаком, по которому соединения относятся к тому или иному классу.

Важнейшие функциональные группы

Гомологический ряд. Для описания органических соединений полезным является понятие гомологического ряда. Гомологический ряд образуют соединения, отличающиеся друг от друга на группу —СН2— и обладающие сходными химическими свойствами. Группы СН2 называются гомологической разностью.

Примером гомологического ряда может служить ряд предельных углеводородов (алканов). Простейший его представитель — метан СН4. Гомологами метана являются: этан С2Н6, пропан С3Н8, бутан С4Н10, пентан С5Н12, гексан С6Н14, гептан С7Н16 и т. д. Формула любого последующего гомолога может быть получена прибавлением к формуле предыдущего углеводорода гомологической разности.

Состав молекул всех членов гомологического ряда может быть выражен одной общей формулой. Для рассмотренного гомологического ряда предельных углеводородов такой формулой будет СnН2n+2, где n — число атомов углерода.

Номенклатура органических соединений. В настоящее время признана систематическая номенклатура ИЮПАК (IUРАС — Международный союз теоретической и прикладной химии).

По правилам ИЮПАК название органического соединения строится из названия главной цепи, образующего корень слова, и названий функций, используемых в качестве приставок или суффиксов.

Для правильного построения названия необходимо провести выбор главной цепи и нумерацию атомов углерода в ней.

Нумерацию атомов углерода в главной цепи начинают с того конца цепи, ближе к которому расположена старшая группа. Если таких возможностей оказывается несколько, то нумерацию проводят таким образом, чтобы либо кратная связь, либо другой заместитель, имеющийся в молекуле, получили наименьший номер.

В карбоциклических соединениях нумерацию начинают от того атома углерода, при котором находится старшая характеристическая группа. Если при этом невозможно выбрать однозначную нумерацию, то цикл нумеруют так, чтобы заместители имели наименьшие номера.

В группе циклических углеводородов особо выделяются ароматические углеводороды, для которых характерно наличие в молекуле бензольного кольца. Некоторые широко известные представители ароматических углеводородов и их производных имеют тривиальные названия, использование которых разрешено правилами ИЮПАК: бензол, толуол, фенол, бензойная кислота.

Радикал С6Н5—, образованный из бензола, называется фенил, а не бензил. Бензилом называют радикал С6Н5СН2—, образованный из толуола.

Составление названия органического соединения. Основу названия соединения составляет корень слова, обозначающий предельный углеводород с тем же числом атомов, что и главная цепь (мет-, эт-, проп-, бут-, пент: гекс- и т. д.). Затем следует суффикс, характеризующий степень насыщенности, -ан, если в молекуле нет кратных связей, -ен при наличии двойных связей и -ин для тройных связей, (например пентан, пентен, пентин). Если кратных связей в молекуле несколько, то в суффиксе указывается число таких связей: -диен, -триен, а после суффикса обязательно арабскими цифрами указывается положение кратной связи (например, бутен-1, бутен-2, бутадиен-1,3):

Далее в суффикс выносится название самой старшей характеристической группы в молекуле с указанием ее положения цифрой. Прочие заместители обозначаются с помощью приставок. При этом они перечисляются не в порядке старшинства, а по алфавиту. Положение заместителя указывается цифрой перед приставкой, например: 3-метил; 2-хлор и т. п. Если в молекуле имеется несколько одинаковых заместителей, то перед названием соответствующей группы словом указывается их количество (например, диметил-, трихлор- и т. д.). Все цифры в названиях молекул отделяются от слов дефисом, а друг от друга запятыми. Углеводородные радикалы имеют свои названия.

Предельные углеводородные радикалы:

Непредельные углеводородные радикалы:

Ароматические углеводородные радикалы:

В качестве примера назовем следующее соединение:

1) Выбор цепи однозначен, следовательно, корень слова — пент; далее следует суффикс −ен, указывающий на наличие кратной связи;

2) порядок нумерации обеспечивает старшей группе (—ОН) наименьший номер;

3) полное название соединения заканчивается суффиксом, обозначающим старшую группу (в данном случае суффикс -ол указывает на наличие гидроксильной группы); положение двойной связи и гидроксильной группы указывается цифрами.

Следовательно, приведенное соединение называется пентен-4-ол-2.

Тривиальная номенклатура представляет собой совокупность несистематических исторически сложившихся названий органических соединений (пример: ацетон, уксусная кислота, формальдегид и т. д.).

Выше было показано, что способность атомов углерода к образованию четырех ковалентных связей, в том числе и с другими атомами углерода, открывает возможность существования нескольких соединений одного элементного состава — изомеров. Все изомеры делят на два больших класса — структурные изомеры и пространственные изомеры.

Структурными называют изомеры с разным порядком соединения атомов.

Пространственные изомеры имеют одинаковые заместители у каждого атома углерода и отличаются лишь их взаимным расположением в пространстве.

Структурные изомеры. В соответствии с приведенной выше классификацией органических соединений по типам среди структурных изомеров выделяют три группы:

1 ) соединения, отличающиеся углеродными скелетами:

2) соединения, отличающиеся положением заместителя или кратной связи в молекуле:

3) соединения, содержащие различные функциональные группы и относящиеся к различным классам органических соединений:

Пространственные изомеры (стереоизомеры). Стереоизомеры можно разделить на два типа: геометрические изомеры и оптические изомеры.

Геометрическая изомерия характерна для соединений, содержащих двойную связь или цикл. В таких молекулах часто возможно провести условную плоскость таким образом, что заместители у различных атомов углерода могут оказаться по одну сторону (цис-) или по разные стороны (транс-) от этой плоскости. Если изменение ориентации этих заместителей относительно плоскости возможно только за счет разрыва одной из химических связей, то говорят о наличии геометрических изомеров. Геометрические изомеры отличаются своими физическими и химическими свойствами.

Взаимное влияние атомов в молекуле.

Все составляющие молекулу атомы находятся во взаимосвязи и испытывают взаимное влияние. Это влияние передается в основном через систему ковалентных связей с помощью так называемых электронных эффектов.

Электронными эффектами называют смещение электронной плотности в молекуле под влиянием заместителей.

Атомы, связанные полярной связью, несут частичные заряды, обозначаемые греческой буквой “дельта” (δ ). Атом, “оттягивающий” электронную плотность δ -связи в свою сторону, приобретает отрицательный заряд δ − . При рассмотрении пары атомов, связанных ковалентной связью, более электроотрицательный атом называют электроноакцептором. Его партнер по δ -связи соответственно будет иметь равный по величине дефицит электронной плотности, т. е. частичный положительный заряд δ +, и будет называтьсяэлектронодонором.

Смещение электронной плотности по цепи σ -связей называется индуктивным эффектом и обозначается I.

Индуктивный эффект передается по цепи с затуханием. Направление смещения электронной плотности всех σ -связей обозначается прямыми стрелками.

В зависимости от того, удаляется ли электронная плотность от рассматриваемого атома углерода или приближается к нему, индуктивный эффект называют отрицательным (-I) илиположительным (+I). Знак и величина индуктивного эффекта определяются различиями в электроотрицательности между рассматриваемым атомом углерода и группой, его вызывающей.

Электроноакцепторные заместители, т.е. атом или группа атомов, смещающие электронную плотность σ -связи от атома углерода, проявляют отрицательный индуктивный эффект (−I-эффект).

Электронодонорные заместители, т. е. атом или группа атомов, смещающие электронную плотность к атому углерода, проявляют положительный индуктивный эффект(+I-эффект).

+I-эффект проявляют алифатические углеводородные радикалы, т. е. алкильные радикалы (метил, этил и т. д.).

Большинство функциональных групп проявляют -I-эффект: галогены, аминогруппа, гидроксильная, карбонильная, карбоксильная группы.

Индуктивный эффект проявляется и в случае, когда связанные атомы углерода различны по состоянию гибридизации. Так, в молекуле пропена метильная группа проявляет +I-эффект, поскольку атом углерода в ней находится в sp3-гибридном состоянии, а sp2-гибридизованный атом (при двойной связи) выступает в роли электроноакцептора, так как имеет более высокую электроотрицательность :

При передаче индуктивного эффекта метильной группы на двойную связь в первую очередь ее влияние испытывает подвижная π -связь.

Влияние заместителя на распределение электронной плотности, передаваемое по π -связям, называют мезомерным эффектом (М). Мезомерный эффект также может быть отрицательным и положительным. В структурных формулах его изображают изогнутой стрелкой, начинающейся у центра электронной плотности и завершающейся в том месте, куда смещается электронная плотность.

Наличие электронных эффектов ведет к перераспределению электронной плотности в молекуле и появлению частичных зарядов на отдельных атомах. Это определяет реакционную способность молекулы.

Классификация органических реакций

− Классификация по типу разрыва химических связей в реагирующих частицах. Из их числа можно выделить две большие группы реакций — радикальные и ионные.

Радикальные реакции — это процессы, идущие с гомолитическим разрывом ковалентной связи. При гомолитическом разрыве пара электронов, образующая связь, делится таким образом, что каждая из образующихся частиц получает по одному электрону. В результате гомолитического разрыва образуются свободные радикалы:

Нейтральный атом или частица с неспаренным электроном называется свободным радикалом.

Ионные реакции — это процессы, идущие с гетеролитическим разрывом ковалентных связей, когда оба электрона связи остаются с одной из ранее связанных частиц:

В результате гетеролитического разрыва связи получаются заряженные частицы: нуклеофильная и электрофильная.

Нуклеофильная частица (нуклеофил) — это частица, имеющая пару электронов на внешнем электронном уровне. За счет пары электронов нуклеофил способен образовывать новую ковалентную связь.

Электрофильная частица (электрофил) — это частица, имеющая незаполненный внешний электронный уровень. Электрофил представляет незаполненные, вакантные орбитали для образования ковалентной связи за счет электронов той частицы, с которой он взаимодействует .

−Классификация по составу и строению исходных веществ и продуктов реакции. В органической химии все структурные изменения рассматриваются относительно атома (или атомов) углерода, участвующего в реакции. Наиболее часто встречаются следующие типы превращений:

присоединение

отщепление (элиминирование)

полимеризация

В соответствии с вышеизложенным хлорирование метана под действием света классифицируют как радикальное замещение, присоединение галогенов к алкенам — как электрофильное присоединение, а гидролиз алкилгалогенидов — как нуклеофильное замещение.

В ЕГЭ встречаются вопросы по физическим свойствам органических веществ. Для вас собрала материал, практически, по всем изучаемым классам органических вещетв.

ВложениеРазмер
fizicheskie_svoystva_klassov_organicheskih_veshchestv.doc 47 КБ

Предварительный просмотр:

Физические свойства алканов

Алканы – это вещества, которые не имеют цвета и нерастворимы в воде.

СН 4 -С 4 Н 10 представляют собой газы, у которых отсутствует также и запах. С 5 Н 12 -С 15 Н 32 – это жидкости, которые обладают специфическим запахом. С 15 Н 32 и так далее – это твердые вещества, которые также не имеют запаха.-

Физические свойства циклоалканов

При обычных условиях первые два члена ряда (С 3 - С 4 ) - газы, (С 5 - С 16 ) - жидкости, начиная с С 17 - твердыевещества.

Циклоалканы имеют более высокие температуры плавления, кипения и большую плотность, чем соответствующие алканы. При одинаковом составе температура кипения циклопарафина тем выше, чем больше размер цикла. Циклоалканы в воде практически не растворимы, однако растворимы в органических растворителях

Физические свойства алкенов

По физическим свойствам этиленовые углеводороды близки к алканам. При нормальных условиях углеводороды C 2 –C 4 – газы, C 5 –C 17 – жидкости, высшие представители – твердые вещества. Температура их плавления и кипен я, а также плотность увеличиваются с ростом молекулярной массы. Все олефины легче воды, плохо растворимы в ней, однако растворимы в органических растворителях.

Физические свойства алкинов.

В нормальных условиях:

С 5 –С 16 – жидкости;

С 17 и более – твердые вещества.

Температуры кипения алкинов выше, чем у соответствующих алканов.

Растворимость в воде незначительна, немного выше, чем у алканов и алкенов , но все равно очень мала. Растворимость в неполярных органических растворителях высокая.

Физические свойства ароматических

Бензол и его ближайшие гомологи – бесцветные жидкости со специфическим запахом. Ароматические углеводороды легче воды и в ней не растворяются, однако легко растворяются в органических растворителях – спирте, эфире, ацетоне.

Бензол и его гомологи сами являются хорошими растворителями для многих органических веществ. Все арены горят коптящим пламенем ввиду высокого содержания углерода в их молекулах.

Бензол – легкокипящая (t кип = 80,1°С), бесцветная жидкость, не растворяется в воде

Внимание! Бензол – яд, действует на почки, изменяет формулу крови (при длительном воздействии), может нарушать структуру хромосом.

Большинство ароматических углеводородов опасны для жизни, токсичны.

Физические свойства Фенолов

Большинство одноатомных фенолов при нормальных условиях представляют собой бесцветные кристаллические вещества с невысокой температурой плавления и характерным запахом. Фенолы малорастворимы в воде, хорошо растворяются в органических растворителях, токсичны, при хранении на воздухе постепенно темнеют в результате окисления.

Фенол C 6 H 5 OH ( карболовая кислота ) — бесцветное кристаллическое вещество на воздухе окисляется и становится розовым, при обычной температуре ограниченно растворим в воде, выше 66 °C смешивается с водой в любых соотношениях.

Фенол — токсичное вещество, вызывает ожоги кожи, является антисептиком.

Фенол ядовит . Вызывает нарушение функций нервной системы. Пыль, пары и раствор фенола раздражают слизистые оболочки глаз, дыхательных путей, кожу. Попадая в организм, Фенол очень быстро всасывается даже через неповрежденные участки кожи и уже через несколько минут начинает воздействовать на ткани головного мозга.

Физические свойства одноатомных спиртов

Спирты, содержащие до 15 атомов углерода – жидкости, 15 и более – твердые вещества. Растворимость в воде зависит от молекулярной массы, чем она выше, тем спирт хуже растворяется воде. Так, низшие спирты (до пропанола) смешиваются с водой в любых пропорциях, а высшие практически не растворимы в ней. Температура кипения также возрастает с увеличением атомной массы, например, t кип. СН 3 ОН= 65 °С, а t кип. С 2 Н 5 ОН =78 °С. Чем выше температура кипения, тем ниже летучесть, т.е. вещество плохо испаряется.

Физические свойства многоатомных спиртов:

1) важнейшие представители многоатомных спиртов – это этиленгликоль и глицерин ;

2) это бесцветные сиропообразные жидкости сладковатого вкуса;

3) они хорошо растворимы в воде;

4) эти свойства присущи и другим многоатомным спиртам, например этиленгликоль ядовит.

Физические свойства альдегидов

Первый член гомологического ряда предельных альдегидов НСНО - бесцветный газ, несколько последующих альдегидов - жидкости. Высшие альдегиды - твердые вещества.

Муравьиный и уксусный альдегиды хорошо растворяются в воде, последующие - хуже. Низшие альдегиды имеют резкий, неприятный запах, некоторые высшие - приятный запах.

Физические свойства альдегидов

Метаналь (формальдегид ) – газ , альдегиды С 2 -C 5 и кетоны С 3 -С 4 – жидкости , высшие – твердые вещества. Низшие гомологи растворимы в воде, благодаря образованию водородных связей между атомами водорода молекул воды и карбонильными атомами кислорода. С увеличением углеводородного радикала растворимость в воде падает.

Альдегиды обладают удушливым запахом.

Формальдегид – газ, с резким запахом, раздражает слизистые ткани и оказывает действие на центральную нервную систему. ОПАСЕН ДЛЯ ЗДОРОВЬЯ! Водный раствор формальдегида – формалин.

Ацетальдегид – жидкость , с запахом зелёной листвы. ОЧЕНЬ ТОКСИЧЕН! Подавляет дыхательные процессы в клетках.

Физические свойства карбоновых кислот.

1. Если число атомов углерода в цепи не превышает пяти, то это резко пахнущие, подвижные и летучие жидкости.

2.Выше пяти - тяжелые маслянистые вещества, еще больше - твердые, парафинообразные. Температура плавления: зависит от четности количества атомов углерода в цепи. У четных она выше, у нечетных ниже. В воде растворяются очень хорошо. Способны образовывать прочные водородные связи.

Физические свойства аминокислот

Аминокислоты – бесцветные кристаллические вещества, хорошо растворимые в воде. Многие из них обладают сладким вкусом.

Физические свойства Белков.

Белки – твердые вещества. Они бывают как растворимы, так и нерастворимы в воде. Белки очень часто образуют коллоидные растворы.

Белки в твердом состоянии белого цвета, а в растворе бесцветны

Физические свойства аминов

Связь N–H является полярной, поэтому первичные и вторичные амины образуют межмолекулярные водородные связи (несколько более слабые, чем Н-связи с участием группы О–Н).

При обычной температуре только низшие жирные амины CH 3 NH 2 , (CH 3 ) 2 NH, (CH 3 ) 3 N – газы (с запахом аммиака), средние амины – жидкости с резким запахом гниющей рыбы, высшие – твердые вещества без запаха.

Амины способны к образованию водородных связей с водой

Поэтому низшие амины хорошо растворимы в воде. С увеличением числа и размеров углеводородных радикалов растворимость аминов в воде уменьшается, т.к. увеличиваются пространственные препятствия образованию водородных связей. Ароматические амины – бесцветные жидкости и твердые вещества с неприятным запахом, в воде практически не растворяются.

По теме: методические разработки, презентации и конспекты


генетическая взаимосвязь между классами органических веществ.

Работа содержит 9 генетических цепочек из вариантов ЕГЭ, задание уровня "С" (С3). Рекомендуется в профильном классе.


Урок биологии в 10 классе: "Органические вещества-нуклеиновые кислоты"

Целью урока: овладеть знаниями о строении нуклеотидов, как они могут соединяться, об основных особенностях строения ДНК и РНК, о биологической роли ДНК и РНК. Развитие логического мыш.

Урок биологии в 10 классе: "Органические вещества-нуклеиновые кислоты"

Цель урока: овладеть знаниями о строении нуклеотидов, как они могут соединяться, об основных особенностях строения ДНК и РНК, о биологической роли ДНК и РНК. Развитие логического мышления ч.


Перемены, происходящие в современном обществе, требуют ускоренного совершенствования образовательного пространства, определения целей образования, учитывающих государственные, социальные.


Изучение генетических связей между классами органических веществ

Изучению генетических связей в курсе органической химии уделяется большое значение. Подобранный материал помогает добиться хороших результатов при выполнении заданий по данной теме и непосредств.


Конспект урока "Классы органических веществ"

Конспект предназначен для обобщения знаний по темам: алканы, алкены, алкины, алкадиены.


Конспект урока по теме "Зависимость строения, свойств, применения органических веществ"

Мероприятие включает самостоятельную творческую работу учащихся, игро­вые ситуации. Направлено на обобщение и систематизацию знаний о кислородосодержащих органичес­к.

Почти все органические соединения являются ковалентными. Поэтому они существуют в форме молекул. Эти молекулы могут быть очень простыми, сложными и даже полимерными. Физические свойства органических соединений в большой мере зависят от величины, формы и строения их молекул. Кроме того, большое влияние на них оказывает поляризация ковалентных связей. Обычно это наблюдается в тех случаях, когда в молекуле содержится какой-либо атом, более электроотрицательный, чем углерод, например атом хлора или кислорода. В таких случаях происходит поляризация связи между этим атомом и атомом углерода:

Пара зарядов, образующихся на концах поляризованной связи, представляет собой диполь.

Температуры плавления и кипения. При обычных условиях органические соединения чаще всего представляют собой газы, жидкости или твердые вещества со сравнительно невысокой температурой плавления. Дело в том, что органические молекулы удерживаются вместе лишь слабыми межмолекулярными силами Ван-дер-Ваальса. В отличие от этого в кристаллах неорганических солей действуют значительно большие ионные силы, и поэтому такие неорганические вещества имеют очень высокие температуры плавления (см. гл. 2).

И температура плавления, и температура кипения органических соединений каждого гомологического ряда тем выше, чем больше число атомов углерода в членах этого ряда. В дальнейшем мы убедимся в этом на примере алканов. Как правило, изомеры с разветвленной цепью обладают большей летучестью (т. е. имеют более низкую температуру кипения), чем соответствующие им изомеры с неразветвленной цепью.

Спирты и карбоновые кислоты, т. е. соединения, содержащие группу —ОН, имеют аномально высокие температуры кипения. Это обусловлено наличием в подобных соединениях межмолекулярной водородной связи (см. гл. 2). И наоборот, наличие внутримолекулярной водородной связи в некоторых органических жидкостях может

обусловливать их низкую температуру кипения. Классическим примером является низкая температура кипения 2-нитрофенола (см. разд. 2.2).

Растворимость. Неполярные органические соединения, такие, как углеводороды, обычно нерастворимы в воде и не смешиваются с ней. Однако они хорошо растворяются в неполярных растворителях, например в трихлорометане (хлороформе) или в метилбензоле (толуоле).

Более полярные органические соединения, например спирты и карбоновые кислоты, как правило, лучше растворяются в полярных растворителях, в частности в воде. Это объясняется образованием водородных связей между молекулами растворяемого вещества и растворителя. Однако растворимость быстро уменьшается по мере возрастания числа атомов углерода в органическом соединении.

Плотность и вязкость. По мере возрастания числа атомов углерода, и, следовательно, относительной молекулярной массы, у соединений одного гомологического ряда увеличиваются также плотность и вязкость. Эта закономерность подобна изменению температур плавления и кипения органических соединений в каждом гомологическом ряду. Изомеры с разветвленной цепью обычно характеризуются более низкими плотностью и вязкостью, чем изомеры с неразветвленной цепью.

Читайте также: