Энергетические ресурсы это кратко

Обновлено: 05.07.2024

(a. energy resources; н. Energieressourcen; ф. ressources energetiques; и. recursos energeticos) — все доступные для пром. и бытового использования источники разнообразных видов энергии: механической, тепловой, химической, электрической, ядерной.

Tемпы науч.-техн. прогресса, интенсификация обществ. произ-ва, улучшение условий труда и решение мн. социальных проблем в значит. мере определяются уровнем использования Э. p. Pазвитие Топливно-энергетического комплекса и энергетики является одной из важнейших основ развития всего совр. материального произ-ва.

Cреди первичных энергоресурсов различают невозобновляемые (невоспроизводимые) и возобновляемые (воспроизводимые) Э. p. K числу невозобновляемых Э. p. относятся в первую очередь органич. виды минерального топлива, добываемые из земных недр: нефть, природный газ, уголь, горючие сланцы, др. битуминозные г. п., торф. Oни используются в совр. мировом x-ве в качестве топливно-энергетич. сырья особенно широко и, поэтому, нередко наз. традиционными Э. p. K возобновляемым (воспроизводимым и практически неисчерпаемым) Э. p. относятся гидроэнергия (гидравлич. энергия рек), a также т.н. нетрадиционные (или альтернативные) источники энергии: солнечная, ветровая, энергия внутреннего тепла Земли (в т.ч. геотермальная), тепловая энергия океанов, энергия приливов и отливов. Oсобо должна быть выделена ядерная или атомная энергия, относимая к невозобновляемым Э. p., т.к. её источником являются радиоактивные (преим. урановые) руды. Oднако co временем, c постепенной заменой атомных электростанций (АЭС), работающих на тепловых нейтронах, атомными электростанциями, использующими реакторы- размножители на быстрых нейтронах, a в будущем термоядерную энергию, ресурсы ядерной энергетики станут практически неисчерпаемыми.

Быстрое развитие мировой энергетики в 20 в. опиралось на широкое использование минерального (ископаемого) топлива, особенно нефти, природного газа и угля, добыча к-рых до cep. 70-x гг. была сравнительно недорогой и в техн. отношении доступной. Доля нефти и газа в мировом потреблении Э. p. достигала 60% и доля угля — св. 25% (в 1950 доля угля составляла 50%). Cледовательно, св. 85% суммарного потребления Э. p. в мире в тот период приходилось на невозобновляемые ресурсы органич. топлива и лишь ок. 15% — на возобновляемые ресурсы (гидроэнергия, дровяное топливо и др.). C 70-x гг., когда сложность и стоимость добычи нефти и газа стали резко увеличиваться в связи c исчерпанием или значит. сокращением их запасов в легкодоступных м-ниях, появилась необходимость их жёсткой экономии и строго ограниченного использования в качестве топлива. Гл. областью применения ресурсов нефти и газа как ценнейшего технол. сырья стала хим. и нефтехим. пром-сть, в т.ч. произ-во синтетич. материалов и моторных топлив. Bажным первичным энергоресурсом для электроэнергетики становится в кон. 20 в. и в перспективе ядерная энергетика. B cep. 80-x гг. на атомных электростанциях мира было выработано св. 12% всей электроэнергии, произведённой на планете, a в нач. 21 в. её доля в мировом электробалансе увеличится ещё в 2-2,5 раза. Большая роль в произ-ве электроэнергии принадлежит гидроэнергетич. ресурсам, источником к-рых является постоянное течение рек; в cep. 80-x гг. на долю гидроэлектростанций приходилось 23% всей электроэнергии, выработанной в мире. Значительно возрастает роль и таких возобновляемых нетрадиционных Э. p., как солнечная энергия (энергия солнечной радиации, поступающей на поверхность Земли), энергия внутреннего тепла самой Земли (в первую очередь геотермальная энергия), тепловая энергия Mирового ок. (обусловленная большими перепадами темп-p между поверхностными и глубинными слоями воды), энергия морских и океанич. приливов и энергия волн, ветровая энергия, энергия биомассы, основой к-рой является механизм фотосинтеза (биоотходы c. x-ва и животноводства, пром. органич. отходы, использование древесины и древесного угля). Пo имеющимся прогнозам, доля возобновляемых Э. p. (гидроэнергетических и перечисленных нетрадиционных) достигнет в 1-й четв. 21 в. примерно 7-9% в мировом суммарном использовании всех видов первичных энергоресурсов (св. 20-23% будет приходиться на атомную ядерную энергию и ок. 70% сохранится за органич. топливом — углём, газом и нефтью).

Для сопоставления тепловой ценности разл. видов топливно-энергетич. ресурсов используется расчётная единица, называемая Условным топливом.

Энергетические ресурсы земли .Использование энергетических ресурсов земли.Энергетические ресурсы — это все источники разнообразных видов энергии, доступные для промышленного и бытового использования в энергетике.

Энергетические ресурсы делятся на невозобновляемые, возобновляемые и ядерные. По происхождению энергетические ресурсы делятся на топливо различных видов (как вознобновляемое, так и нет), энергию различных природных процессов, и ядерную энергию. Также выделяется специальная категория вторичных энергетических ресурсов (топливных, тепловых, и ВЭР избыточного давления). Человеком используются самые разные виды энергии: тепловая, электрическая, ядерная, химическая, механическая. Энергетические ресурсы используются в первую очередь для генерации электроэнергии и в топливной промышленности.

Оценка доступных мировых запасов энергоресурсов [en] крайне важна в рамках подхода устойчивого развития.


Энергетический ресурс (или энергоресурс) - это носитель энергии, энергия которого используется или может быть использована при осуществлении хозяйственной и иной деятельности, а также вид энергии (атомная, тепловая, электрическая, электромагнитная энергия или другой вид энергии).

Источник: Федеральный закон от 23.11.2009 N 261-ФЗ
"Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации"

Классификация энергоресурсов:

1. Первичные энергетические ресурсы - это энергия природного происхождения (природное топливо, энергия водных ресурсов, энергия солнца и ветра и др. виды)

2. Вторичные энергетические ресурсы - это энергия, образующаяся в результате переработки или преобразования различных видов топлива, а так же в результате производственных процессов (продукты нефтепереработки, отработанный пар, отходы тепла, сбереженная энергия и др. виды)

3. Топливные энергетические ресурсы - это энергия различных видов топлива (каменный и бурый уголь, нефть, горючие газы, горючие сланцы, торф, дрова и др. виды)

4. Нетопливный энергетический ресурс - это энергия энергия, образующаяся без участия топлива (электрическая энергия, электромагнитная энергия, энергия солнца и др. виды)

5. Возобновляемый энергетический ресурс - это ресурс, запас которого непрерывно возобновляется природой (энергия солнца, энергия вод, энергия приливов, геотермальная энергия, тепловая энергия земли, воздуха, воды, биомасса и др. виды)

6. Невозобновляемый энергетический ресурс - это ресурс, запас которого принципиально исчерпаем (минеральное топливо, уран и др. виды)


Русское слово энергия, английское energy, немецкое и французское energie - все эти слова произошли от древнегреческого energeia (energeia), которое обозначает действительность, деятельность, действие и противопоставляет себя тому, что не является действительностью, но может ею стать в процессе движения и развития, - возможности, способности, потенции. Формирование понятия энергии, начавшись в 6-4 вв. до н.э. в рамках древнегреческой натурфилософии, было продолжено почти через две тысячи лет в эпоху европейской научной революции в естествознании (XVII век), достигнув за последние триста лет современного, но далеко еще не завершенного понимания того, что есть энергия. Это понятие является фундаментальной физической и философской категорией и теснейшим образом связано с другими всеобщими категориями, такими как материя, движение, пространство и время, масса, информация. По мере дальнейшего проникновения человека в тайны материи будет, несомненно, углубляться и наше понимание энергии.

Современное понятие энергии трактуется как общая количественная мера движения и взаимодействия всех видов материи :

Энергия – это общая количественная мера движения и взаимодействия всех видов материи

Данное определение поясняет, что:

1) все виды материи взаимодействуют друг с другом, связывая воедино все явления в природе и обеспечивая материальное единство мира;

2) существование конкретного вида и взаимодействия различных видов материи проявляются в форме движения, под которым понимается не просто механическое перемещение физических объектов в пространстве и во времени, а их постоянное количественное и качественное изменение путем взаимопревращений;

В настоящее время развитие знаний об энергии продолжается как на пути поиска ее единой физической первоосновы (сегодня в качестве такой первоосновы рассматривают, в частности, физический вакуум), так и в рамках изучения отдельных, специфических видов энергии, среди которых выделяют ее главные разновидности, или формы: механическую, тепловую, химическую, электромагнитную, гравитационную и ядерную. Одни формы энергии могут превращаться в другие в строго определенных количественных соотношениях, и эти превращения кладутся в созидательную основу энергетики человеческого общества. Вместе с тем, закон сохранения и превращения энергии, который является одним из основных законов современного естествознания, гласит, что при всех превращениях энергии общее количество ее в замкнутых, или изолированных, системах не изменяется, что накладывает определенные ограничения на возможности энергетики. Базовой отраслью экономики любого современного индустриально развитого государства является большая энергетика, или энергетическая отрасль, охватывающая своей деятельностью приобретение и использование энергетических ресурсов, выработку, накопление, преобразование, передачу, распределение и использование различных видов энергии и энергоносителей. В этой последовательности действий процесс использования (потребления) энергии и энергоносителей происходит, главным образом, вне рамок самой энергетики – у потребителей, к которым относятся физические лица (граждане) и юридические лица (субъекты общества и государства). Потребители используют энергию путем ее дальнейшего преобразования с помощью разнообразных энергоприемников искусственного и естественного происхождения в полезные физические процессы для удовлетворения своих личных и общественных потребностей. Сама же энергетика нацелена исключительно на обеспечение в целом потребностей граждан, общества и государства в базовых видах энергии. Дополнением большой энергетики является малая энергетика, развиваемая самостоятельно отдельными потребителями как в собственных интересах, так и в интересах общества.

Первичные энергоресурсы – это ресурсы, содержащие природные запасы энергии, которые могут быть преобразованы с помощью существующих энергетических технологий в полезные виды энергии

Материя существует в двух основных своих формах – форме вещества (в одном из его агрегатных состояний или фазах – твердом, жидком, газообразном и плазменном - или их сочетаниях) и форме поля (в различных его видах, включая волновое излучение), которые постоянно преобразуются друг в друга. Наиболее общее понятие об энергии можно получить воспользовавшись идеями теории относительности, связывающей воедино вещество и поле. Согласно принципу эквивалентности энергии и массы, или принципу эквивалентности Эйнштейна, сформулированному в специальной теории относительности, любое покоящееся в вакууме относительно некоторой системы отсчета физическое тело с собственной массой покоя m0 обладает в этой системе отсчета запасом энергии покоя, или внутренней энергией, Е0=m0×c2, где с - скорость света в вакууме, равная 3×1010 см/с. В соответствии с формулой, изменение внутренней энергии тела (например, путем его нагрева или охлаждения) ведет к изменению его массы и, наоборот, изменение собственной массы тела ведет к изменению внутренней энергии, а, следовательно, к изменению энергии, выделяемой или поглощаемой телом из внешней среды в полевой форме.

Казалось бы, что энергоресурсом может быть любое вещество. Но современные энергетические технологии не позволяют получать энергию из любого вещества. В частности, отсутствуют технологии аннигиляции вещества, а технологии термоядерного синтеза носят пока исключительно экспериментальный характер. Поэтому в настоящее время к реальным энергоресурсам, в противоположность потенциальным энергоресурсам, которые, вероятно, будут использоваться в отдаленном будущем, можно отнести достаточно ограниченный круг разновидностей вещества и поля, присутствующих в биосфере Земли или ближайшем космосе и доступных для технического использования человеком. Этот круг энергоресурсов еще больше сужается, если дополнительным критерием их использования рассматривать, помимо чисто технической возможности, экономическую эффективность и политическую целесообразность.

Первичные энергоресурсы, в отличие от экономических ресурсов (материальных, трудовых, финансовых), которые создаются в обществе, относятся к природным ресурсам – естественным ресурсам природы и среды обитания человечества, используемым последним для удовлетворения своих материальных, культурных и духовных потребностей. Эти ресурсы не создаются трудом человека, а существуют независимо от него. Помимо энергетических, к природным ресурсам относят космические, воздушные, водные, земельные, минеральные, растительные, животные и другие ресурсы. Все эти ресурсы, включая и энергетические, подразделяют, с точки зрения возможности их длительного использования человеческим обществом, на две большие группы: неисчерпаемые, срок эксплуатации которых практически неограничен и измеряется миллионами лет, и исчерпаемые, срок использования которых ограничен и во многом зависит от условий их эксплуатации.

К неисчерпаемым энергоресурсам относят некоторые земные, например, тепло недр, и космические - солнечную радиацию, космическое излучение, гравитацию небесных тел (по существу, и эти ресурсы также исчерпаемы, хотя и в очень отдаленной перспективе: например, Солнце должно закончить свой эволюционный цикл через 5 млрд. лет пройдя стадию красного гиганта и превратившись в белый карлик). Ресурсы второй группы, в свою очередь, делят на возобновляемые, т.е. способные при определенных условиях к постоянному восстановлению в процессе их использования (например, гидроресурсы или биомасса) и невозобновляемые, эксплуатация которых неизбежно приводит к истощению их запасов (например, полезные ископаемые).

Некоторые энергоресурсы могут одновременно относиться к этим двум подгруппам. Так, топливо – горючее вещество, которое при сжигании выделяет значительно количество теплоты - может быть невозобновляемым ресурсом, если в качестве его применяются полезные ископаемые, например, уголь, и, напротив, превращается в возобновляемый ресурс, если им становится древесина. Топливо может использоваться как источник энергии непосредственно в рабочих машинах для получения потребителем требуемой конечной формы энергии, например, механической. Оно же может применяться в энергоустановках большой или малой энергетики для выработки тепловой и/или электрической энергии. В последнем случае его относят (в узком смысле слова) к топливно-энергетическим ресурсам (ТЭР). В широком смысле слова под ТЭР понимается, как топливо, предназначенное для использования в энергетике, так и другие виды энергоресурсов, отличающиеся от топлива, но пригодные для производства полезной энергии (например, гидроресурсы). При этом топливо по своему применению в рамках ТЭР занимает только определенную долю.

Главными первичными энергоресурсами современной цивилизации стали по историческим, техническим и экономическим причинам невозобновляемые природные запасы ископаемого органического, или углеводородного топлива в виде нефти, газа, каменного и бурого угля, торфа и горючих сланцев, накопленные в недрах планеты за сотни миллионов лет эволюции ее биосферы. Эти энергоресурсы и продукты их переработки используются интенсивно в энергетике в последние два столетия для сжигания в камерах сгорания, топках и котлах энергоустановок с целью получения исходной тепловой энергии в форме водяного пара. Далее эта энергия преобразуется в полезную механическую, тепловую или электрическую энергию в рабочих машинах (двигателях, турбинах, генераторах) на соответствующих энергообъектах - тепловых электростанциях (ТЭС), теплоэлектроцентралях (ТЭЦ) и котельных. Дополнительно к углеводородному топливу в энергетике потребляются невозобновляемые энергоресурсы ископаемого минерального топлива в виде урановой руды. Она применяется после соответствующей переработки и обогащения на атомных электростанциях (АЭС) для производства в процессе управляемой реакции деления ядер урана тепловой энергии в форме того же водяного пара с последующим его использованием для выработки электрической и/или тепловой энергии.

Помимо невозобновляемых первичных энергоресурсов, которые в современной мировой энергетике используются для выработки свыше 85% всей полезной энергии, все шире применяются и разнообразные возобновляемые энергоресурсы:

а) гидроэнергоресурсы, использующие механическую потенциальную и кинетическую энергию воды, в частности, на гидро - (ГЭС) и гидроаккумулирующих (ГАЭС), приливных (ПЭС) и волновых электростанциях (ВоЭС);

б) ветроэнергоресурсы, использующие кинетическую энергию воздушных потоков атмосферы для выработки электроэнергии на ветроэнергетических установках (ВЭУ) и ветровых электростанциях (ВЭС);

в) геотермальные и геогидротермальные энергоресурсы, используемые для получения тепловой энергии с горячей водой и паром на геотермальных тепловых электростанциях (ГеоТЭС);

г) солнечное излучение, используемое для получения тепловой энергии на солнечных водяных коллекторах или электрической энергии на солнечных (СЭС) и солнечных тепловых электростанциях (СТЭС);

д) выращиваемая и затем сжигаемая в топках энергоустановок с целью получения тепловой энергии биомасса, и другие возобновляемые природные энергоресурсы.

Наряду с первичными энергоресурсами в энергетике применяются и вторичные энергоресурсы, которые появляются как отходы основного общественного производства в процессе получения или использования полезных видов энергии в самой энергетике или в других отраслях экономики. К таким вторичным энергоресурсам относятся, в частности, различные производственные отходы, пригодные для сжигания (например, опилки, мусор, автомобильные покрышки) или производства горючих газов (биоотходы, в том числе навоз), отходы, или сбросы тепловой энергии в виде горячей воды, пара или газа, пригодные, тем не менее, для дальнейшего использования, и другие энергоотходы. Вторичные энергоресурсы могут применяться как для дополнительной выработки и преобразования энергии, так и для непосредственного полезного ее использования в тех или иных технологических процессах.

Первоочередной задачей большой энергетики является получение и использование первичных и вторичных энергоресурсов для выработки двух господствующих в обществе, полезных и универсальных видов энергии – тепловой и электрической. Эта задача решается в рамках топливно-энергетического комплекса (ТЭК), в который входит топливная промышленность – комплекс отраслей, занятых добычей и переработкой соответствующего топливно-энергетического сырья (нефти, газа, угля, сланцев, торфа, древесины, урановой руды), топливоснабжающая отрасль, обеспечивающая поставку топлива по системе трубопроводного (например, газопроводами) или автомобильного транспорта и энергосистема, реализующая на большой территории (область, регион или страна) в режиме единого функционирования и управления непрерывный процесс использования первичных энергоресурсов для производства, передачи, распределения и потребления электрической и тепловой энергии.

Первичные энергоресурсы, поступающие в энергосистему, имеют вид первичных энергоносителей или преобразуются к этому виду в процессе топливоподготовки (например, природный газ или мазут приводятся в систему заданных термодинамических параметров – температуры и давления, вода проходит стадию химводоподготовки – очищается от примесей и подогревается, уголь размельчается и т.д.). Первичные энергоносители - это подготовленные первичные энергоресурсы, пригодные для непосредственного технического использования в энергосистеме для выработки из них энергии. Выработанная в энергосистеме тепловая энергия, в свою очередь, передается потребителям по трубопроводному транспорту посредством вторичных энергоносителей, в качестве которых чаще всего используются водяной пар и теплофикационная вода (теплоносители). В качестве первичных и вторичных энергоносителей можно рассматривать и электроэнергию: в первом своем представлении она используется для работы энергоустановок энергосистемы, а во втором – как продукт энергетического производства, предназначенный для передачи потребителям.

В общем случае энергоносители можно определить как энергоресурсы, представленные в форме, позволяющей их непосредственное применение в технических системах энергосистем и потребителей для преобразования или использования содержащейся в них энергии.

Энергоносители – это энергоресурсы, представленные в форме, позволяющей их непосредственное применение в технических системах энергосистем и потребителей для преобразования или использования содержащейся в них энергии

Основными видами энергоносителей в сегодняшней малой и большой энергетике, а также у потребителей, являются жидкие и газообразные энергоносители (в частности, природный газ, мазут, вода, водяной пар и другие) и электроэнергия. Общей особенностью применения, передачи, распределения и потребления этих энергоносителей в энергосистемах и у потребителей является наличие стационарной территориально распределенной связной инфраструктуры, включающей генерирующие источники (электростанции, энергоустановки) и хранилища энергоносителей (нефте-, мазуто-, газо- и водохранилища), трубопроводный транспорт и линии электропередачи для магистральной и распределительной передачи энергоносителей, распределительные и преобразовательные станции и подстанции, пункты энергоснабжения и питающие ввода потребителей. Вся эта инфраструктура работает как единое целое под соответствующим общим оперативно-диспетчерским управлением и с необходимым соблюдением всех системных режимов функционирования. По существу такие энергетические системы подобны сложным организмам, жизнеспособность и эффективность которых зависит как от внутренних, так и внешних факторов.

Жидкие и газообразные энергоносители и электроэнергия широко используются во всех отраслях экономики, начиная от таких энергоемких, как металлургические, горнодобывающие и горноперерабатывающие, химические, машиностроительные и другие производства, и оканчивая жилищно-хозяйственным сектором, многоквартирными и индивидуальными жилыми домами. В условиях постоянного нарастающего дефицита и роста стоимости энергии и энергоносителей во всех отраслях актуален вопрос их измерения и учета с последующим управлением на основе полученных данных энергопотреблением как отдельных субъектов и отраслей хозяйствования, так и государства в целом. Завтрашний день, несомненно, сделает актуальным задачу управления энергопотреблением для союзов государств или, даже, для всего их планетарного содружества, а решение этой задачи будет достигаться путем создания глобальных автоматизированных систем контроля и учета энергоносителей (АСКУЭ).

Цель измерения, учета и управления выработкой и потреблением энергии и энергоносителей для любого индустриально развитого общества – это глобальная оптимизация энергопотребления, энергосбережение и обеспечение устойчивого экономического развития общества в эпоху наметившегося ограничения традиционных мировых энергоресурсов, бушующих энергетических кризисов и конфликтов, глобализации рынков энергоресурсов и существенного роста неблагоприятного техногенного воздействия человечества на экологию биосферы.

Читайте также: