Физические свойства газов кратко

Обновлено: 05.07.2024

Многие свойства газообразных веществ объясняются кинети­ческой теорией газов, основные положения которой впервые были высказаны М. В. Ломоносовым (рис).

Молекулы газообразного ве­щества отдалены одна от другой на большие расстояния, в результате чего силы, действующие между ними, очень малы. Разме­ры молекул ничтожны по срав­нению с расстоянием между ни­ми. Вследствие этого газы спо­собны легко сжиматься, значи­тельно уменьшая при этом, свой объем.

Если взять кислород при нормальных условиях и подвергать сжатию, то объем его можно уменьшить в 200 и более раз.

Молекулы газов находятся в непрерывном движении и дви­жутся по прямым линиям во всевозможных направлениях. Явление диффузии, т. е. проникновение молекул одного газа в молекулы другого при их непосредственном соприкосновении, а также свойство газов занимать возможно больший объем на­ходят объяснение в движении молекул газов. Если тот или иной газ заключен в какой-нибудь сосуд, то молекулы его, по­стоянно ударяясь при движении о стенки сосуда, создают то, что мы называем давлением газа.

При нагревании газа скорость движения молекул увеличивается, сила ударов их о стенки сосуда становится больше, и давление газа возрастает.

Беспорядочное движение молекул можно выразить суммой трех движений в направлении осей х, у и z декартовых координат.

Для понимания основных уравнений кинетической теории газов мысленно выделим кубик газа со стороной а. Пусть скорость молекулы этого газа равна υ, а ее масса т. При расстоянии между противоположными стенками воображаемого кубика, равном а, и пути, проходимому молекулой в 1 с, ω число ударов этой молекулы о стенку будет равно раз в 1 сек. Если считать молекулу абсолютно упругим телом, то следует полагать, что она отскочит от стенки со скоростью, равной по величине и противоположной по направлению первоначальной скорости. Вследствие этого, стенка при каждом ударе приобретает импульс 2 mω, а приударах . Будем считать, что в воображаемом кубике заключено п молекул. Вдоль каждого ребра кубика будет двигаться 1/3п молекул. Вследствие этого импульс, получаемый каждой стенкой за 1 сек, будет численно равен силе, действующей на всю поверхность стенки, равную a 2 , т. е. *= f.

Давление, т. е. сила, действующая на единицу поверхности стенки, будет равно

В связи с тем, что а 3 представляет собой объем кубика или объем газа V, после преобразования получим основное уравнение кинетической теории газов

Так как п молекул массой т имеет общую массу М и находится в объеме V, то из предыдущего уравнения можно написать:

pV =или Р =

Отношение M/V есть плотность газа, поэтому при заданном давлении и постоянной температуре скорости молекул обратно пропорциональны корням квадратным из плотностей газов, т.е.

Один из основных выводов кинетической теории формулируется следующим образом: молекулы всех газов при одной и той же температуре обладают одинаковой средней кинетической энергией.

Следовательно, с изменением массы молекулы газа скорость ее изменяется так, что произведение массы на квадрат скорости остается постоянным. Тогда давление газа при данной температуре зависит только от числа молекул в единице объема газа, но не зави­сит от массы молекул, т.е. от природы газа. Отсюда, средние скорости обратно пропорциональны корням квадратным из молекулярных масс, т.е.

Кинетическая теория газов позволяет, используя приведенные выше уравнения, вычислить средние скорости движения молекул. Она же лежит в основе объяснений физических свойств газов и законов газового состояния.

Большинство законов газового состояния справедливы для так называемых идеальных газов, т. е. газы, молекулярные силы которых равны нулю, а объем самих молекул бесконечно мал по сравнению с объемом межмолекулярного пространства.

Многие реальные газы близки к идеальным, и поэтому законы газового состояния достаточно объективно отражают их свойства и поведение при изменении внешних условий.

Для идеальных газов справедлив ряд соотношений между их давлением, объемом и температурой, выражаемых законами газового состояния.

Закон Бойля-Мариотта

Английский ученый Роберт Бойль (1627—1691) в 1662 г. и независимо от него французский физик Эдм Мариотт (1620-1684) в 1676 г. установили, что при постоянной температуре объем данной массы газа обратно пропорционален давлению.




Если обозначить объемы, занимаемые газом, через Vо и V, а соответствующие давления через Ро и Р, то в соответствии с основным уравнением (1.8) кинетической теории газов можно написать

Так как молекулы всех газов при одной и той же температуре обладают одинаковой средней кинетической энергией, то закон Бойля - Мариотта можно записать следующим образом:

т.е. при постоянной температуре произведение давления газа на его объем есть величина постоянная.

Плотность газа есть отношение его массы к занимаемому объему:

Так как удельные объемы газа υ равны обратной величине плотностей ρ то можно записать:

Если выразить концентрацию газа как весовое его количество в единице объема, то при постоянной температуре давление газа прямо пропорционально его концентрации.

Закон Гей-Люссака

Известный французский химик – Жозеф Луи Гей-Люссак (1778—1850) в 1802 г. установил зависимость между температурой газа и его давлением или объемом.

Из основного уравнения кинетической теории газов (1.8) можно записать:

При постоянном объеме газа первое уравнение примет вид:

а при постоянном давлении второе уравнение можно записать:

Так как средняя кинетическая энергия газов является функцией абсолютной температуры, то приведенные выше соотношения могут быть выражены через температуру:

Таким образом, согласно закону Гей-Люссака, при постоянном объеме давления газов относятся как абсолютные температуры, или при постоянном давлении объемы газов относятся как абсолютные температуры.

Многочисленные опыты показывают, что идеальные газы при нагревании их на 1° при постоянном давлении увеличивают свой объем на постоянную величину, равную первоначального их объема. Эту величину называют термическим коэффициентом расширения газа и обозначают греческой буквой β =.

Закон Гей-Люссака может быть сформулирован следующим образом: объем данной массы газа при постоянном давлении есть линейная функция температуры

Так как, согласно закону Бойля-Мариотта, PV =const, то при нагревании идеального газа на 1 0 при постоянном объеме давление его увеличивается на постоянную величину, равную первоначального давления. Эту величину называли термическим коэффициентом повышения давления газа. Отсюда, согласно закону Гей-Люссака, давление данной массы газа при постоянном объеме есть линейная функция температуры, т.е.

Согласно закону Гей-Люссака и основному уравнению кинетической теории газов (1.8) в случае постоянного объема можно записать:

.(1.10)

Таким образом, отношение абсолютных температур газов пропорционально отношению квадратов скоростей их молекул.

Закон Грейама (Грэма)

В 1829 г. известный английский химик Томас Гренам (1805-1869), изучая диффузию газов, установил, что скорость диффузии газа обратно пропорциональна корню квадратному из его плотности.

Распространяя этот закон на истечение газа из малых отверстий, закон Грейама гласит, что при одинаковых давлениях и температурах скорости истечения разных газов ω из малых отверстий обратно пропорциональны корням квадратным из их плотности ρ, т. е.

На этом законе, в частности, основано определение плотности газов в эффузиометре, по времени истечения одинаковых объемов исследуемого газа и воздуха.

Естественно, что время истечения газов τ через отверстие эффузиометра обратно пропорционально скоростям истечения этих газов ω или прямо пропорционально корням квадратным из их плотности ρ

Кроме указанного, из закона Грейама можно сделать ряд и других выводов. В частности, масса газа, вытекающего из отверстия сечением S, в единицу времени будет равна

Работа, затрачиваемая на истечение газа через малые отверстия, будет выражаться

где Р1 - давление газа в емкости; Р2 - давление газа в пространстве, куда поступает газ по истечении через малое отверстие.

Учитывая, что работа, затраченная на истечение газа через малые отверстия, равна потере живых сил, т. е. , подставив в выражение (1.12) значения т из уравнении (1.11) и произведя соответствующие преобразования, получим

Многие свойства газообразных веществ объясняются кинети­ческой теорией газов, основные положения которой впервые были высказаны М. В. Ломоносовым (рис).

Молекулы газообразного ве­щества отдалены одна от другой на большие расстояния, в результате чего силы, действующие между ними, очень малы. Разме­ры молекул ничтожны по срав­нению с расстоянием между ни­ми. Вследствие этого газы спо­собны легко сжиматься, значи­тельно уменьшая при этом, свой объем.

Если взять кислород при нормальных условиях и подвергать сжатию, то объем его можно уменьшить в 200 и более раз.

Молекулы газов находятся в непрерывном движении и дви­жутся по прямым линиям во всевозможных направлениях. Явление диффузии, т. е. проникновение молекул одного газа в молекулы другого при их непосредственном соприкосновении, а также свойство газов занимать возможно больший объем на­ходят объяснение в движении молекул газов. Если тот или иной газ заключен в какой-нибудь сосуд, то молекулы его, по­стоянно ударяясь при движении о стенки сосуда, создают то, что мы называем давлением газа.

При нагревании газа скорость движения молекул увеличивается, сила ударов их о стенки сосуда становится больше, и давление газа возрастает.

Беспорядочное движение молекул можно выразить суммой трех движений в направлении осей х, у и z декартовых координат.

Для понимания основных уравнений кинетической теории газов мысленно выделим кубик газа со стороной а. Пусть скорость молекулы этого газа равна υ, а ее масса т. При расстоянии между противоположными стенками воображаемого кубика, равном а, и пути, проходимому молекулой в 1 с, ω число ударов этой молекулы о стенку будет равно раз в 1 сек. Если считать молекулу абсолютно упругим телом, то следует полагать, что она отскочит от стенки со скоростью, равной по величине и противоположной по направлению первоначальной скорости. Вследствие этого, стенка при каждом ударе приобретает импульс 2 mω, а приударах . Будем считать, что в воображаемом кубике заключено п молекул. Вдоль каждого ребра кубика будет двигаться 1/3п молекул. Вследствие этого импульс, получаемый каждой стенкой за 1 сек, будет численно равен силе, действующей на всю поверхность стенки, равную a 2 , т. е. *= f.

Давление, т. е. сила, действующая на единицу поверхности стенки, будет равно

В связи с тем, что а 3 представляет собой объем кубика или объем газа V, после преобразования получим основное уравнение кинетической теории газов

Так как п молекул массой т имеет общую массу М и находится в объеме V, то из предыдущего уравнения можно написать:

pV =или Р =

Отношение M/V есть плотность газа, поэтому при заданном давлении и постоянной температуре скорости молекул обратно пропорциональны корням квадратным из плотностей газов, т.е.

Один из основных выводов кинетической теории формулируется следующим образом: молекулы всех газов при одной и той же температуре обладают одинаковой средней кинетической энергией.

Следовательно, с изменением массы молекулы газа скорость ее изменяется так, что произведение массы на квадрат скорости остается постоянным. Тогда давление газа при данной температуре зависит только от числа молекул в единице объема газа, но не зави­сит от массы молекул, т.е. от природы газа. Отсюда, средние скорости обратно пропорциональны корням квадратным из молекулярных масс, т.е.

Кинетическая теория газов позволяет, используя приведенные выше уравнения, вычислить средние скорости движения молекул. Она же лежит в основе объяснений физических свойств газов и законов газового состояния.

Большинство законов газового состояния справедливы для так называемых идеальных газов, т. е. газы, молекулярные силы которых равны нулю, а объем самих молекул бесконечно мал по сравнению с объемом межмолекулярного пространства.

Многие реальные газы близки к идеальным, и поэтому законы газового состояния достаточно объективно отражают их свойства и поведение при изменении внешних условий.

Для идеальных газов справедлив ряд соотношений между их давлением, объемом и температурой, выражаемых законами газового состояния.

Закон Бойля-Мариотта

Английский ученый Роберт Бойль (1627—1691) в 1662 г. и независимо от него французский физик Эдм Мариотт (1620-1684) в 1676 г. установили, что при постоянной температуре объем данной массы газа обратно пропорционален давлению.

Если обозначить объемы, занимаемые газом, через Vо и V, а соответствующие давления через Ро и Р, то в соответствии с основным уравнением (1.8) кинетической теории газов можно написать

Так как молекулы всех газов при одной и той же температуре обладают одинаковой средней кинетической энергией, то закон Бойля - Мариотта можно записать следующим образом:

т.е. при постоянной температуре произведение давления газа на его объем есть величина постоянная.

Плотность газа есть отношение его массы к занимаемому объему:

Так как удельные объемы газа υ равны обратной величине плотностей ρ то можно записать:

Если выразить концентрацию газа как весовое его количество в единице объема, то при постоянной температуре давление газа прямо пропорционально его концентрации.

Закон Гей-Люссака

Известный французский химик – Жозеф Луи Гей-Люссак (1778—1850) в 1802 г. установил зависимость между температурой газа и его давлением или объемом.

Из основного уравнения кинетической теории газов (1.8) можно записать:

При постоянном объеме газа первое уравнение примет вид:

а при постоянном давлении второе уравнение можно записать:

Так как средняя кинетическая энергия газов является функцией абсолютной температуры, то приведенные выше соотношения могут быть выражены через температуру:

Таким образом, согласно закону Гей-Люссака, при постоянном объеме давления газов относятся как абсолютные температуры, или при постоянном давлении объемы газов относятся как абсолютные температуры.

Многочисленные опыты показывают, что идеальные газы при нагревании их на 1° при постоянном давлении увеличивают свой объем на постоянную величину, равную первоначального их объема. Эту величину называют термическим коэффициентом расширения газа и обозначают греческой буквой β =.

Закон Гей-Люссака может быть сформулирован следующим образом: объем данной массы газа при постоянном давлении есть линейная функция температуры

Так как, согласно закону Бойля-Мариотта, PV =const, то при нагревании идеального газа на 1 0 при постоянном объеме давление его увеличивается на постоянную величину, равную первоначального давления. Эту величину называли термическим коэффициентом повышения давления газа. Отсюда, согласно закону Гей-Люссака, давление данной массы газа при постоянном объеме есть линейная функция температуры, т.е.

Согласно закону Гей-Люссака и основному уравнению кинетической теории газов (1.8) в случае постоянного объема можно записать:

.(1.10)

Таким образом, отношение абсолютных температур газов пропорционально отношению квадратов скоростей их молекул.

Закон Грейама (Грэма)

В 1829 г. известный английский химик Томас Гренам (1805-1869), изучая диффузию газов, установил, что скорость диффузии газа обратно пропорциональна корню квадратному из его плотности.

Распространяя этот закон на истечение газа из малых отверстий, закон Грейама гласит, что при одинаковых давлениях и температурах скорости истечения разных газов ω из малых отверстий обратно пропорциональны корням квадратным из их плотности ρ, т. е.

На этом законе, в частности, основано определение плотности газов в эффузиометре, по времени истечения одинаковых объемов исследуемого газа и воздуха.

Естественно, что время истечения газов τ через отверстие эффузиометра обратно пропорционально скоростям истечения этих газов ω или прямо пропорционально корням квадратным из их плотности ρ

Кроме указанного, из закона Грейама можно сделать ряд и других выводов. В частности, масса газа, вытекающего из отверстия сечением S, в единицу времени будет равна

Работа, затрачиваемая на истечение газа через малые отверстия, будет выражаться

где Р1 - давление газа в емкости; Р2 - давление газа в пространстве, куда поступает газ по истечении через малое отверстие.

Учитывая, что работа, затраченная на истечение газа через малые отверстия, равна потере живых сил, т. е. , подставив в выражение (1.12) значения т из уравнении (1.11) и произведя соответствующие преобразования, получим

Природные газы представляют собой физическую смесь отдельных компонентов, химически не действующих друг на друга. Поэтому при обработке этих газов к ним применимы основные законы физики и термодинамики с известными отклонениями, о которых будет сказано ниже.

Свойства природных газов предопределяются их составом, следовательно, если знать, какие компоненты входят в состав газа, можно определить его физические свойства.

Известны различные методы анализов газа для определения тех или иных компонентов его. С02, H2S, 02, СО определяются поглощением различными растворами (щелочь, щелочный раствор пирогаллола и др.), а углеводородные компоненты определяются сожжением. Однако, этот способ может дать только общее, суммарное количество углеводородов, что часто является недостаточным при решении вопроса о направлении использования газа.

В таких случаях следует произвести разделение отдельных углеводородов и определить их количество в смеси. Разгонку углеводородных газов на отдельные компоненты достаточно точно можно произвести на приборах В. А. Соколова и В. Подбельняка.

В последнее время в США предложен новый метод количественного определения углеводородных газов в смеси — спектроскопический, обеспечивающий надежные результаты и в значительно более короткое время, чем на фракционирующих аппаратах.

При решении практических вопросов использования газа и, в частности, вопроса об отбензинивании его, требуется определить количество тяжелых газо-бензиновых углеводородов в нем. В этом случае пользуются данными полного анализа газа или производят специальное определение содержания тяжелых фракций в газе одним из трех методов: компрессией и охлаждением испытуемого газа, поглощением жидкими поглотителями, такими, как керосин, соляровое масло и др., или поглощением активированным углем. Последний следует считать более надежным и применимым как для сухих, так и для жирных газов.

Физическое состояние газа определяется тремя величинами: объёмом, давлением и температурой. В зависимости от давления и температуры изменяется и объём газа. Чтобы иметь правильное представление о количестве газа, необходимо приводить его объём к стандартным условиям, т. е. к стандартной температуре и давлению. В США во всех термодинамических расчетах за стандартные условия приняты: температура 32° F (0° С) и давление 14,695 фунт/дм 2 (760 мм рт. ст.) в газовой же промышленности стандартными условиями приняты: температура 60° F (15,56° С) и давление 14,65 фунт/дм 2 (757,5 мм).

В СССР стандартными условиями считаются темпеоатура 0° С и давление 760 мм рт. ст.; в газовой промышленности принимают температуру 20° С и давление 760 мм рт. ст.

Основными физическими свойствами углеводородных газов являются:

1) молекулярный вес;

2) удельный вес в газообразном состоянии;

3) удельный вес в жидком состоянии;

4) теплоёмкость;

5) упругость паров;

6) температуры кипения и плавления;

7) критические температура и давление;

8) скрытая теплота испарения;

9) количество паров из единицы объёма жидкости.

Эти параметры характеризуют особенность и свойства каждого газа и жидкости. Знание их чрезвычайно важно при решении всякого рода задач, связанных с добычей, транспортом, переработкой и использованием газа.

Молекулярный вес какого-либо вещества представляет сумму весов атомов, входящих в молекулу. Например, молекулярный вес метана (СН4) равен (1 xl2)-f(4х 1,01) = 16,04.

хМолекулярный вес, выраженный в килограммах, называется килограмм-молекулой, или молем. Объём моля для всех газов при температуре 0° С и атмосферном давлении одинаков и равен 22,412 м 3 .

Молекулярные веса пропорциональны удельным весам того же вещества. Состав газовых смесей выражают в весовых и в объёмных процентах. Состав жидких смесей выражают в весовых, объёмных и в молекулярных процентах. Для газов объёмные и молекулярные проценты одинаковы. Если объёмные (молекулярные)проценты требуется перевести в весовые, то молекулярный процент каждого компонента умножают на молекулярный вес этого компонента, и получают вес его. Затем суммируют вес всех компонентов и определяют проценты каждого компонента в смеси. Наоборот, если требуется весовые проценты перевести в объёмные? нужно каждый весовой процент компонента разделить на его молекулярный вес, суммировать полученные моли компонентов и определить молекулярный или объёмный пррцент каждого.

Удельный вес газа. Вес 1 м ъ газа при 0° С и атмосфер-* ном давлении называется удельным весом газа (измеряется в кг/м 3 ). Относительный удельный вес газа есть отношение веса единицы объёма газа к весу такой же единицы объёма воздуха при одинаковых условиях температуры и давления.

Чем жирнее газ, тем больше его удельный вес.

Однако на основании одного удельного веса можно сделать самое общее предположение о жирности газа, имея в виду, что присутствие в газе углекислоты, азота и пр. может явиться причиной ошибочного вывода. В таких случаях следует проверить газ на содержание в нем газобензина одним из ранее упомянутых методов.

Удельный вес естественных газов по воздуху колеблется в пределах от 0,58 до 1,6, причем нижний предел относится к газам, главным образом состоящим из метана, верхний — характерен для жирных нефтяных газов. Определить численное значение удельного веса газа возможно двумя методами:

а) непосредственным измерением или

б) вычислением на основе известного состава газа.

Для непосредственного измерения существует несколько различных способов и приборов, причем наиболее точным считается способ взвешивания. По этому способу определение удельного веса газа ведут следующим образом. Берут баллон или колбу, откачивают из нее воздух масляным или ртутным насосом и взвешивают на аналитических весах. Затем взвешивают ту же колбу поочередно с воздухом и газом. Вычитая из веса баллона с газом или воздухом вес пустого баллона, узнают веса чистого газа и воздуха. Делением веса газа на вес воздуха находят удельный вес газа по отношению к воздуху.

Имеются более простые, но вместе с тем и менее точные способы определения удельного веса газа, основанные на методе истечения. В лабораторной практике пользуются распространением прибор Шилинга и прибор Бюро стандартов. На этих приборах определенный объём газа и воздуха пропускается через узкое отверстие в диафрагме и замечается время истечения этого объёма. Удельный вес газа находится из соотношения

где d—удельный вес газа;

7\ — время истечения газа;

Т2 — время истечения такого же объёма воздуха.

Если известен состав газа по отдельным компонентам, то легко вычислить удельный вес газа, зная удельные веса компонентов. Допустим, мы имеем газ следующего состава в объёмных процентах:

Требуется определить удельный вес этого газа. Это легко сделать путем умножения удельного веса каждого компонента на содержание его в газе и сложения полученных произведений, т. е.

Метан . . 0,5538.0,90 =0,4984

Этан. 1 0381. 0,02 =0,2076

Пропан. I 5222. 0,015=0,0228

Бутан . 2 0065.0,012=0,0250

Пентан и более тяжелые . . . 2,5100.0,008=0,0200

Углекислота . I 5194. О 015=0,0226

Азот . 0,9672 . 0,03 =0,0290

Таким образом, удельный вес газа по отношению к воздуху будет

Теплоёмкость или удельная теплота измеряется количеством тепла, потребным для нагревания единицы веса или объёма этого вещества на ГС. Для газов она бывает весовой, измеряемой в ккал/кг и объёмной — ккал/м 3 .

При нагревании газа возможны два случая:

1. Газ находится в свободно расширяющемся сосуде.

По мере нагревания газа объём его расширяется (давление в сосуде остается постоянным), а поглощаемая им теплота расходуется на повышение температуры и на производство внешней работы. Теплоёмкость газа при этом Ср.

2. Газ находится в сосуде постоянного объёма. По мере нагревания температура и давление газа возрастают. Так как объём остается постоянным, то газ никакой работы не совершает, и тепло тратится только на повышение температуры. Теплоёмкость газа в этом случае будет Cv.

Легко понять, что Ср больше Cv на величину внешней работыг которую обозначим через R. Если тепловой эквивалент работы обозначить через А, то можно написать следующее равенство:

Ср — Су = AR

В технике очень важным является отношение теплоёмкостей Ср к Cv.

Теплоёмкости Ср и Cv зависят от температуры: с возрастанием ее теплоёмкость также возрастает. Теплоёмкость Cv возрастает быстрее, чем Ср, и поэтому отношение их с возрастанием температуры убывает.

Объёмная теплоёмкость определяется по весовой из соотношения:

Для смеси газов теплоёмкость определяется по процентному составу газа и теплоёмкости компонентов, входящих в данную смесь.

Т еплопроизводительность, или теплотворная способность определяется тем количеством тепла, которое выделяется при сжигании единицы веса или единицы объёма вещества и измеряется в калориях.

Для газа теплопроизводительность измеряется в ккал/кг и в ккал/м 3 „ Эта величина весьма существенна при оценке газа как топлива. Следует отличать низшую теплопроизводительность от высшей; низшая меньше высшей на то количество тепла, которое идет на парообразование воды, заключающейся в продуктах горения.

На практике приходится иметь дело с низшей теплотворной способностью. Теплопроизводительность естественных газов изменяется от 7500 до 12 ООО ккал/м 3 . Сухие газы имеют меньшую калорийность на ж 3 , чем жирные газы, но более высокую на кг.

Для смеси газов теплотворную способность можно вычислить, исходя из состава газа и теплотворной способности его компонентов.

Упругость паров углеводородов измеряется в мм рт. столба или в кг/см 2 . Этот параметр имеет большое значение при извлечении газо-бензиновых фракций, а также при хранении и транспорте газобен-зина и жидких газов. Упругость паров отдельных углеводородов в зависимости от температуры приведена на диаграмме (фиг. 1).


Природный газ в сырьевой и энергетической базе любой страны, в том числе и России, занимает особое место. Этот вид топлива отличается низкими издержками добычи, хранения и транспортировки и при этом высокими потребительскими качествами. Каковы физические свойства природного газа и сфера его применения — об этом читайте далее в статье.

Немного истории

Обогревать и освещать свои жилища с использованием природного газа человек начал еще в древности. Первыми применять для этой цели голубое топливо научились китайцы. Еще в IV тыс. до н. э. на территории Поднебесной люди отапливали дома с использованием такого огня.

Добыча газа в России

Что собой представляет

Формула природного газа выглядит следующим образом: СН4. Представляет собой этот вид топлива, по сути, обычное полезное ископаемое. Добывают природный газ в земле там, где миллионы лет назад плескался доисторический океан. Тысячи и тысячи погибших обитателей водной стихии падали на дно и постепенно превращались в ил. Разлагаться должным образом они при этом не могли из-за недостатка кислорода и отсутствия бактерий.

Из-за подвижек земной коры такие отложения постепенно погружались все глубже и глубже, подвергаясь воздействию высоких температур и давления. В результате в таких массах начинали происходить реакции, при которых углерод органики соединялся с водородом. При не очень высоких температурах при этом образовывалась нефть. При повышении же этого параметра органика превращалась в природный газ, физические свойства которого ныне позволяют использовать его в самых разных сферах человеческой жизни.

Как добывают

Залегает этот вид топлива в природе, таким образом, обычно на очень большой глубине в земле. В большинстве случаев природный газ, как и нефть, добывают методом бурения скважин. Также это полезное ископаемое может подниматься на поверхность со дна морей и океанов со специальных платформ. Иногда для добычи голубого топлива используют и метод гидроразрыва. В этом случае в земле сначала бурят скважину. Затем в нее накачивают большое количество воды или воздуха. В результате перегородки, имеющиеся в горных породах, разрушаются и метан начинает поступать на поверхность.

Добыча из скважин

Сфера использования природного газа

Газовая промышленность во многих странах является одним из основных источников дохода государства. Именно таким образом дело обстоит в том числе и в России. Природного газа в нашей стране добывается много. Очень широка и сфера использования голубого топлива у нас в стране. Большая часть природного газа в РФ идет, конечно же, на отопление жилищ. На настоящий момент у нас в стране метан потребляют в коммунальной сфере более чем в 2 тыс. городов и 3,5 тыс. поселков.

Удельная теплота сгорания природного газа достаточно высока. Поэтому его в нашей стране широко используют, не только для отопления, но и для термической обработки пищевых продуктов.

Также голубое топливо является востребованным:

в металлургической и цементной промышленности;

в легкой и пищевой.

Помимо этого, такое полезное ископаемое широко используется в химической промышленности в качестве сырья. Работать на газу сегодня может не только разного рода отопительное и нагревательное оборудование, но и, к примеру, автомобили. Для двигателей легковых и грузовых машин такое топливо используется в сжиженном виде. При этом стоит газ дешевле бензина и солярки и к тому же отличается меньшей пожароопасностью.

Автомобиль на газу

Состав природного газа

Компонентами голубого топлива является сразу несколько веществ. Химический состав природного газа и свойства этого вещества, конечно же, напрямую взаимосвязаны. Образуется этот вид топлива из органики. Поэтому больше всего такой газ содержит углеводородов. Основным же компонентом голубого топлива является метан. Его в состав такого газа входит порядка 98%. Также компонентами этого полезного ископаемого являются:

В небольших количествах природный газ содержит также неуглеводородные вещества:

Добыча со дна моря

Какие виды существуют

В быту и промышленности используется в основном именно образовавшееся на месте океанов миллионы лет назад в толще земли топливо. Формула у природного газа, широко эксплуатируемого человеком, как мы выяснили — СН4. Такой вид топлива может быть обычным или сжиженным.

Также различают следующие виды природного газа:

угольный и коксовый.

Некоторые из этих веществ могут также применяться человеком, к примеру, в промышленности. Однако эксплуатируются эти разновидности все же гораздо реже, чем метановый природный газ.

Основные физические свойства

Отличительной особенностью природного газа, помимо всего прочего, является то, что он не имеет цвета и запаха. Также этот вид топлива не относится к группе токсичных или ядовитых веществ. Однако природный газ при этом все же является веществом пожаро- и взрывоопасным. Перед использованием, к примеру, для обогрева домов в него в обязательном порядке добавляют особые летучие вещества, придающие ему запах. Такая мера позволяет быстро выявлять утечки и принимать соответствующие меры.

Месторождения газа

Основные физические свойства природный газ имеет следующие:

плотность — 0.72 кг/м 3 ;

температура, развиваемая при сгорании — 1600-2000 °С;

температура воспламенения — 645 °С;

теплотворная способность — 8500 Ккал при сгорании 1 м 3 .

Плотность у метана ниже, чем у воздуха. Поэтому при утечке он поднимается вверх и через некоторое время рассеивается. Удельная теплота сгорания природного газа равна 50 Мдж/кг.

Какими еще характеристиками отличается

Метан, как уже упоминалось, является веществом взрывоопасным. Именно поэтому при использовании природного газа положено соблюдать определенные меры по недопущению его возгорания. В любом случае оборудование, предназначенное для транспортировки, закачки и эксплуатации голубого топлива должны быть максимально надежным и иметь большой запас прочности.

Газовые магистрали

Известно, что взрывоопасным является не собственно сам природный газ, а его смеси с воздухом. При концентрации этого летучего вещества менее 5% и более 15% в помещении может возникнуть пожар. Однако опасности взрыва в данном случае не существует. Такое развитие событий возможно только при концентрации метана в диапазоне именно от 5 до 15%.

При сжигании природного газа образуются такие, к примеру, вещества, как СО2, толуол, бензол, диоксид азота и пр. При неполном сгорании этого вида топлива, помимо всего прочего, помещение может заполнить и опасный для жизни человека угарный газ.

Интересной особенностью метана, помимо всего прочего, является и то, что он способен достаточно легко и быстро переходить в жидкое состояние. Для этого газу нужно просто создать особые условия. Переходит это вещество в жидкое состояние при атмосферном давлении в 720 мм Hg. ст. и температуре -162 °С.

Помимо всего прочего, имеет и такие природный газ физические свойства:

плотность в жидком состоянии — 400 кг/м 3 .

давление взрывной волны — 8,5 кг/см 2 ;

скорость взрывной волны — 1,5-3,5 км/с.

Как уже упоминалось, природный газ в сжиженном состоянии, помимо всего прочего, может использоваться и в качестве автомобильного топлива. В данном случае он закачивается в баллоны, которые затем включаются в топливную систему машины. Октановым числом этот вид автомобильного топлива характеризуется в 120-130.

Каким образом может транспортироваться

Перемещают добытый из недр природный газ к разного рода потребителям, как и нефть, обычно по проложенным под землей магистралям. По трубам голубое топливо перекачивается при этом под давлением в 75 атм. Диаметр магистрали для газа обычно имеют в 1,42 м.

По всей протяженности трубопровода, предназначенного для транспортировки голубого топлива, на некотором расстоянии друг от друга оборудуются компрессорные станции. Дело в том, что, проходя по магистралям, природный газ постепенно теряет потенциальную энергию. На компрессорных станциях поэтому топливо подвергается дожиму для создания необходимого давления.

По воде транспортироваться природный газ может и в специальных танкерах. В таких судах газ перевозят в сжиженном состоянии. Иногда этот вид топлива может транспортироваться и в железнодорожных цистернах.

Каким образом производится подготовка к транспортировке и использованию

Добытый в недрах природный газ обычно содержит, помимо всего прочего, влагу. Это, в свою очередь, может вызвать серьезные затруднения при эксплуатации голубого топлива. При определенных условиях влага в природном газе начинает конденсироваться. А это, в свою очередь, может привести к коррозии стенок трубопровода. В морозы же влага в магистралях легко образует ледяные пробки, что конечно же, является недопустимым.

Чтобы избежать возникновения подобных проблем, природный газ после добычи обычно подвергается осушке. Для этого на предприятии снижают температуру точки росы на 5-7 °С ниже рабочей в магистрали.

Также перед подачей потребителю природный газ может очищаться от сероводорода и углекислого газа. Первого в голубом топливе, согласно нормативам, должно содержаться не более 2 г на 100 м 3 . При этом очистка природного газа от углекислого производится обычно с целью снижения концентрации последнего до 2%.

Одоризация

Запаха природный газ, как мы выяснили не имеет. Однако утечки его могут быть на самом деле очень опасными. Накапливаясь в ограниченном стенами помещении, природный газ способен вызывать у человека удушье. Происходит это из-за недостатка кислорода. Температура сгорания у природного газа выше, чем у того же бензина. Однако, как мы выяснили, голубое топливо является ко всему прочему еще и веществом взрывоопасным.

Использование газа

Для выявления утечек природный газ подвергается одоризации. Для того чтобы топливо приобрело легко уловимый запах, в него в большинстве случаев добавляют этил-меркаптан. По степени токсичности этот газ идентичен сероводороду и имеет такой же резкий и неприятный запах.

Газообразные вещества – вещества со слабыми связями между частицами. Главные свойства газов – это подвижность и хаотичное движение частиц, направление которых меняется при столкновении. Газ – одно из 4 агрегатных состояний веществ, которые на сегодняшний день известны науке.

Четыре агрегатных состояния вещества

Четыре агрегатных состояния вещества

Краткая история открытия газов

На июль 2017 года открыто 826 газов, а в будущем, возможно, к газообразному агрегатному состоянию припишут еще 90 веществ. Многие открытые газы не природные, они получены в лабораторных условиях.

Свойства газообразных веществ

Выделяется целый ряд физических и химических свойств газов. Основные физические свойства:

  1. Газы способны занимать все отведенное им пространство, независимо от объема вещества. Это отличает их от жидкостей и твердых тел: и первые, и вторые занимают ограниченный объем. Простой пример данного свойства: если во время готовки закрыть кухню, запах останется только на ней. Если открыть дверь, он распространится по всей квартире. И в том, и в другом случае объем газа одинаковый.
  2. Газообразные вещества легко соединяются между собой. В полученных смесях нет четких границ: молекулы хаотично перемешиваются.
  3. Связи между частицами вещества очень слабые. Пространство между частицами в разы больше, чем размер самих частиц. Именно поэтому газы способны заполнять произвольные объемы.
  4. Объем газов может многократно сжиматься. Например, кислород можно сжать до 200 раз по сравнению с первоначальным объемом.
  5. Газы способны к диффузии, то есть к проникновению в другие вещества и перемешиванию. Это касается не только других газов, упомянутых выше. Например, частицы кислорода проникают в воду.
  6. Газы отличаются по тяжести молекул. В связи с этим, несмотря на диффузию, два газа с заметными различиями в массе постепенно разделятся.
  7. Газообразные вещества могут появляться путем межфазного перехода, то есть из других агрегатных состояний. Первый вариант межфазного перехода – испарение при нагреве жидкого вещества, второй – сублимация, при которой твердое вещество, минуя стадию жидкости, сразу становится газом.
  8. Газы не проводят электрический ток. Исключение составляют ионизированные вещества.
  9. У газов низкая теплопроводность и теплоемкость. Конкретные показатели зависят от типа молекул.
  10. Если газ находится под высоким давлением, он способен повредить стенки сосуда, если те недостаточно прочны. Объясняется это просто: чем больше давление, тем сильнее отталкиваются друг от друга частицы вещества. Потенциальная энергия газа увеличивается и вызывает взрывное расширение.

Если же газ подвергнуть высоким температурам, сначала он станет разреженным. Увеличится скорость теплового движения частиц. При достижении определенного температурного показателя произойдет тепловая ионизация, вещество перейдет в следующее агрегатное состояние – плазму.
Некоторые газы не имеют цвета, другие же заметны человеческому глазу. Например, I2, йод. Это вещество получают путем сублимации кристаллов йода, и его клубы имеют ярко выраженный фиолетовый оттенок. Но большинство соединений все же бесцветные, прозрачные и легкие, поэтому долгое время их не могли открыть и изучить.

Классификация газов

Благородные газы

Вещества в газообразном состоянии принято делить на несколько категорий. Классификацию часто просят отразить в конспектах во время школьных занятий. Рассмотрим самые распространенные ее типы.

Органические и не органические

Органическими газами являются те вещества, которые содержат углерод. Примеры:

  • этилен (С2Н4);
  • метиламин (CH3NH2);
  • ацетилен (C2H2).

Также к этой категории относятся метан, пропан, этан. Логично, что к неорганическим соединениям относятся те, в которых C отсутствует. Это аммиак, хлор и фтор, силан, гелий, неон, аргон и так далее. Инертные и благородные газы – не органические.

Простые и сложные

Органические и не органические газы, в свою очередь, делятся на простые и сложные. Перечисленные выше органические соединения – сложные. В них содержатся разные атомы: ацетилен (C2H2) – 2 атома углерода и 2 атома водорода, этилен (С2Н4) – 2 атома углерода и 4 водорода. Если же газ получается из одного или нескольких атомов одного и того же элемента таблицы Менделеева, его называют простым.
Простые газы: кислород O2, азот O3, водород H2, хлор Cl2. Перечислять можно и дальше.

Газообразные вещества в химии

Газы в химии начинают изучать в 8 классе. Рассмотрим основные свойства, которые принято включать в учебники по предмету.
Атомы или молекулы газов соединяются между собой ковалентными связями. Они очень слабые и часто рвутся, именно поэтому вещества в газообразном агрегатном состоянии способны заполнять произвольные объемы и емкости разных форм. Бывают два вида строения решеток у газов:

На уроках химии газообразные вещества часто получают в лабораторных условиях. Для этого могут пользоваться разными методами: нагревать жидкость, твердые вещества, добиваться реакции между сложными соединениями. Некоторые формулы реакций:
Zn + 2HCl = ZnCl2 + H2 – водород.
NH4Cl + NaOH = NaCl + H2O + NH3 – аммиак
CaCO3 + 2HCl = CaCl2 + H2O + CO2 – углекислый газ.
Так как многие газы прозрачны и не имеют запаха, используются дополнительные методы их обнаружения. Одни соединения усиливают пламя, другие останавливают горения. Ряд газообразных веществ может менять цвет взвешенной в воде извести, делать жидкость мутнее.

Примеры газов

Виды газов

В списке газов свыше 800 наименований. Стоит рассмотреть самые распространенные:

Читайте также: