Аски это в микробиологии кратко

Обновлено: 05.07.2024


СУМЧАТЫЕ ГРИБЫ – большая и разнобразная группа, составляющая отдел Ascomycota в царстве Fungi. Основной признак А. – образование в результате кариогамии (слияния ядер) и последующего мейоза половых спор (аскоспор) в особых структурах – сумках, или асках. Вегетативная стадия представлена хорошо развитым септированным (разделенным на перегородки) мицелием. Бесполое размножение осуществляется разнообразными по форме бесполыми спорами – конидиями, вегетативное размножение – фрагментами мицелия. По форме и характеру развития плодовых тел, в которых развиваются сумки, отдел разделяют на несколько классов. В классе Архиаскомицеты (Archiascomycetes) сумки развиваются сразу после слияния половых клеток, плодовых тел не образуется. К порядку Сахаромицеты (Saccharomycetales) этого класса относятся дрожжи Saccharomyces cerevisae, различные физиологические расы которых имеют чрезвычайно важное практическое значение (пекарские, пивные дрожжи). У группы (или класса, по разным представлениям) плектомицетов (Plectomycetes) плодовые тела, в которых развиваются сумки, образуются на поверхности мицелия. К этой группе относятся широко распространенные возбудители мучнистой росы растений (пор. Erysiphales) и половые стадии анаморфных грибов из родов пеницилл – Penicillium и аспергилл – Aspergillus (пор. Eurotiales), виды которых широко используются в биотехнологии как продуценты ферментов, антибиотиков и др. У группы пиреномицетов (Pyrenomycetes) плодовые тела в виде бутылковидных структур с отверстием на вершине – перитеции – образуются на поверхности мицелия. Сюда относят многие виды сапротрофов, обитающих на почве и субстратах органического происхождения, а также большую группу грибов – возбудителей болезней растений. У группы локуломицетов (Loculomycetes) сумки формируются в особых полостях – локулах, располагающихся на стромах, состоящих из плотно переплетенного мицелия. В группе дискомицетов (Discomycetes) плодовые тела – апотеции – в виде широко раскрытых чаш или дисков, внутренняя поверхность которых покрыта слоем сумок (гимением). Апотеции часто ярко окрашены и хорошо заметны на почве или опаде листьев в лесу (род Peziza). К этой группе относят сапротрофы на лесной подстилке – широко известные сморчки, строчки и трюфели. Виды А. часто развиваются только в бесполой, конидиальной стадии. У некоторых из них половое спороношение не установлено или потеряно. Виды А. с неизвестной половой стадией относят к группе анаморфных (несовершенных) грибов. Многие А. входят как микобионтный компонент в состав лишайников. Современная система лишайников построена на основе систематики А.


См. также `Аскомицеты` в других словарях

АСКОМИЦЕТЫ (Ascomysetes), самая обширная группа из четырех основных классов ГРИБОВ, для которой характерно образование аска (увеличенных, обычно продолговатых клеток, в которых обычно образуется восемь спор). Примером этой группы служат дрожжевые грибки, трюфели, голубые и зеленые плесени.

(Ascomycetes) — группа грибов, обнимающая большое число видов и распадающаяся на несколько семейств. Аскомицетные, или сумчатые, грибы отличаются от других грибов особенно тем, что споры их образуются свободно внутри сумчатых клеток, аскусов, причем протоплазматическое содержимое этих клеток распадается на несколько частей, которые вырабатывают оболочку и наконец выпадают из клетки в виде зрелых спор. Так образуются аскоспоры. Кроме них, у аскомицетных грибов появляются в некоторых случаях на концах особых конидиальных нитей так назыв. конидии, т. е. мелкие споры, и пикниды — замкнутые, обыкновенно бутылевидные плодоношения, в которых образуются споры, в большинстве случаев более крупные, чем конидии. Как аскоспоры, так и конидии и пикнидоспоры спосо.

класс грибов с многоклеточным мицелием и спорами, образующимися в специальных органах — сумках (асках); к А. относятся дрожжи, плесневые грибки (в т. ч. продуценты пенициллинов), некоторые съедобные грибы (трюфели, строчки, сморчки) и др.; некоторые виды А. могут быть возбудителями микозов человека.

1. Малая медицинская энциклопедия. — М.: Медицинская энциклопедия. 1991—96 гг. 2. Первая медицинская помощь. — М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. — М.: Советская энциклопедия. — 1982—1984 гг

Аскомицеты (Ascomycetes) , сумчатые грибы, класс высших грибов, для к-рых характерны многоклеточный мицелий, образование сумок (асков) при половом размножении и экзогенное бесполое спороношение. Большинство А.— сапрофиты, мн. А. паразитируют на растениях, нек-рые — на животных и человеке. Среди А. имеются токсические, вызывающие микотоксикозы . Некоторые А. и их продукты применяют для лечебных целей (дрожжи , спорынья ).

(Ascomycetes; греч. askos мешок, сумка + mykes гриб; син. грибы сумчатые) класс грибов с многоклеточным мицелием и спорами, образующимися в специальных органах - сумках (асках); к А. относятся дрожжи, плесневые грибки (в т. ч. продуценты пенициллинов), некоторые съедобные грибы (трюфели, строчки, сморчки) и др.; некоторые виды А. могут быть возбудителями микозов человека.

АСКОМИЦЕТЫ , или СУМЧАТЫЕ ГРИБЫ (Ascomycetes) — кл. грибов, у которых в результате полового процесса формируются замкнутые одноклеточные структуры — аски, где образуется обычно 8 аскоспор; вегетативное тело большинства аскомицетов — разветвленный гаплоидный мицелий, состоящий из одноядерных или многоядерных клеток, половой процесс — гаметангиогамия, т. е. слияние двух специализированных клеток мицелия, не дифференцированных на гаметы. В цикле развития высших аскомицетов чередуются три фазы: длительная — гаплоидная, в течение которой происходит бесполое размножение спорами бесполого размножения — конидиями, служащими для массового расселения грибов; непродолжительная — дикариотическая (аскогенные гифы) и очень короткая — диплоидная (молодой аск с диплоидным ядром). У низших аскомицетов аски образуютс.

Русский орфографический словарь. / Российская академия наук. Ин-т рус. яз. им. В. В. Виноградова. — М.: "Азбуковник" . В. В. Лопатин (ответственный редактор), Б. З. Букчина, Н. А. Еськова и др. . 1999 .

Аскомицеты

Аскомицеты (от греч. ἀσκός — сумка), или сумчатые грибы (лат. Ascomycota ) — отдел в царстве грибов, объединяющий организмы с септированным (разделённым на части) мицелием и специфическими органами полового спороношения — сумками (асками), содержащими чаще всего по 8 аскоспор. Имеют и бесполое спороношение, причём во многих случаях половой процесс утрачивается и такие виды грибов относят к несовершенным грибам (Deuteromycota).

К аскомицетам относят до 2000 родов и 30 000 видов. Среди них — дрожжи (класс Saccharomycetes) — вторично одноклеточные организмы. Из других известных представителей аскомицетов можно назвать сморчки, пармелию, строчки и трюфели.

Содержание

Морфология

Мицелий разделён поперечными перегородками (септирован), что позволяет гифе в случае повреждения терять меньше клеточного содержимого и обуславливает большую выживаемость аскомицетов по сравнению с ценоцитными зигомицетами. Так, наименьший жизнеспособный фрагмент мицелия, способный дать начало новому организму, для зигомицета составляет около 100 мкм, а для аскомицета — 15—20 мкм (1—3 целых клетки). В середине септы имеется простая пора, через которую возможен обмен цитоплазмой, органеллами и даже ядрами. Чаще всего у аскомицетов одно гаплоидное ядро в клетке.

Размножение и цикл развития

У аскомицетов выражены две стадии развития: анаморфа, в которой организм размножается бесполым путём, и телиоморфа, в которой он формирует половые структуры. Вместе обе стадии носят название голоморфа. Анаморфа и телиоморфа не схожи, в зависимости от условий организм может переходить в телиоморфу, а может и нет, в результате чего часто один и тот же аскомицет описывался как два разных вида. Например, название Aspergillus fisheri дано анаморфе, телиоморфа которой описана как Neosartoria fisheri, аналогичная ситуация с Amorphotheca resinae и Hormoconis resinae и многими другими. В наши дни молекулярные методы позволяют обнаружить описанные дважды виды.

Бесполое размножение

Бесполое размножение аскомицетов осуществляется практически всегда конидиями. Морфология конидий очень разнообразна. Они могут быть одноклеточными, с разным числом поперечных перегородок, с продольными и поперечными перегородками (муральными). Чаще всего конидии эллипсоидные, могут быть округлыми. Особенно сложное строение имеют конидии некоторых водных грибов, обитающих, в частности, на погружённых в воду разлагающихся листьях листопадных пород деревьев и кустарников.

Конидии могут быть бесцветными или окрашенными обычно в коричневые тона из-за наличия меланинов. Они могут быть сухими или погружёнными в слизь. Сухие конидии распространяются токами воздуха, слизистые — водой (часто с каплями дождя) или мелкими животными (например, перенос жуками-заболонниками конидий Ophiostoma ulmi — возбудителя голландской болезни вязов). При низкой влажности и высыхании слизи такие конидии переносятся также токами воздуха. Освобождение конидии обычно пассивное.

Конидии иногда развиваются непосредственно от мицелия, но гораздо чаще от специальных конидиеносцев, которые могут быть простыми или ветвящимися, иногда очень обильно. Образуются конидии поодиночке или группируются в цепочки или головки. Конидиеносцы также могут располагаться поодиночке или тем или иным образом группироваться. Простейший вариант такой группировки — коремия: конидиеносцы развиваются тесно сближенным пучком, чаще склеиваясь своими боками, а иногда анастомозируя. Коремии характерны, например, для анаморф некоторых Eurotiales (в частности, представителей формального рода Penicillium, причём у некоторых видов могут образовываться только при определённых условиях).

У некоторых видов конидиеносцы образуют слой на поверхности выпуклого сплетения гиф или стромы в виде подушечек. Такой тип спороношения — спородохий. Наиболее частый и характерный пример — анаморфа Nectria cinnabarina.

Ложа по характеру группировки конидиеносцев напоминают спородохии, но конидиеносцы в них образуют тесный слой не на выпуклой строме, а на более или менее плоском сплетении гиф. Такие структуры часто встречаются у грибов, паразитирующих на растениях. Сначала они развиваются в ткани растения под кутикулой или эпидермисом, а затем прорывают их и выступают наружу.

Если расположенные слоем на рыхлом сплетении гиф конидиеносцы погружены в общую слизь, то такие спороношения называют пионноты.

Наиболее сложные конидиальные структуры — пикниды. Они имеют шаровидную или кувшиновидную форму, одеты плотной светлой или тёмной оболочкой с узким отверстием на вершине. Внутри пикниды плотным слоем образуются короткие конидиеносцы, на которых развиваются конидии, выходящие затем из пикниды через выводное отверстие или трещины в оболочке, часто в массе слизи. Иногда даже конидиеносцы могут не дифференцироваться, а конидии образуются непосредственно от клеток оболочки пикнид.

Формирование конидий из конидиогенных клеток может происходить разными способами. Выделяют два типа:

  • Таллический. Конидии образуются в результате видоизменения ранее существовавшей части мицелия, иногда имеющей специфический облик (так что получается конидиеносец). Артроконидии (артроспоры) образуются в результате фрагментации конидиеносца или гифы. Алевриоконидии (аревлиоспоры) формируются из отделившейся перегородкой части конидиогенной клетки, разрастающейся и дифференцирующейся в зрелую конидию. Они образуются одиночно на вершине конидиеносца или гифы и часто имеют крупные размеры и утолщённую клеточную стенку. Иногда они развиваются в коротких цепочках.
  • Бластический. Зачаток конидии заметно увеличивается в размерах до своего отделения перегородкой от конидиогенной клетки. На основании участия стенки конидиогенной клетки в формировании стенки конидии различают три типа бластогенных конидий: холобластические, пороконидии и фиалоконидии.

У холобластических бластоконидий все слои клетки конидиогенной клетки участвуют в образовании стенки конидии. Бластоконидия развивается как вздутие конца конидиогенной клетки, затем отшнуровывается и отделяется от неё перегородкой (процесс напоминает почкование у аскомицетных дрожжей).

В формировании клеточной стенки пороконидий принимают участие только внутренние слои клеточной стенки конидиогенной клетки. Такие конидии образуются путём почкования через поры в стенках конидиеносцев. Пороконидии обычно толстостенные, располагающиеся по одной на вершине и по бокам конидиеносца.

При формировании фиалоконидий клеточная стенка формируется заново, а стенка конидиогенной клетки не участвует в её возникновении. Фиалоконидии развиваются на фиалидах — конидиогенных клетках, обычно несколько утолщённых у основания и слегка оттянутых в верхней части.

У аскомицетов, паразитирующих на растениях, конидиальные спороношения обычно образуются на живом растении, а сумчатые — после отмирания растения или его частей в конце периода вегетации или после зимовки.

Половое размножение

Половое размножение аскомицетов проходит в форме гаметангиогамии, без образования дифферинцированных гамет. Для этого на разных гифах образуются половые органы: мужские — антеридии и женские — архикарпы, представляющие собой видоизменённые оогонии.

У низших форм половой процесс напоминает зигогамию у зигомицетов (Zygomycota), поскольку образующиеся гаметангии внешне сходны и после их объединения сразу происходит слияние ядер. Однако у низших асковых грибов сливаются только два ядра многоядерных гаметангиев, а не все, то есть отсутствует множественная кариогамия. Образовавшееся диплоидное ядро без периода покоя делится мейотически, образуя гаплоидные ядра, а зигота трансформируется в сумку — аск (др.-греч. ἀσκός — мешок).

У высших форм половой процесс проходит более сложно. Архикарп у них дифференцирован на расширенную нижнюю часть — аскогон и верхнюю в виде изогнутой трубочки — трихогину. Антеридий представляет собой одноклеточную структуру цилиндрической формы. При соприкосновении гаметангиев трихогина врастает своим концом в антеридий, после чего содержимое антеридия перетекает по ней в аскогон. Слияние цитоплазмы гаметангиев (плазмогамия) не сопровождается слиянием их гаплоидных ядер, хотя они сближаются и располагаются попарно, образуя дикарионы. Затем из аскогона вырастают аскогенные гифы, одновременно ядра дикарионов делятся, что ведёт к увеличению числа дикарионов. В каждую из аскогенных гиф проникают дикарионы. Завершается процесс образованием сумок (асков), которыми становятся концевые клетки, расположенные на концах аскогенных гиф, содержащие дикарион. Вначале гаплоидные ядра дикариона сливаются (происходит кариогамия), образуя диплоидное ядро. Без периода покоя это ядро делится мейотически, образуя четыре гаплоидных ядра, а те, в свою очередь, делятся митотически. В итоге появляются восемь гаплоидных клеток, которые становятся аскоспорами, а клетка, в которой они находятся, становится аском. У некоторых видов количество спор может быть меньшим (четыре) за счёт отсутствия митотического деления после мейотического или за счёт дегенерации части гаплоидных ядер или большим.

Таким образом, в жизненном цикле асковых грибов имеется три стадии: гаплоидная стадия, когда мицелий размножается бесполым путём; стадия дикариона и самая короткая — диплоидная стадия, когда молодая сумка непродолжительное время содержит диплоидное ядро.

У многих сумчатых грибов половой процесс упрощается. У них не образуются антеридии, а вместо них функционируют вегетативные гифы, конидии или мелкие клетки спермации, которые могут образовываться даже не на соседних гифах, а на достаточном расстоянии от архикарпа. Потоками воздуха, воды или через насекомых спермации переносятся на трихогину, после чего происходит слияние цитоплазмы клеток. Случается, что могут отсутствовать оба гаметангия, тогда половой процесс протекает в форме соматогамии, то есть сливаются вегетативные клетки. При этом следует отметить, что у сумчатых грибов есть формы с гомоталличным и гетероталличным мицелиями, причём последние всегда отличаются набором аллелей.

Аскогенные гифы с асками могут образовываться не только беспорядочно (в любом месте мицелия), как это происходит у низших форм, но и на плодовых телах, состоящих из плотно переплетённых гиф. У сумчатых грибов имеются четыре типа плодовых тел:

Псевдотеции характерны для класса Loculoascomycetes. При их формировании вначале образуются мицелиальные стромы, в полостях которых формируются гаметангии, происходит половой процесс и образование сумок. Клейстотеции и перитеции часто развиваются на особых образованиях — стромах — плотных сплетениях гиф, которые часто ошибочно принимают за плодовые тела. Они могут находиться на поверхности стромы или быть погружёнными в её тело. Стромы могут быть довольно простого строения, как у видов рода Hypoxylon, а могут представлять собой сложные гифенные образования, например дифференцированные на стерильную ножку и фертильную верхнюю часть стромы видов родов Claviceps и Cordyceps.

Настоящие плодовые тела могут развиваться также непосредственно на мицелии, на рыхлом его сплетении — субикулуме.

Развитие аскостром идёт по-другому. Сначала строма гомогенная. В ней образуются половые структуры, происходит половой процесс, формируются аскогенные гифы и сумки. При этом ложная ткань (плектенхима) стромы в местах образования сумок раздвигается или разрушается, и там образуется полость — локула. Каждая локула может содержать всего одну сумку, но чаще сумок в ней достаточно много. На вершине локулы из-за разрушения ткани обычно формируется выводное отверстие. Внешне аскостромы могут становиться очень похожими на настоящее плодовое тело или их группу.

Сумки

Сумки могут быть разной формы — от округлых или овальных до сильно вытянутых, булавовидных или цилиндрических. По строению оболочки и функциям их можно разделить на прототуникатные и эутуникатные (эвтуникатные). У первых оболочка тонкая, недифференцированная, она разрушается или лизируется, а аскоспоры высвобождаются пассивно. У вторых оболочка более плотная, часто со специальными приспособлениями для вскрытия, и освобождение спор активное.

В свою очередь, эутуникатные сумки можно подразделить на унитуникатные и битуникатные. И те и другие имеют оболочку из двух слоёв, однако у унитуникатных сумок оболочка тонкая, выглядит однослойной, и слои её неразделимы между собой. На вершине их обычно имеется апикальный аппарат — специальное приспособление для вскрытия и освобождения аскоспор. У битуникатных сумок оболочка более толстая, явно двухслойная, обычно на вершине сильно утолщённая и без апикального аппарата. Наружный слой жёсткий, а внутренний эластичный. При созревании сумки под действием увеличивающегося тургорного давления наружный слой лопается, внутренний растягивается, и аскоспоры с силой выбрасываются.

Имеется также специальный лекапоровый тип сумок, встречающийся только у многих грибов, входящих в состав лишайников. Здесь, как и у битуникатных сумок, хорошо выражены два слоя, но они не отделимы друг от друга. Внутренний слой, более толстый, особенно утолщён на вершине. Здесь в нём может иметься особая внутренняя структура — осевое тельце. Оно отличается менее интенсивной амилоидной реакцией с йодом. При вскрытии сумки внешний слой лопается, а внутренний слой и осевое тельце растягиваются и выдаются наружу в виде клюва.

Аскоспор чаще всего бывает восемь, однако число их может быть и меньше (например, у многих мучнисторосяных) или, наоборот, много больше (например, у многих сордариевых). При этом большое число аскоспор может быть связано как с увеличением числа митозов после мейоза в сумке, так и с тем, что уже сформировавшиеся споры распадаются на фрагменты. Размер и вид аскоспор могут быть самыми различными. Обычно величина их составляет несколько микрометров, однако самые крупные аскоспоры (у некоторых микобионтов лишайников) могут быть до 525 мкм в длину. Форма аскоспор бывает от шаровидной или овальной до удлинённой и нитевидной. Как и конидии, они могут быть бесцветными (гиалиновыми) или окрашенными, состоять из одной, двух или большего числа клеток. Аскоспоры могут иметь различного рода придатки. У многих видов споры одеты слизистым чехлом.


СУМЧАТЫЕ ГРИБЫ – большая и разнобразная группа, составляющая отдел Ascomycota в царстве Fungi. Основной признак А. – образование в результате кариогамии (слияния ядер) и последующего мейоза половых спор (аскоспор) в особых структурах – сумках, или асках. Вегетативная стадия представлена хорошо развитым септированным (разделенным на перегородки) мицелием. Бесполое размножение осуществляется разнообразными по форме бесполыми спорами – конидиями, вегетативное размножение – фрагментами мицелия. По форме и характеру развития плодовых тел, в которых развиваются сумки, отдел разделяют на несколько классов. В классе Архиаскомицеты (Archiascomycetes) сумки развиваются сразу после слияния половых клеток, плодовых тел не образуется. К порядку Сахаромицеты (Saccharomycetales) этого класса относятся дрожжи Saccharomyces cerevisae, различные физиологические расы которых имеют чрезвычайно важное практическое значение (пекарские, пивные дрожжи). У группы (или класса, по разным представлениям) плектомицетов (Plectomycetes) плодовые тела, в которых развиваются сумки, образуются на поверхности мицелия. К этой группе относятся широко распространенные возбудители мучнистой росы растений (пор. Erysiphales) и половые стадии анаморфных грибов из родов пеницилл – Penicillium и аспергилл – Aspergillus (пор. Eurotiales), виды которых широко используются в биотехнологии как продуценты ферментов, антибиотиков и др. У группы пиреномицетов (Pyrenomycetes) плодовые тела в виде бутылковидных структур с отверстием на вершине – перитеции – образуются на поверхности мицелия. Сюда относят многие виды сапротрофов, обитающих на почве и субстратах органического происхождения, а также большую группу грибов – возбудителей болезней растений. У группы локуломицетов (Loculomycetes) сумки формируются в особых полостях – локулах, располагающихся на стромах, состоящих из плотно переплетенного мицелия. В группе дискомицетов (Discomycetes) плодовые тела – апотеции – в виде широко раскрытых чаш или дисков, внутренняя поверхность которых покрыта слоем сумок (гимением). Апотеции часто ярко окрашены и хорошо заметны на почве или опаде листьев в лесу (род Peziza). К этой группе относят сапротрофы на лесной подстилке – широко известные сморчки, строчки и трюфели. Виды А. часто развиваются только в бесполой, конидиальной стадии. У некоторых из них половое спороношение не установлено или потеряно. Виды А. с неизвестной половой стадией относят к группе анаморфных (несовершенных) грибов. Многие А. входят как микобионтный компонент в состав лишайников. Современная система лишайников построена на основе систематики А.

класс высших грибов. Включает около 30 тыс. видов. Мицелий А. многоядерный, состоит из нескольких клеток. Клеточная оболочка содержит хитин и целлюлозу. Бесполое размножение происходит с помощью конидий. В процессе полового размножения образуется дикариотическая фаза, представляющая собой гифы, содержащие 2 ядра: женское и мужское. В цикле развития преобладает гаплоидная фаза. Она включает аскоспоры, вегетативный мицелий, конидиаль-ное спороношение и сплетения гиф, образующих аскокарпы. Дикариотическую фазу составляют аскогенные гифы. Диплоидная фаза представлена материнской клеткой. Процесс образования сумки или аска - особого органа плодоношения -характерен для всех А. Многие А. являются паразитами растений.

В статье рассматривается вопрос о значении атомно-силовой микроскопии в микробиологии. Данный вид микроскопии является перспективным методом, позволяющим исследовать особенности структуры поверхности бактерий и вирусов различных таксономических групп при решении фундаментальных и практических задач биологии и медицины. Атомно-силовая микроскопия может быть использована для исследования морфологических изменений живых бактерий под действием антибиотиков. Основными преимуществами метода атомно-силовой микроскопии, используемого для изучения тонких структур бактериальных клеток, по сравнению с традиционными способами являются возможность изучения реальной поверхности клетки без применения специальных методов подготовки образцов, высокое пространственное разрешение.


1. Бахтизин Р.З. Сканирующая туннельная микроскопия – новый метод изучения поверхности твердых тел // Соросовский образовательный журнал. – 2000. – № 11. – С. 83–89.

2. Быков И.В. Развитие и автоматизация методов измерения рельефа и локальных свойств биологических объектов в атомно-силовой микроскопии : автореф. дис. … канд. ф.-м. н. – М., 2010. – 21 с.

8. Яминский И.В., Демин В.В., Бондаренко В.М. Различия в клеточной поверхности гибридных бактерий Escherichia coli K12, наследующих rfb-а3,4 ген Shigella flexneri, выявляемые с помощью атомно-силовой микроскопии // Журнал микробиологии, эпидемиологии и иммунобиологии. – 1997. – № 6. – С. 15–18.

9. Maluchenko N.V., Agapov I.I., Tonevitsky A.G. et al. Detection of immune complexes using atomic force microscopy // Biofizika. – 2004. – V. 49. – № 6. – Р. 1008–1014.

10. Morita S. et al. Noncontact Atomic Force Microscopy and its related topics // Springer Handbook of Nanotechnology, Springer Berlin. – 2004. – 13. – P. 141–178.

Разработка новых методов анализа в микробиологии имеет большое значение для развития науки и применения ее результатов в различных отраслях народного хозяйства. Одним из наиболее востребованных направлений в микробиологии является разработка быстрых и чувствительных методов изучения и идентификации бактерий на основе бионанотехнологий [3; 10]. Бионатехнологии открывают новые перспективы для значительного увеличения чувствительности анализа и идентификации микроорганизмов. Результаты работы очень важны для микробиологии, поскольку существенно расширяют и дополняют представления о методах идентификации прокариот и вносят существенный вклад в понимание процессов анализа бактериального мира [2; 5; 6; 9].

Атомно-силовая микроскопия (АСМ) является одним из методов бионанотехнологии - современной биологической науки, оперирующей наноразмерными объектами. Атомно-силовая микроскопия принадлежит к семейству проксимальной зондовой микроскопии для анализа поверхности и ее свойств на атомно-молекулярном уровне. На расстоянии около одного ангстрема между атомами образца и атомом зонда (кантилевера) возникают силы отталкивания, а на больших расстояниях - силы притяжения. Идея устройства очень проста: кантилевер, перемещаясь относительно поверхности и реагируя на силовое взаимодействие, регистрирует ее рельеф. На основании прибора укреплен цилиндр, в котором находится сканер - пьезоэлектрическая керамика, изменяющая свои размеры при приложении электрического поля. В верхней части цилиндра крепится исследуемый образец, который сканер может перемещать в трех взаимно перпендикулярных направлениях. В горизонтальной плоскости образец сканируется по строкам: пройдя одну, он смещается на следующую строчку. Обычно таких строк 512, время движения вдоль строки может варьироваться примерно от 1 до 0,02 с, а длину строки в самом распространенном сканере можно выбрать от ~10 нм до ~10 мкм [1]. В зависимости от типа взаимодействия АСМ может работать в одном из нескольких режимов.

В контактном режиме (соответствует области отталкивания на графике межатомных сил) зонд прижимается к образцу, и его отклонение вызывается взаимным отталкиванием атомов острия иглы и поверхности в результате перекрывания их электронных оболочек и кулоновского отталкивания ядер. В бесконтактном режиме (соответствует области притяжения на графике межатомных сил) АСМ отслеживает притягивающие ван-дер-ваальсовые силы между острием сканирующей иглы и образцом. Зазор между острием и образцом обычно составляет 5-10 нм.

Изобретение атомно-силовой микроскопии предоставило уникальную возможность исследовать биологические объекты, не используя сложных методов фиксации, при этом применение можно разделить на несколько направлений: визуализация с высоким разрешением, оценка локальных механических свойств исследуемого объекта и диагностика [2; 4].

Атомно-силовая микроскопия является перспективным методом, позволяющим исследовать особенности структуры поверхности бактерий различных таксономических групп при решении фундаментальных и практических задач биологии и медицины [3; 5]. Решаются проблемы изучения клеточных структур, мембран, протеинов, вирусов, бактерий, тканей, наночастиц и их взаимодействия с другими объектами. Изучение подобных объектов методами АСМ представляет собой сложную задачу, прежде всего потому, что зонд находится в контакте с поверхностью и относительно большая сила взаимодействия может привести к необратимой деформации объекта исследования и зонда. АСМ дает изображения бактериальных клеток и их поверхности с высоким разрешением. Эти изображения используются для анализа внешнего вида и свойств поверхности бактерий. АСМ может быть использована для изучения физиологических процессов, таких как клеточный рост и прорастание спор, а также для исследования морфологических изменений живых бактерий под действием антибиотиков.

АСМ обеспечивает получение 3D-изображений поверхностных ультраструктур с молекулярным разрешением в режиме реального времени и физиологических условиях [7]. Понимание процессов адгезии и агрегации бактериальных клеток требует не только знания физико-химических свойств (гидрофобности и электрических свойств) и химического состава, но также наномеханических свойств и ультраструктуры их поверхности. Уникальная возможность АСМ представлять бактериальный мир в субнанометровом диапазоне и в водном растворе может быть использована для исследования как самих клеток, так и их поверхности в физиологических условиях.



Рис. 1. Staphylococcus spp.: а - сканирующая электронная микроскопия;

б - пространственное АСМ-изображение стафилококков при площади сканирования 12×12 мкм 2 .

Определение шероховатости при помощи метода атомно-силовой микроскопии широко используется для оценки состояния различных объектов, однако существует лишь небольшое число работ, где он использовался для анализа поверхности клеток. В то же время использование интегрального параметра удобно при оценке действия на клетку различных физиологически и экзогенных факторов.

Для визуализации поверхности микробных клеток методами атомно-силовой микроскопии не требуются специальные подготовительные операции, обязательные для различных видов электронной микроскопии.

Процедура подготовки образцов для атомно-силовой микроскопии заключается в их иммобилизации на ровной подложке. Материал подложки можно варьировать в широких пределах в зависимости от поставленных задач. Традиционно в качестве субстрата используются атомно-гладкие подложки из слюды, графита и других слоистых материалов, а также различные стёкла, полимерные материалы и металлические поверхности. Варьируя подложки, можно изучать адгезивные свойства бактерий на поверхности различных материалов (рис. 2).


Рис. 2. Blastocystis hominis сканирующая электронная микроскопия.

Слюда является незаменимым материалом при приготовлении образцов для атомно-силовой микроскопии (АСМ). Она имеет атомарно гладкую поверхность, получаемую путем простого скалывания, эта поверхность является гидрофильной и при помещении в воду несет отрицательный заряд. Такая поверхность является хорошей подложкой для наблюдения разнообразных объектов, в том числе биологических (биомакромолекул, вирусов, клеток).

Возможность сканирования в жидкости еще одно достоинство АСМ [10]. Работа в жидкости на АСМ открывает новые перспективы для изучения бактериальных клеток: влияние различных антибиотиков, лекарств и других медицинских препаратов на клетки в настоящем времени с помощью АСМ. Применение жидкостной атомно-силовой микроскопии позволяет локально проводить электрохимические реакции, прикладывая потенциал между зондом и проводящей поверхностью, что используется для исследования биологических объектов. Таким образом, было проведено исследование влияния лизоцима на E.coli [8].

Выбор методики измерения, анализ режимов работы, настройка параметров сканирования - это и многое другое существенно влияет на истинность полученных результатов, пространственное разрешение и сохранность объекта исследования.

Таким образом, атомно-силовая микроскопия - это развивающийся метод изображения биологических объектов, который позволяет анализировать их структуру на атомном уровне. Основными преимуществами метода атомно-силовой микроскопии, используемого для изучения тонких структур бактериальных клеток, по сравнению с традиционными способами - растровой и просвечивающей электронной микроскопии - являются:

  1. возможность изучения реальной поверхности клетки без применения специальных методов подготовки образцов (напыления металлами, приготовления реплик и пр.);
  2. возможность проведения исследований живых бактерий на воздухе или в различных жидких средах;
  3. высокое пространственное разрешение (доли нанометра в плоскости образца и сотые доли нанометра по нормали к образцу);
  4. одновременное исследование с субнанометровым пространственным разрешением локальных свойств клеточной стенки, в том числе жесткости, пластичности и адгезивности.

Работа выполнена при поддержке Минобрнауки РФ в рамках ГК 16.512.11.2226 от 12.07.2011 г.

Читайте также: