Эволюция внутренней среды организма кратко

Обновлено: 07.07.2024

Внутренняя среда организма представлена тканевой (интерстициальной) жидкостью, лимфой и кровью, состав и свойства которых теснейшим образом связаны между собой. Однако истинной внут­ренней средой организма является тканевая жидкость, так как лишь она контактирует с клетками организма. Кровь же, соприкасаясь непосредственно с эндокардом и эндотелием сосудов, обеспечивает их жизнедеятельность и лишь косвенно через тканевую жидкость вмешивается в работу всех без исключения органов и тканей. Через сосудистую стенку в кровоток транспортируются гормоны и различ­ные биологически активные соединения.
Основной составной частью тканевой жидкости, лимфы и крови является вода. В организме человека вода составляет 75% от массы тела. Для человека массой тела 70 кг тканевая жидкость и лимфа составляют до 30% (20—21 л), внутриклеточная жидкость — 40% (27—29 л) и плазма — около 5% (2,8—3,0 л)

Между кровью и тканевой жидкостью происходят постоянный об­мен веществ и транспорт воды, несущей растворенные в ней продукты обмена, гормоны, газы, биологически активные вещества. Следова­тельно, внутренняя среда организма представляет собой единую сис­тему гуморального транспорта, включающую общее кровообращение и движение в последовательной цепи: кровь — тканевая жидкость — ткань (клетка) — тканевая жидкость — лимфа — кровь.

Отечественный клиницист Г. Ф. Ланг считал, что в систему крови входят кровь, органы кроветворения и кроверазрушения, а также аппарат регуляции. Кровь как ткань обладает следующими особен­ностями: 1) все ее составные части образуются за пределами сосу­дистого русла; 2) межклеточное вещество ткани является жидким; 3) основная часть крови находится в постоянном движении.

Кровь животных заключена в систему замкнутых трубок — кровеносных сосудов. Кровь состоит из жидкой части — плазмы и форменных элементов — эритроцитов, лейкоцитов и тромбоцитов. У взрослого человека форменные элементы крови составляют около 40—48%, а плазма — 52—60%. Это соотношение получило название гематокритного числа (от греч. haima — кровь, kritos — показатель). В практической деятельности для характеристики гематокритного числа указывается лишь показатель плотной части крови.

Основными функциями крови являются транспортная, защитная и регуляторная, остальные функции, приписываемые системе крови, являются лишь производными основных ее функций. Все три основные функции крови связаны между собой и неотделимы друг от друга.

Транспортная функция. Кровь переносит необходимые для жизнедеятельности органов и тканей различные вещества, газы и про­дукты обмена. Транспортная функция осуществляется как плазмой, так и форменными элементами. Последние могут переносить все вещества, входящие в состав крови. Многие из них переносятся в неизмененном виде, другие вступают в нестойкие соединения с различными белками. Благодаря транспорту осуществляется дыха­тельная функция крови. Кровь осуществляет перенос гормонов, питательных веществ, продуктов обмена, ферментов, раз­личных биологически активных веществ, солей, кислот, щелочей, катионов, анионов, микроэлементов и др. С транспортом связана и экскреторная функция крови — выделение из организма метаболитов, отслуживших свой срок или находящихся в данный момент в избытке веществ.

Защитные функции. Чрезвычайно разнообразны. С наличием в крови лейкоцитов связана специфическая (иммунитет) и неспе­цифическая (главным образом фагоцитоз) защита организма. В со­ставе крови содержатся все компоненты так называемой системы комплемента, играющей важную роль, как в специфической, так и неспецифической защите. К защитным функциям относится сохранение циркулирующей крови в жидком состоянии и остановка кровотечения (гемостаз) в случае нарушения целостно­сти сосудов.

Гуморальная регуляция деятельности организма. В первую очередь связана с поступлением в циркулирующую кровь гормонов, биологически активных веществ и продуктов обмена. Благодаря регуляторной функции крови осуществляется сохранение постоян­ства внутренней среды организма, водного и солевого баланса тканей и температуры тела, контроль за интенсивностью обменных процессов, регуляция гемопоэза и других физиологических фун­кций.




Цвет крови. Определяется наличием в эритроцитах особого белка — гемоглобина. Артериальная кровь характеризуется ярко-красной окраской, что зависит от содержания в ней гемоглобина, насыщенного кислородом (оксигемоглобин). Венозная кровь имеет темно-красную с синеватым оттенком окраску, что объясняется наличием в ней не только окисленного, но и восстановленного гемоглобина. Чем активнее орган и чем больше отдал кислорода тканям гемоглобин, тем более темной выглядит венозная кровь.

Относительная плотность крови. Колеблется от 1,058 до 1,062 и зависит преимущественно от содержания эритроцитов. Относи­тельная плотность плазмы крови в основном определяется концентрацией белков и составляет 1,029—1,032.

Вязкость крови. Определяется по отношению к вязкости воды и соответствует 4,5—5,0. Вязкость крови зависит главным образом от содержания эритроцитов и в меньшей степени от белков плазмы. Вязкость венозной крови несколько больше, чем артериальной, что обусловлено поступлением в эритроциты СО2, благодаря чему не­значительно увеличивается их размер. Вязкость крови возрастает при опорожнении депо крови, содержащей большее число эритро­цитов. Вязкость плазмы не превышает 1,8—2,2. При обильном белковом питании вязкость плазмы, а, следовательно, и крови может повышаться.

Осмотическое давление крови. Осмотическим давлением назы­вается сила, которая заставляет переходить растворитель (для крови это вода) через полупроницаемую мембрану из менее в более кон­центрированный раствор. Осмотическое давление крови вычисляют криоскопическим методом с помощью определения депрессии (точки замерзания), которая для крови составляет 0,56—0,58°С. Депрессия молярного раствора (раствор, в котором растворена 1 грамм-моле­кула вещества в 1 л воды) соответствует 1,86°С. Подставив значения в уравнение Клапейрона, легко рассчитать, что осмотическое дав­ление крови равно приблизительно 7,6 атм.

Осмотическое давление крови зависит в основном от растворен­ных в ней низкомолекулярных соединений, главным образом солей. Около 60% этого давления создается NaCl. Осмотическое давление в крови, лимфе, тканевой жидкости, тканях приблизительно оди­наково и отличается постоянством. Даже в случаях, когда в кровь поступает значительное количество воды или соли, осмотическое давление не претерпевает существенных изменений. При избыточ­ном поступлении в кровь вода быстро выводится почками и переходит в ткани и клетки, что восстанавливает исходную величину осмо­тического давления. Если же в крови повышается концентрация солей, то в сосудистое русло переходит вода из тканевой жидкости, а почки начинают усиленно выводить соли. Продукты переваривания белков, жиров и углеводов, всасывающиеся в кровь и лимфу, а также низкомолекулярные продукты клеточного метаболизма могут изменять осмотическое давление в небольших пределах.

Поддержание постоянства осмотического давления играет чрез­вычайно важную роль в жизнедеятельности клеток.

Онкотическое давление. Является частью осмотического и за­висит от содержания крупномолекулярных соединений (белков) в растворе. Хотя концентрация белков в плазме довольно велика, общее количество молекул из-за их большой молекулярной массы относительно мало, благодаря чему онкотическое давление не пре­вышает 30 мм рт.ст. Онкотическое давление в большей степени зависит от альбуминов (80% онкотического давления создают аль­бумины), что связано с их относительно малой молекулярной массой и большим количеством молекул в плазме.

Онкотическое давление играет важную роль в регуляции водного обмена. Чем больше его величина, тем больше воды удерживается в сосудистом русле и тем меньше ее переходит в ткани и наоборот. Онкотическое давление влияет на образование тканевой жидкости, лимфы, мочи и всасывание воды в кишечнике. Поэтому кровезамещающие растворы должны содержать в своем составе коллоидные вещества, способные удерживать воду.

При снижении концентрации белка в плазме развиваются отеки, так как вода перестает удерживаться в сосудистом русле и переходит в ткани.

Для нормальной жизнедеятельности организма необходимо постоянство состава и свойств внутренней среды организма - это гомеостаз. Термин "гомеостаз" ввел в 1929 г В. Кенон.

Абсолютного гомеостаза нет, т. к. постоянно потребляются питательные вещества и выделяются метаболиты. Это постоянство относительно, сейчас введен термин "гомеокинез".

Характеристика гомеостаза - биологические константы организма - это количественные показатели, характеризующие различные стороны деятельности организма.

1 группа: жесткие биологические константы - при их малейшем изменении возникают тяжелые нарушения жизнедеятельности pH крови, он становится равен 7,36 (+/- 0,2-0,3).

2 группа: пластичные константы: могут колебаться в значительных пределах, не вызывая нарушений жизнедеятельности организма: тока крови, АД - при их отклонениях от нормы формируются функциональные системы и исполнительное звено которых включает реакции, направленные на восстановление измененного показателя (гомеостатические реакции).

Внутренняя среда организма представлена тканевой (интерстициальной) жидкостью, лимфой и кровью, состав и свойства которых теснейшим образом связаны между собой. Однако истинной внут­ренней средой организма является тканевая жидкость, так как лишь она контактирует с клетками организма. Кровь же, соприкасаясь непосредственно с эндокардом и эндотелием сосудов, обеспечивает их жизнедеятельность и лишь косвенно через тканевую жидкость вмешивается в работу всех без исключения органов и тканей. Через сосудистую стенку в кровоток транспортируются гормоны и различ­ные биологически активные соединения.
Основной составной частью тканевой жидкости, лимфы и крови является вода. В организме человека вода составляет 75% от массы тела. Для человека массой тела 70 кг тканевая жидкость и лимфа составляют до 30% (20—21 л), внутриклеточная жидкость — 40% (27—29 л) и плазма — около 5% (2,8—3,0 л)

Между кровью и тканевой жидкостью происходят постоянный об­мен веществ и транспорт воды, несущей растворенные в ней продукты обмена, гормоны, газы, биологически активные вещества. Следова­тельно, внутренняя среда организма представляет собой единую сис­тему гуморального транспорта, включающую общее кровообращение и движение в последовательной цепи: кровь — тканевая жидкость — ткань (клетка) — тканевая жидкость — лимфа — кровь.

Отечественный клиницист Г. Ф. Ланг считал, что в систему крови входят кровь, органы кроветворения и кроверазрушения, а также аппарат регуляции. Кровь как ткань обладает следующими особен­ностями: 1) все ее составные части образуются за пределами сосу­дистого русла; 2) межклеточное вещество ткани является жидким; 3) основная часть крови находится в постоянном движении.

Кровь животных заключена в систему замкнутых трубок — кровеносных сосудов. Кровь состоит из жидкой части — плазмы и форменных элементов — эритроцитов, лейкоцитов и тромбоцитов. У взрослого человека форменные элементы крови составляют около 40—48%, а плазма — 52—60%. Это соотношение получило название гематокритного числа (от греч. haima — кровь, kritos — показатель). В практической деятельности для характеристики гематокритного числа указывается лишь показатель плотной части крови.

Основными функциями крови являются транспортная, защитная и регуляторная, остальные функции, приписываемые системе крови, являются лишь производными основных ее функций. Все три основные функции крови связаны между собой и неотделимы друг от друга.

Транспортная функция. Кровь переносит необходимые для жизнедеятельности органов и тканей различные вещества, газы и про­дукты обмена. Транспортная функция осуществляется как плазмой, так и форменными элементами. Последние могут переносить все вещества, входящие в состав крови. Многие из них переносятся в неизмененном виде, другие вступают в нестойкие соединения с различными белками. Благодаря транспорту осуществляется дыха­тельная функция крови. Кровь осуществляет перенос гормонов, питательных веществ, продуктов обмена, ферментов, раз­личных биологически активных веществ, солей, кислот, щелочей, катионов, анионов, микроэлементов и др. С транспортом связана и экскреторная функция крови — выделение из организма метаболитов, отслуживших свой срок или находящихся в данный момент в избытке веществ.

Защитные функции. Чрезвычайно разнообразны. С наличием в крови лейкоцитов связана специфическая (иммунитет) и неспе­цифическая (главным образом фагоцитоз) защита организма. В со­ставе крови содержатся все компоненты так называемой системы комплемента, играющей важную роль, как в специфической, так и неспецифической защите. К защитным функциям относится сохранение циркулирующей крови в жидком состоянии и остановка кровотечения (гемостаз) в случае нарушения целостно­сти сосудов.

Гуморальная регуляция деятельности организма. В первую очередь связана с поступлением в циркулирующую кровь гормонов, биологически активных веществ и продуктов обмена. Благодаря регуляторной функции крови осуществляется сохранение постоян­ства внутренней среды организма, водного и солевого баланса тканей и температуры тела, контроль за интенсивностью обменных процессов, регуляция гемопоэза и других физиологических фун­кций.

Цвет крови. Определяется наличием в эритроцитах особого белка — гемоглобина. Артериальная кровь характеризуется ярко-красной окраской, что зависит от содержания в ней гемоглобина, насыщенного кислородом (оксигемоглобин). Венозная кровь имеет темно-красную с синеватым оттенком окраску, что объясняется наличием в ней не только окисленного, но и восстановленного гемоглобина. Чем активнее орган и чем больше отдал кислорода тканям гемоглобин, тем более темной выглядит венозная кровь.

Относительная плотность крови. Колеблется от 1,058 до 1,062 и зависит преимущественно от содержания эритроцитов. Относи­тельная плотность плазмы крови в основном определяется концентрацией белков и составляет 1,029—1,032.

Вязкость крови. Определяется по отношению к вязкости воды и соответствует 4,5—5,0. Вязкость крови зависит главным образом от содержания эритроцитов и в меньшей степени от белков плазмы. Вязкость венозной крови несколько больше, чем артериальной, что обусловлено поступлением в эритроциты СО2, благодаря чему не­значительно увеличивается их размер. Вязкость крови возрастает при опорожнении депо крови, содержащей большее число эритро­цитов. Вязкость плазмы не превышает 1,8—2,2. При обильном белковом питании вязкость плазмы, а, следовательно, и крови может повышаться.

Осмотическое давление крови. Осмотическим давлением назы­вается сила, которая заставляет переходить растворитель (для крови это вода) через полупроницаемую мембрану из менее в более кон­центрированный раствор. Осмотическое давление крови вычисляют криоскопическим методом с помощью определения депрессии (точки замерзания), которая для крови составляет 0,56—0,58°С. Депрессия молярного раствора (раствор, в котором растворена 1 грамм-моле­кула вещества в 1 л воды) соответствует 1,86°С. Подставив значения в уравнение Клапейрона, легко рассчитать, что осмотическое дав­ление крови равно приблизительно 7,6 атм.

Осмотическое давление крови зависит в основном от растворен­ных в ней низкомолекулярных соединений, главным образом солей. Около 60% этого давления создается NaCl. Осмотическое давление в крови, лимфе, тканевой жидкости, тканях приблизительно оди­наково и отличается постоянством. Даже в случаях, когда в кровь поступает значительное количество воды или соли, осмотическое давление не претерпевает существенных изменений. При избыточ­ном поступлении в кровь вода быстро выводится почками и переходит в ткани и клетки, что восстанавливает исходную величину осмо­тического давления. Если же в крови повышается концентрация солей, то в сосудистое русло переходит вода из тканевой жидкости, а почки начинают усиленно выводить соли. Продукты переваривания белков, жиров и углеводов, всасывающиеся в кровь и лимфу, а также низкомолекулярные продукты клеточного метаболизма могут изменять осмотическое давление в небольших пределах.

Поддержание постоянства осмотического давления играет чрез­вычайно важную роль в жизнедеятельности клеток.

Онкотическое давление. Является частью осмотического и за­висит от содержания крупномолекулярных соединений (белков) в растворе. Хотя концентрация белков в плазме довольно велика, общее количество молекул из-за их большой молекулярной массы относительно мало, благодаря чему онкотическое давление не пре­вышает 30 мм рт.ст. Онкотическое давление в большей степени зависит от альбуминов (80% онкотического давления создают аль­бумины), что связано с их относительно малой молекулярной массой и большим количеством молекул в плазме.

Онкотическое давление играет важную роль в регуляции водного обмена. Чем больше его величина, тем больше воды удерживается в сосудистом русле и тем меньше ее переходит в ткани и наоборот. Онкотическое давление влияет на образование тканевой жидкости, лимфы, мочи и всасывание воды в кишечнике. Поэтому кровезамещающие растворы должны содержать в своем составе коллоидные вещества, способные удерживать воду.

При снижении концентрации белка в плазме развиваются отеки, так как вода перестает удерживаться в сосудистом русле и переходит в ткани.

Для нормальной жизнедеятельности организма необходимо постоянство состава и свойств внутренней среды организма - это гомеостаз. Термин "гомеостаз" ввел в 1929 г В. Кенон.

Абсолютного гомеостаза нет, т. к. постоянно потребляются питательные вещества и выделяются метаболиты. Это постоянство относительно, сейчас введен термин "гомеокинез".

Характеристика гомеостаза - биологические константы организма - это количественные показатели, характеризующие различные стороны деятельности организма.

1 группа: жесткие биологические константы - при их малейшем изменении возникают тяжелые нарушения жизнедеятельности pH крови, он становится равен 7,36 (+/- 0,2-0,3).

2 группа: пластичные константы: могут колебаться в значительных пределах, не вызывая нарушений жизнедеятельности организма: тока крови, АД - при их отклонениях от нормы формируются функциональные системы и исполнительное звено которых включает реакции, направленные на восстановление измененного показателя (гомеостатические реакции).

У многоклеточных животных большая часть клеточных элементов не соприкасается непосредственно с внешней средой. Простейшие организмы, такие как губки, в процессе эволюции приобрели специальные каналы, по которым вода прокачивается через тело.

Следующим этапом являются кишечнополостные и низшие черви. У них возникает уже обособленная внутренняя среда, заполняющая межклеточные каналы тела. В этом случае окружающая животных вода заполняет пищеварительную полость и затем поступает в межклеточные каналы. Жидкость межклеточных каналов называют гидролимфой. По своему составу она мало отличается от окружающей среды. Таким образом, у этих организмов появляется уже гастроваскулярная система циркуляции.

Дальнейшее усложнение состава внутренней среды, ее обособленность и относительное постоянство отмечаются у членистоногих и моллюсков. С появлением незамкнутой (лакунарной) сосудистой системы и пульсации стенок сосудов находящаяся в них жидкость — гемолимфа — проталкивается по сосудам и заполняет межклеточные пространства. Эти пространства представляют специальные резервуары — лакуны.

Среди членистоногих, имеющих аппарат дыхания, гемолимфа осуществляет уже транспорт не только питательных веществ, но и газов. В ней присутствуют дыхательные пигменты, содержащие железо и медь (гемоглобин, гемоцианин). Дыхательных пигментов не обнаруживается в гемолимфе насекомых высокоорганизованных сложно устроенных животных, способных поддерживать высокий уровень метаболической активности. Тело их пронизано системой трахеальных трубочек, и проходящий по ним воздух отдает кислород непосредственно клеткам тканей. Главная же функция гемолимфы у них _ доставка питательных веществ, метаболитов и гормонов, которые у насекомых особенно важны для роста, линьки и т. д.

У олигохет, полихет, пиявок, форонид, немертин, головоногих моллюсков, голотурий, иглокожих, а также позвоночных животных возникает замкнутая система сосудов с циркулирующей в них гемолимфой или кровью.


Рис. 7.1 Классификация жидких сред

А — общие среды; Б — некоторые специализированные среды: I — внесосудистые (внутриклеточная и межтканевая жидкость), // — внутрисосудистые (кровь и лимфа).

Поэтому кровь и межклеточная тканевая жидкость по составу и функциям представляют две самостоятельные системы. Кровь содержит специализированные клетки, белки, органические вещества, дыхательные пигменты, соли. Тканевая жидкость играет роль посредника в обмене веществ между клетками тканей и циркулирующей кровью, в связи с чем состав ее непрерывно обновляется. У отдельных беспозвоночных (черви, осьминоги, морские звезды) гемолимфа вместе с тканевой жидкостью образуют гидравлический скелет, назначением которого является осуществление двигательных актов. Для того чтобы гидравлический скелет мог работать, жидкость должна быть заключена в ограниченное пространство и мышечная сила должна использоваться для создания давления в этой жидкости. Например, давление гемолимфы у осьминога достигает 80 мм. рт. ст.

Помимо двух названных систем позвоночным присущ еще третий тип жидкой внутренней среды — лимфы. Она циркулирует в специальной системе сосудов, в результате чего отделена от межклеточной тканевой жидкости эндотелиальной стенкой. Между всеми тремя жидкостями внутренней среды у позвоночных существует постоянный обмен, направленный на непрерывное поступление к клеткам необходимых веществ и удаление продуктов жизнедеятельности (рис. 7.1).

НАУЧНО-ПОПУЛЯРНЫЙ САЙТ

ВОСТОЧНО-СИБИРСКОГО ЦЕНТРА МЕДИКО-БИОЛОГИЧЕСКОЙ ИНФОРМАЦИИ

ВНУТРЕННЯЯ СРЕДА ОРГАНИЗМА

Кровь вместе с лимфой и межклеточной жидкостью составляют внутреннюю среду организма многоклеточных. Внутренняя среда - это жидкость, которая находится внутри организма, окружает его клетки и создает условия для протекания в них жизненных процессов. По большому счету, человек � это огромная колония одноклеточных, которая носит с собой часть древнего океана, где, как известно, возникла жизнь. Несмотря на то, что многоклеточные организмы уже давно вышли из воды, но жить без неё не могут. Во первых, потому что клетки сами почти на 90% состоят из воды и требуют, чтобы их окружала водная среда, иначе удержать её в клетках будет очень сложно. Во вторых, для жизни клетки должны обмениваться веществами с окружающей средой (в них должны поступать питательные вещества и выделяться экскременты), что также возможно, только если клетки окружает вода, �оскольку транспортироваться большинство из них может только в растворенном виде, а вода выполняет функцию растворителя. Таким образом, наличие жидкой среды вокруг клеток создает условие для жизнедеятельности, характерной чертой которой является обмен веществ и энергии с внешней средой.

Эволюция внутренней среды организма.

I . Древние одноклеточные, жившие в морской воде, обмен веществ и энергии с внешней средой осуществляли непосредственно через окружающую их мембрану. Собственно, внутренняя среда появляется с возникновением многоклеточности. Уже самые простые колонии одноклеточных (например, губки) были устроены так, что их тело пронизывали многочисленные каналы, заполненные водой, поступающей из окружающей среды. Эта вода и выполняла функцию внутренней среды организма. Вместе с водой в каналы и полости колонии поступали питательные вещества, которые использовались клетками организма. Ненужные вещества, накапливающиеся в процессе жизнедеятельности, выделялись клетками в просветы каналов и выводились с током воды наружу. Наличие такой жидкой среды внутри многоклеточного организма приводило к тому, что любая клетка, расположенная даже в самой дали от внешней среды, имела хорошие условия для протекания в ней жизненных процессов. Таким образом, основная функция внутренней среды организма� быть посредником в обмене веществ и энергии между клетками многоклеточной колонии и внешней средой. По своему составу и свойствам на этом этапе эволюции внутренняя среда почти ничем не отличалась от внешней среды. Если менялся химический состав окружающей жидкости, то точно также менялся химический состав и внутренней среды. Иначе говоря, у примитивных многоклеточных внутренняя среда не обладает постоянством состава и свойств. В результате при неблагоприятных внешних условиях ухудшались условия жизни и всех клеток колонии.

II . Организмы, у которых внутренняя среда относительно обособляется от внешней, � это кишечнополостные и плоские черви, - имеют лучшие условия для жизни образующих их клеток. Резкие изменения тех или иных факторов внешней среды (содержание солей, питательных веществ и др.) уже не приводили к таким же изменениям внутренней среды. Это повысило их жизнеспособность. В.Кеннон в 1929 году назвал это свойство относительного постоянства внутренней среды гомеостазом. Гомеостаз обеспечивается не только относительной изолированностью от внешней среды, но и формированием и деятельностью целого ряда систем организма (выделительной, нервной, гуморальной и др.). Внутренняя среда кишечнополостных и плоских червей называется гидролимфой. Гидролимфа представляет собой жидкость, поглощаемую из внешней среды и нагнетаемую из пищеварительной системы в полости организма. Её состав еще сильно зависит от внешней среды, однако, тем не менее, в ней накапливается ряд веществ , секретируемых клетками организма (глюкоза, аминокислоты, пептиды, биологически активные вещества (гормоны)), что делает её уже существенно отличной от внутренней среды более примитивных животных.

III . Большее постоянство внутренней среды формируется по мере всё большего обособления её от внешней среды. Внутренняя среда организмов (круглые черви, насекомые, моллюски, членистоногие и др.), приобретших специализированную сосудистую систему, правда, еще не замкнутую, называется гемолимфой. Система пульсирующих сосудов обеспечивает её циркуляцию по организму между жизнеобеспечивающими системами (пищеварительной, выделительной, дыхательной и др.). Гемолимфа полностью обособлена от внешнего мира. Её химический состав сильно отличается от окружающей среды. В гемолимфе уже содержатся дыхательные пигменты (гемоглобин, гемоцианин и др.)

IV . С появлением замкнутой сосудистой системы (головоногие моллюски, кольчатые черви, позвоночные) внутренняя среда подразделяется на три относительно самостоятельные жидкости: кровь, лимфу и межклеточную жидкость. Каждая их этих жидкостей имеет специфический состав, свойства и функции. Не смотря на это, они имеют много общего, поскольку объединены общей взаимосвязанной циркуляцией жидкостей организма (рис.1). Кровь, протекая по тонким капиллярам, профильтровывается через стенки в межклеточное пространство под влиянием гидростатического давления, созданного работой сердца. В результате образуется межклеточная жидкость. По составу она сходна с плазмой крови, т.е. содержит воду, минеральные соли, низкомолекулярные органические соединения: аминокислоты, гормоны, витамины, глюкозу, а также кислород. Обтекая клетки тканей, межклеточная жидкость теряет часть веществ, которые поступают внутрь клеток, обеспечивая их жизнедеятельность. В клетки проникают питательные вещества, кислород, а выделяются углекислый газ, конечные продукты метаболизма (мочевина, мочевая кислота, креатин) и др. Таким образом, плазма крови, протекая по тканям, видоизменяется ,обедняется питательными веществами и обогащается выделениями клеток. Собираясь в лимфатические сосуды, эта оттекающая от тканей жидкость образует лимфу. Протекая через лимфатические узлы, она также несколько изменяется: некоторые вещества выделяются в лимфу, а некоторые усваиваются клетками лимфатической системы. После этого лимфа вливается в кровеносное русло, объединяясь с кровью, и круг циркуляции жидкостей замыкается.

Таким образом, все жидкости внутренней среды взаимосвязаны, а поэтому по многим свойствам сходны. Так содержание минеральных веществ в крови, межклеточной жидкости и лимфе практически одинаково и равно примерно 0,9% от их массы, тем самым поддерживается относительное равенство осмотического давления жидкостей, и вода равномерно распределяется по всему организму.

Внутренняя среда организма — совокупность жидкостей (крови, лимфы, тканевой жидкости), связанных между собой и принимающих непосредственное участие в процессах обмена веществ. Внутренняя среда организма осуществляет связь между всеми органами и клетками тела. Для внутренней среды характерно относительное постоянство химического состава и физико-химических свойств, которое поддерживается непрерывной работой многих органов.

внутренняя среда организма

Кровь — ярко-красная жидкость, циркулирующая в замкнутой системе кровеносных сосудов и обеспечивающая жизнедеятельность всех тканей и органов. В организме человека содержится около 5 л крови.

Бесцветная прозрачная тканевая жидкость заполняет промежутки между клетками. Она образуется из плазмы крови, проникающей через стенки кровеносных сосудов в межклеточные пространства, и из продуктов клеточного обмена веществ. Её объём составляет 15—20 л. Через тканевую жидкость осуществляется связь между капиллярами и клетками: путём диффузии и осмоса через неё передаются питательные вещества и О2 из крови в клетки, а СО2, вода и другие продукты жизнедеятельности — в кровь.

В межклетниках начинаются лимфатические капилляры, которые собирают тканевую жидкость. В лимфатических сосудах она превращается в лимфу — желтоватую прозрачную жидкость. По химическому составу она близка к плазме крови, но содержит в 3—4 раза меньше белков, поэтому обладает небольшой вязкостью. В лимфе содержится фибриноген, и благодаря этому она способна свёртываться, хотя и гораздо медленнее, чем кровь. Среди форменных элементов преобладают лимфоциты и очень мало эритроцитов. Объём лимфы в организме человека составляет 1—2 л.

Основные функции лимфы:

  • Трофическая — в неё всасывается значительная часть жиров из кишечника (при этом она приобретает беловатый цвет за счёт эмульгированных жиров).
  • Защитная — в лимфу легко проникают яды и бактериальные токсины, нейтрализующиеся затем в лимфатических узлах.

Состав крови

Кровь состоит из плазмы (60 % объёма крови) — жидкого межклеточного вещества и взвешенных в ней форменных элементов (40 % объёма крови) — эритроцитов, лейкоцитов и кровяных пластинок (тромбоцитов).

состав крови

Плазма — вязкая белковая жидкость жёлтого цвета, состоящая из воды (90— 92 °%) и растворённых в ней органических и неорганических веществ. Органические вещества плазмы: белки (7—8 °%), глюкоза (0,1 °%), жиры и жироподобные вещества (0,8%), аминокислоты, мочевина, мочевая и молочная кислоты, ферменты, гормоны и др. Белки альбумины и глобулины участвуют в создании осмотического давления крови, транспортируют различные нерастворимые в плазме вещества, выполняют защитную функцию; фибриноген участвует в свёртывании крови. Кровяная сыворотка — это плазма крови, не содержащая фибриногена. Неорганические вещества плазмы (0,9 °%) представлены солями натрия, калия, кальция, магния и др. Концентрация различных солей в плазме крови относительно постоянна. Водный раствор солей, который по концентрации соответствует содержанию солей в плазме крови, называется физиологическим раствором. Он используется в медицине для восполнения недостающей в организме жидкости.

Эритроциты (красные кровяные клетки) — безъядерные клетки двояковогнутой формы (диаметр — 7,5 мкм). В 1 мм 3 крови содержится примерно 5 млн эритроцитов. Основная функция — перенос О2 от лёгких к тканям и СО2 от тканей к органам дыхания. Окраска эритроцитов определяется гемоглобином, состоящим из белковой части — глобина и железосодержащего гема. Кровь, эритроциты которой содержат много кислорода, ярко-алая (артериальная), а кровь, отдавшая значительную его часть, — тёмно-красная (венозная). Эритроциты образуются в красном костном мозге. Срок их жизни — 100—120 дней, после чего они разрушаются в селезёнке.

элементы крови

Лейкоциты (белые кровяные клетки) — бесцветные клетки, имеющие ядро; их основная функция — защитная. В норме 1 мм 3 крови человека содержит 6—8 тыс. лейкоцитов. Некоторые лейкоциты способны к фагоцитозу — активному захватыванию и перевариванию различных микроорганизмов или отмерших клеток самого организма. Лейкоциты образуются в красном костном мозге, лимфатических узлах, селезёнке и тимусе. Продолжительность их жизни — от нескольких дней до нескольких десятков лет. Лейкоциты делятся на две группы: гранулоциты (нейтрофилы, эозинофилы, базофилы), содержащие зернистость в цитоплазме, и агранулоциты (моноциты, лимфоциты).

Тромбоциты (кровяные пластинки) — мелкие (2—5 мкм в диаметре), бесцветные, безъядерные тельца округлой или овальной формы. В 1 мм 3 крови насчитывается 250—400 тыс. тромбоцитов. Основная их функция — участие в процессах свёртывания крови. Тромбоциты образуются в красном костном мозге, разрушаются в селезёнке. Продолжительность их жизни — 8 дней.

Функции крови

  1. Питательная — доставляет тканям и органам человека питательные вещества.
  2. Выделительная — удаляет через органы выделения продукты распада.
  3. Дыхательная — обеспечивает газообмен в лёгких и тканях.
  4. Регуляторная — осуществляет гуморальную регуляцию деятельности различных органов, разнося по организму гормоны и другие вещества, усиливающие или тормозящие работу органов.
  5. Защитная (иммунная) — содержит способные к фагоцитозу клетки и антитела (специальные белки), препятствующие размножению микроорганизмов или нейтрализующие их ядовитые выделения.
  6. Гомеостатическая — принимает участие в поддержании постоянной температуры тела, рН среды, концентрации ряда ионов, осмотического давления, онкотического давления (часть осмотического давления, определяемого белками плазмы крови).

Свёртывание крови

Свёртывание крови — важное защитное приспособление организма, предохраняющее его от потери крови при повреждении сосудов. Свёртывание крови — сложный процесс, состоящий из трёх этапов.

На первом этапе вследствие повреждения стенки сосуда происходит разрушение тромбоцитов и высвобождение фермента тромбопластина.

На втором этапе тромбопластин катализирует превращение неактивного белка плазмы протромбина в активный фермент тромбин. Это превращение осуществляется в присутствии ионов Ca 2+ .

На третьем этапе тромбин превращает растворимый белок плазмы фибриноген в волокнистый белок фибрин. Нити фибрина переплетаются, образуя густую сеть в месте повреждения кровеносного сосуда. В ней задерживаются клетки крови и формируется тромб (сгусток). В норме кровь свёртывается в течение 5—10 минут.

свертывание крови

У людей, страдающих гемофилией, кровь не способна свёртываться.

Следующим этапом являются кишечнополостные и низшие черви. У них возникает уже обособленная внутренняя среда, заполняющая межклеточные каналы тела. В этом случае окружающая животных вода заполняет пищеварительную полость и затем поступает в межклеточные каналы.

Жидкость межклеточных каналов называют гидролимфой. По своему составу она мало отличается от окружающей среды. Таким образом, у этих организмов появляется уже гастроваскулярная система циркуляции. альнейшее усложнение состава внутренней среды, ее обособленность и относительное постоянство отмечаются у членистоногих и моллюсков. С появлениемнезамкнутой (лакунарной) сосудистой системы и пульсации стенок сосудов находящаяся в них жидкость - гемолимфа — проталкивается по сосудам и заполняет межклеточные пространства. Эти пространства представляют специальные резервуары — лакуны.Среди членистоногих, имеющих аппарат дыхания, гемолимфа осуществляет уже транспорт не только питательных веществ, но и газов. У олигохет, полихет, пиявок, форонид, немертин, головоногих моллюсков, голотурий, иглокожих, позвоночных возникает замкнутая система сосудов с циркулирующей в них кровью. Вместе с тем кровь и межклеточная тканевая жидкость по составу и функциям представляют две самостоятельные системы. Помимо двух названных систем позвоночным присущ еще третий тип жидкой внутренней среды — лимфы. Она циркулирует в специальной системе сосудов, в результате чего отделена от межклеточной тканевой жидкости эндотелиальной стенкой. Между всеми тремя жидкостями внутренней среды у позвоночных существует постоянный обмен, направленный на непрерывное поступление к клеткам необходимых веществ и удаление продуктов жизнедеятельности.

Читайте также: