Движение заряженных частиц в магнитном поле кратко

Обновлено: 06.07.2024

§ 30. Сила Лоренца. Движение заряженных частиц в магнитном поле

Поскольку электрический ток представляет собой упорядоченное движение заряженных частиц, то это означает, что магнитное поле, действуя на проводник с током, действует тем самым на каждую из этих частиц. Таким образом, силу Ампера можно рассматривать как результат сложения сил, действующих на отдельные движущиеся заряженные частицы. Как можно определить силу, действующую со стороны магнитного поля на заряженную частицу, движущуюся в этом поле?

Сила Лоренца. Силу, которой магнитное поле действует на заряженную частицу, движущуюся в этом поле, называют силой Лоренца в честь выдающегося нидерландского физика Хендрика Антона Лоренца ( 1853–1928 ).

Модуль силы Лоренца можно определить по формуле , где N — общее число свободных заряженных одинаковых частиц на прямолинейном участке проводника длиной Δl ( рис. 167 ). Если модуль заряда одной частицы q, а модуль суммарного заряда всех частиц Nq, то согласно определению силы тока , где Δt — промежуток времени, за который заряженная частица проходит участок проводника длиной Δl. Тогда

Поскольку – модуль средней скорости упорядоченного движения заряженной частицы в стационарном * электрическом поле внутри проводника, то формулу для определения модуля силы Лоренца можно записать в виде:

где α — угол между направлениями индукции магнитного поля и скорости упорядоченного движения заряженной частицы.

Из формулы (30.1) следует, что сила Лоренца максимальна в случае, когда заряженная частица движется перпендикулярно направлению индукции магнитного поля (α = 90°). Когда частица движется вдоль линии индукции поля (α = 0° или α = 180°), сила Лоренца на неё не действует. Сила Лоренца зависит от выбора инерциальной системы отсчёта, так как в разных системах отсчёта скорость движения заряженной частицы может отличаться.

Направление силы Лоренца, действующей на заряженную частицу, как и направление силы Ампера, определяют по правилу левой руки (рис. 168): если левую руку расположить так, чтобы составляющая индукции магнитного поля, перпендикулярная скорости движения частицы, входила в ладонь, а четыре пальца были направлены по движению положительно заряженной частицы (против движения отрицательно заряженной частицы), то отогнутый на 90° в плоскости ладони большой палец укажет направление действующей на частицу силы Лоренца.

Сила Лоренца перпендикулярна как направлению скорости движения частицы, так и направлению индукции магнитного поля.

На рисунке 169 представлены направления индукции магнитного поля, скорости движения частицы в данный момент времени и силы Лоренца , действующей на частицу со стороны магнитного поля. Определите знак заряда частицы.

* Электрическое поле, создаваемое и поддерживаемое источником тока в течение длительного промежутка времени и обеспечивающее постоянный электрический ток в проводнике, называют стационарным электрическим полем. ↑

Общие свойства магнитной силы

Эксперименты, в которых наблюдалось движение заряженных частиц в магнитном поле, дают такие результаты:

  • Величина FB магнитной силы, действующей на частицу пропорциональна заряду q и скорости v частицы.
  • Если движение заряженной частицы в магнитном поле происходит параллельно вектору этого поля, то сила, действующая на нее, равна нулю.
  • Когда вектор скорости частицы составляет любой Угол θ ≠ 0 с магнитным полем, то сила действует в направлении, перпендикулярном к v и B; то есть, FB перпендикулярна плоскости, образованной v и B (см.рис. ниже).
  • Величина и направление FB зависит от скорости частицы и от величины и направления магнитного поля B.
  • Направление силы, действующей на положительный заряд, противоположно направлению такой же силы, действующей на отрицательный заряд, движущийся в ту же сторону.
  • Величина магнитной силы, действующей на движущуюся частицу, пропорциональна sinθ угла θ между векторами v и B.

Сила Лоренца

Мы можем суммировать вышеперечисленные наблюдения путем записи магнитной силы в виде FB = qv х B.

Когда происходит движение заряженной частицы в магнитном поле, сила Лоренца FB при положительном q направлена вдоль векторного произведения v x B. Оно по определению перпендикулярно как v, так и B. Считаем это уравнение рабочим определением магнитного поля в некоторой точке в пространстве. То есть оно определяется в терминах силы, действующей на частицу при ее движении. Таким образом, движение заряженной частицы в магнитном поле кратко можно определить как перемещение под действием этой силы.

Заряд, движущийся со скоростью v в присутствии как электрического поля E, так и магнитного B, испытывает действие как электрической силы qE, так и магнитной qv х В. Полное приложенное к нему воздействие равно FЛ = qE + qv х В. Его принято называть так: полная сила Лоренца.

Движение заряженных частиц в однородном магнитном поле

Рассмотрим теперь частный случай положительно заряженной частицы, движущейся в однородном поле, с начальным вектором скорости, перпендикулярным ему. Предположим, что вектор B поля направлен за страницу. Рисунок ниже показывает, что частица движется по кругу в плоскости, перпендикулярной к B.

движение заряженной частицы в магнитном поле по окружности

Движение заряженной частицы в магнитном поле по окружности происходит потому, что магнитная сила FB направлена под прямым углом к v и B и имеет постоянную величину qvB. Поскольку сила отклоняет частицы, направления v и FB изменяются непрерывно, как показано на рисунке. Так как FB всегда направлена к центру окружности, она изменяет только направление v, а не ее величину. Как показано на рисунке, движение положительно заряженной частицы в магнитном поле происходит против часовой стрелки. Если q будет отрицательным, то вращение произойдет по часовой стрелке.

Динамика кругового движения частицы

Какие же параметры характеризуют вышеописанное движение заряженной частицы в магнитном поле? Формулы для их определения мы можем получить, если возьмем предыдущее уравнение и приравняем FB центробежной силе, требуемой для сохранения круговой траектории движения:

движение заряженной частицы в магнитном поле формулы

То есть радиус окружности пропорционален импульсу mv частицы и обратно пропорционален величине ее заряда и величине магнитного поля. Угловая скорость частицы

движение заряженной частицы в магнитном поле формулы

Период, с которым происходит движение заряженной частицы в магнитном поле по кругу, равен длине окружности, разделенной на ее линейную скорость:

движение заряженной частицы в магнитном поле формулы

Эти результаты показывают, что угловая скорость частицы и период кругового движения не зависит от линейной скорости или от радиуса орбиты. Угловую скорость ω часто называют циклотронной частотой (круговой), потому что заряженные частицы циркулируют с ней в типе ускорителя под названием циклотрон.

Движение частицы под углом к вектору магнитного поля

Если вектор v скорости частицы образует некоторый произвольный угол по отношению к вектору B, то ее траектория является винтовой линией. Например, если однородное поле будет направлено вдоль оси х, как показано на рисунке ниже, то не существует никакой компоненты магнитной силы FB в этом направлении. В результате составляющая ускорения ax= 0, и х-составляющая скорости движения частицы является постоянной. Однако магнитная сила FB = qv х В вызывает изменение во времени компонентов скорости vy и vz. В результате имеет место движение заряженной частицы в магнитном поле по винтовой линии, ось которой параллельна магнитному полю. Проекция траектории на плоскости yz (если смотреть вдоль оси х) представляет собой круг. Проекции ее на плоскости ху и xz являются синусоидами! Уравнения движения остаются такими же, как и при круговой траектории, при условии, что v заменяется на ν = √(νу 2 + νz 2 ).

движение заряженной частицы в магнитном поле по винтовой линии

Неоднородное магнитное поле: как в нем движутся частицы

Движение заряженной частицы в магнитном поле, являющемся неоднородным, происходит по сложным траекториям. Так, в поле, величина которого усиливается по краям области его существования и ослабляется в ее середине, как, например, показано на рисунке ниже, частица может колебаться вперед и назад между конечными точками.

движение заряженной частицы в магнитном поле

Заряженная частица стартует с одного конца винтовой линии, накрученной вдоль силовых линий, и движется вдоль нее, пока не достигнет другого конца, где она поворачивает свой ​​путь обратно. Эта конфигурация известна как "магнитная бутылка", поскольку заряженные частицы могут быть захвачены в нее. Она была использована, чтобы ограничить плазму, газ, состоящий из ионов и электронов. Такая схема плазменного заключения может выполнять ключевую роль в контроле ядерного синтеза, процессе, который представит нам почти бесконечный источник энергии. К сожалению, "магнитная бутылка" имеет свои проблемы. Если в ловушке большое число частиц, столкновения между ними вызывают утечку их из системы.

Как Земля влияет на движение космических частиц

Околоземные пояса Ван Аллена состоят из заряженных частиц (в основном электронов и протонов), окружающих Землю в форме тороидальных областей (см. рис. ниже). Движение заряженной частицы в магнитном поле Земли происходит по по спирали вокруг силовых линий от полюса до полюса, покрывая это расстояние в несколько секунд. Эти частицы идут в основном от Солнца, но некоторые приходят от звезд и других небесных объектов. По этой причине они называются космическими лучами. Большинство их отклоняется магнитным полем Земли и никогда не достигает атмосферы. Тем не менее, некоторые из частиц попадают в ловушку, именно они составляют пояса Ван Аллена. Когда они находятся над полюсами, иногда происходят столкновения их с атомами в атмосфере, в результате чего последние излучают видимый свет. Так возникают красивые Полярные сияния в Северном и Южном полушариях. Они, как правило, происходят в полярных регионах, потому что именно здесь пояса Ван Аллена расположены ближе всего к поверхности Земли.

Иногда, однако, солнечная активность вызывает большее число заряженных частиц, входящих в эти пояса, и значительно искажает нормальные силовые линии магнитного поля, связанные с Землей. В этих ситуациях полярное сияние можно иногда увидеть в более низких широтах.

движение заряженной частицы в магнитном поле земли

Селектор скоростей

Во многих экспериментах, в которых происходит движение заряженных частиц в однородном магнитном поле, важно, чтобы все частицы двигались с практически одинаковой скоростью. Это может быть достигнуто путем применения комбинации электрического поля и магнитного поля, ориентированного так, как показано на рисунке ниже. Однородное электрическое поле направлено вертикально вниз (в плоскости страницы), а такое же магнитное поле приложено в направлении, перпендикулярном к электрическому (за страницу).

движение заряженных частиц в однородном магнитном поле

Для положительного q магнитная сила FB=qv х В направлена вверх, а электрическая сила qE – вниз. Когда величины двух полей выбраны так, что qE = qvB, то частица движется по прямой горизонтальной линии через область поля. Из выражения qE = qvB мы находим, что только частицы, имеющие скорость v=E/B, проходят без отклонения через взаимно перпендикулярные электрическое и магнитное поля. Сила FB, действующая на частицы, движущиеся со скоростью большей, чем v=E/B, оказывается больше электрической, и они отклоняются вверх. Те же из них, которые движутся с меньшей скоростью, отклоняются вниз.

Масс-спектрометр

Этот прибор разделяет ионы в соответствии с соотношением их массы к заряду. По одной из версий этого устройства, известного как масс-спектрометр Бэйнбриджа, пучок ионов проходит сначала через селектор скоростей и затем поступает во второе поле B0, также однородное и имеющее то же направление, что и поле в селекторе (см. рис. ниже). После входа в него движение заряженной частицы в магнитном поле происходит по полукругу радиуса r перед ударом в фотопластинку Р. Если ионы заряжены положительно, луч отклоняется вверх, как показано на рисунке. Если ионы заряжены отрицательно, луч будет отклоняться вниз. Из выражения для радиуса круговой траектории частицы, мы можем найти отношение m/q

движение заряженной частицы в магнитном поле формулы

и затем, используя уравнение v=E/B, мы находим, что

движение заряженной частицы в магнитном поле формулы

Таким образом, мы можем определить m/q путем измерения радиуса кривизны, зная поля величин B, B0, и E. На практике, так обычно измеряет массы различных изотопов данного иона, поскольку все они несут один заряд q. Таким образом, отношение масс может быть определено, даже если q неизвестно. Разновидность этого метода была использована Дж. Дж. Томсоном (1856-1940) в 1897 году для измерения отношение е/mе для электронов.

Циклотрон

Он может ускорить заряженные частицы до очень высоких скоростей. И электрические, и магнитные силы играют здесь ключевую роль. Полученные высокоэнергетические частицы используются для бомбардировки атомных ядер, и тем самым производят ядерные реакции, представляющие интерес для исследователей. Ряд больниц использует циклотронное оборудование для получения радиоактивных веществ для диагностики и лечения.

движение заряженной частицы в магнитном поле по спирали

Схематическое изображение циклотрона показан на рис. ниже. Частицы движутся внутри двух полуцилиндрических контейнеров D 1 и D 2, называемых дуантами. Высокочастотная переменная разность потенциалов приложена к дуантам, разделенным зазором, а однородное магнитное поле направлено вдоль оси циклотрона (южный полюс его источника на рис. не показан).

Положительный ион, выпущенный из источника в точке Р вблизи центра устройства в первом дуанте, перемещается по полукруглой траектории (показана пунктирной красной линией на рисунке) и прибывает обратно в щель в момент времени Т / 2, где Т - время одного полного оборота внутри двух дуантов.

Частота приложенной разности потенциалов регулируется таким образом, что полярность дуантов меняется на обратную в тот момент времени, когда ион выходит из одного дуанта. Если приложенная разность потенциалов регулируется таким образом, что в этот момент D2 получает более низкий электрический потенциал, чем D1 на величину qΔV, то ион ускоряется в зазоре перед входом в D2, и его кинетической энергии увеличивается на величину qΔV. Затем он движется вокруг D2 по полукруглой траектории большего радиуса (потому что его скорость увеличилась).

Через некоторое время T / 2 он снова поступает в зазор между дуантами. К этому моменту полярность дуантов снова изменяется, и иону дается еще один "удар" через зазор. Движение заряженной частицы в магнитном поле по спирали продолжается, так что при каждом проходе одного дуанта ион получает дополнительную кинетическую энергию, равную qΔV. Когда радиус его траектории становится близким к радиусу дуантов, ион покидает систему через выходную щель. Важно отметить, что работа циклотрона основана на том, что Т не зависит от скорости иона и радиуса круговой траектории. Мы можем получить выражение для кинетической энергии иона, когда он выходит из циклотрона в зависимости от радиуса R дуантов. Мы знаем, что скорость кругового движения частицы - ν = qBR /m. Следовательно, ее кинетическая энергия

движение заряженной частицы в магнитном поле формулы

Когда энергии ионов в циклотрон превышает около 20 МэВ, в игру вступают релятивистские эффекты. Мы отмечаем, что T увеличивается, и что движущиеся ионы не остаются в фазе с приложенной разностью потенциалов. Некоторые ускорители решают эту проблему, изменяя период прикладываемой разности потенциалов, так что она остается в фазе с движущимися ионами.

Эффект Холла

Когда проводник с током помещается в магнитное поле, то дополнительная разность потенциалов создается в направлении, перпендикулярном к направлению тока и магнитного поля. Это явление, впервые наблюдаемое Эдвином Холлом (1855-1938) в 1879 году, известно как эффект Холла. Он всегда наблюдается, когда происходит движение заряженной частицы в магнитном поле. Это приводит к отклонению носителей заряда на одной стороне проводника в результате магнитной силы, которую они испытывают. Эффект Холла дает информацию о знаке носителей заряда и их плотности, он также может быть использован для измерения величины магнитных полей.

Устройство для наблюдения эффекта Холла состоит из плоского проводника с током I в направлении х, как показано на рисунке ниже.

движение заряженной частицы в магнитном поле сила лоренца

Однородное поле B приложено в направлении у. Если носителями заряда являются электроны, движущиеся вдоль оси х со скоростью дрейфа vd, то они испытывают направленную вверх (с учетом отрицательного q) магнитную силу FB = qvd х B, отклоняются вверх и накапливаются на верхнем краю плоского проводника, в результате чего появляется избыток положительного заряда на нижнем краю. Это накопление заряда на краях увеличивается до тех пор, пока электрическая сила, появившаяся в результате разделения зарядов, не уравновешивает магнитную силу, действующую на носители. Когда это равновесие будет достигнуто, электроны больше не отклоняются вверх. Чувствительный вольтметр или потенциометр, подключенный к верхней и нижней граням проводника, может измерить разность потенциалов, известную как ЭДС Холла.

В физике электрическое поле принято описывать величиной, характеризующей действие на единичный электрический заряд. В электродинамике воздействие, которое приводит в движение частицы в магнитном поле, называют силой Лоренца.

Движение частиц в магнитном поле

Её главная особенность — для неё не выполняется третье утверждение Ньютона, но справедливо правило сохранения импульса. При этом макроскопическим проявлением перемещения является закон взаимодействия токов.

Общие сведения

Ещё в III—II тысячелетии на острове Магнезия были обнаружены камни, обладающие странными свойствами. Они имели способность притягивать к себе железные предметы. Эти вещества в честь острова получили название магниты. Так как их свойства сохраняются в течение длительного времени, их считают постоянными. Было установлено, что если такой камень разместить на поплавке и положить на него магнит, при его развороте он вернётся в начальное положение. Другими словами, он всегда стремится ориентироваться определённым образом.

Если взять 2 магнита, то, в зависимости от их расположения, они могут притягиваться друг к другу или отталкиваться. Этот эффект объясняется наличием у намагниченных веществ двух полюсов. В 1820 году Христиан Эрстед читал лекцию о тепловом действии тока. Он через проволоку пропускал электричество, демонстрируя, как она разогревается.

Во время эксперимента один из студентов обнаружил, что когда замыкалась цепь, стрелка у рядом находящегося компаса отклонялась. Это вращение и позволило обнаружить связь между электричеством и магнетизмом.

Движение заряженных частиц в однородном магнитном поле

Учёный начал экспериментально изучать эффект. Он предположил, что, так как электрический ток — направленное движение в проводнике заряженных частиц, существует какая-то сила, возникающая вокруг проводящего тела. Обнаружить её можно с помощью компаса. Эту особую пространственную материю назвали магнитным полем. Воображаемые направления, вдоль которых бы расположились стрелки компасов, назвали силовыми линиями.

Опытным путём были установлены характеристики, описывающие движение заряженной частицы в магнитном поле.

К основным из них относят:

  1. Индукцию. Это плотность магнитных линий. С их помощью вещества разделяют на однородные и неоднородные. В первых магнитная индукция в каждой точке материи имеет одинаковое значение. Определяют её как отношение потока к площади поперечного сечения проводника.
  2. Проницаемость. Описывает способность среды создавать магнитные силы. Величиной, характеризующей это свойство, является абсолютное значение.
  3. Напряжённость. Изменяется в зависимости от силы тока в проводнике и его формы.

Описать магнитную материю можно численно и направлением. За её ориентацию принимается северная сторона, на которую указывает стрелка компаса.

Либо за неё можно принять расположение положительной нормали с током в рамке. Определяют её по правилу буравчика.

Рамка с током

Физиками было установлено, что если взять рамку и пропустить по ней ток, магнитное поле окажет влияние на электроны. В результате происходит их обращение. Вращательное действие силы характеризуется моментом энергии. Именно он и описывает действие материи.

 силы действующие в магнитном поле

Пусть в магнитном поле расположена прямоугольная рамка. По ней циркулирует ток против часовой стрелки. Вектор индукции направлен вверх. За направление магнитных линий принимается положительная нормаль. По правилу буравчика, если направление поступательного движения винта будет совпадать с направлением тока в проводнике, то вращение винта укажет расположение вектора магнитной индукции поля, создаваемого движением частиц.

Угол между нормалью и вектором обозначают буквой альфа. Естественно, что рамка стремится развернуться так, чтобы быть перпендикулярно полю. Но если она не совпадает с ним по направлению, на неё действует момент силы. Чтобы провести расчёты, необходимо выбрать ось относительно рамки.

Пусть она будет проходить параллельно длинным линиям прямоугольника. Для удобства длина её будет равняться a, а ширина b.

На такую установку будет действовать сила Ампера. Её определение звучит так: модуль вектора равен произведению магнитной индукции на силу тока в проводнике, его длине и синусу угла между направлением поля и заряженными частицами: F = B * I * L * sin (j). Она действует на все стороны рамки. При этом отличается только по направлению.

На рамку оказываются следующие воздействия:

На какую частицу действует магнитное поле

  1. На дальнюю длинную сторону действует сила равная F1. Значит, на параллельную ей боковую грань воздействие будет противоположно по направлению -F2, поэтому силы принимаются по модулю. Так как значение тока везде одинаковое, можно записать: F = |F1| = |F2|.
  2. На короткие грани действуют силы, перпендикулярные проводнику. Они будут не поворачивать, а растягивать рамку. Соответственно, их можно обозначить как F3 и F4.

F1 и F2 создают нулевой момент. Они параллельны и направлены в противоположную сторону, образуют пару силы действующих в магнитном поле. Вычисляется она по формуле: M = F * d, где d — расстояние между воздействующими линиями энергии. Таким образом, момент силы в рамке будет определяться так: M = B * a * b * sin (j).

Если принять, что на прямоугольнике намотан провод с числом витков n, а произведение a * b — это площадь, формула примет окончательный вид: M = B * S * n * sin (j).

Сила Лоренца

Магнитное поле действует только на ту частицу, что подвергается воздействию силы Ампера. Пока электрон будет двигаться хаотично, никакого магнитного поля вокруг него не возникнет. Причём эта сила перпендикулярна проводнику и полю.

Получается, что причиной возникновения силы Ампера является какая-то материя, действующая на траекторию заряженных частиц, когда они начинают двигаться в поле.

Пусть в проводнике есть носители зарядов. Их массой в этом случае можно пренебречь. Так как частицами являются отрицательно заряженные электроны, движутся они противоположно направлению тока. На каждый заряд действует сила, которая в сумме даст силу Ампера.

Движение заряженной частицы в магнитном поле

Если взять воображаемое увеличительное стекло и посмотреть, что происходит в середине проводника, возможно было бы увидеть следующее: в окружности тела электрон перемещался бы встречно току и испытывал действие силы, перпендикулярной его движению. Именно она и называется силой Лоренца. Кратко её определение звучит так: равнодействующая всех энергий Ампера, действующих на заряженные частицы, которые перемещаются в поле. Обозначают её Fл.

Кинетическая сила возникает только при движении. Если частица нейтральная (нейтрон), воздействие на неё не оказывается. Чтобы рассчитать эту силу, нужно знать длину проводника и скорость перемещения носителей заряда. Время, которое потребуется электрону, чтобы сменить своё положение, определяют из равенства: t = L / V.

Всю совокупность прошедших частиц можно обозначить Qоб. Это общий заряд, прошедший через радиус проводника за t. Он будет равняться: Qоб = I * t = (I * L) / V.

Учитывая определение, можно утверждать, что Fa = Fл * N. Так как количество частиц, находящихся в проводнике, равняется всему заряду в нём N = Qоб / Q, можно записать: N = I * L / V * Q. Отсюда сила Ампера: Fa = Fл * (I * L) / (V * q). Если сделать подстановку Fа и выразить силу Лоренца, формула для её определения примет вид: Fл = Q * V * B * sin (j), то есть она пропорциональна скорости частицы в магнитном поле, вектору направления индукции и количеству зарядов. Причём сила Лоренца будет наибольшей, когда V перпендикулярно B.

Решение задач

Силы в магнитном поле

Исследования движения частиц в поле, вызванном магнитной энергией заключается в нахождении сил Лоренца и Ампера за период протекания электрического тока. Существуют определённые типы заданий, с помощью которых можно лучше понять изученный материал и наглядно увидеть, как тесно геометрия переплетается с физикой. Вот некоторые из них:

    Плоская прямоугольная катушка со сторонами 10 и 5 см, состоящая из 200 витков, находится в однородном поле с индукцией 0,05 Тл. Какой максимальный винтовой момент может действовать на катушку, если сила тока 2 А. Для решения этой задачи нужно использовать формулу: M = n * B * I * S * sin (j). Наибольший момент будет, когда синус альфа равняется 1. Значит: M = n * B * I * a * b = 200 * 0,05 H / A* m *2 А * 0,1 м = 0, 1 Н * м. Задача решена.

Квадратная рамка с током закреплена так, что может свободно вращаться вокруг горизонтально расположенной стороны. Находится она в вертикальном однородном поле индукции B, массой m, а угол наклона к горизонту j. Найти силу тока в рамке. В устройстве циркулирует ток. Значит, существует момент силы. Условие механического равновесия будет выполнено когда: Mmg + Mмаг = 0. Учитывая, что Mmg = mg * d, а d = q * cos (j) / 2 можно записать: Mmg = mg * а q / 2, а Mмаг = - B * I * S * sin (j). На этом шаге можно найти знак по правилу буравчика. Значит: B * I * a 2 * sin (j) = (mg * a cos (j)) /2. Отсюда: I = (mg) / (2 * B * a * tg (j)).

 магнитное поле движение частицы

Индукция уловителя пылинок на базе масс-спектрометра имеет значение 0,1 Тл. Напряжение создаёт поле 10 кВ. В устройстве ионы попадают на пластинку, являющуюся датчиком загрязнения. Найти, на каком расстоянии от щели будут полосы ионов 2 H + .

Заряды двигаются по окружности. Согласно второму закону Ньютона: Fл = mg = q * V * B. Центростремительное ускорение: a = V2/ r. Отсюда: r = mV / qB. Пролёт ионов занимает половину радиуса. С учётом равенства mV 2 / 2 = q * U, рабочая формула примет вид: X = (2/ B) * √(2mV / q) = 2 А*м / 0,1 Н * √ (2 * 1,67 * 10 -27 кг * 10 4 В / 1,6 + 10 -19 Кл) = 0,289 м.

Часто решение задач требует не только знания нескольких формул, но и понимания, на какую частицу действует магнитное поле и какие силы при этом возникают. Кроме этого, приходится условие изображать схематично на рисунке.

Это часто необходимо для правильного определения направлений действующих сил и упрощения понимания задания. Не стоит забывать, что все вычисления выполняются в системе СИ.

Выражение для силы Лоренца позволяет найти ряд закономерностей дви­жения заряженных частиц в магнитном поле. Направление силы Лоренца и на­правление вызываемого ею отклонения зависят от знака заряда Q частицы. На этом основано определение знака частиц, движущихся в магнитных полях.

Для вывода общих закономерностей будем считать, что магнитное поле однородно и на частицы электрические поля не действуют. Если заряженная частица движется в магнитном поле со скоростью V вдоль линии магнитной индукции, то угол а между векторами и равен 0 или π. Тогда по формуле (3.16) сила Лоренца равна нулю, т.е. магнитное поле на частицу не действует, и она движется равномерно и прямолинейно.

Если заряженная частица движется в магнитном поле со скоростью , перпендикулярной вектору , то сила Лоренца постоянна по моду­лю и нормальна к траектории частицы. Согласно второму закону Ньютона, эта сила создает центростремительное ускорение. Отсюда следует, что частица бу­дет двигаться по окружности, радиус r которой определяется из условия

Период вращения частицы, т.е. время Т, затрачиваемое ею на
один полный оборот,.

Подставив сюда выражение (3.16), получим

Период вращения частицы в однородном магнитном поле определяется только величиной, обратной удельному заряду () частицы и магнитной индукции поля, но не зависит от ее скорости. На этом основано действие цикли­ческих ускорителей заряженных частиц.

Если скорость v заряженной частицы направлена под углом а к вектору В (рис. 40), то ее движение можно представить в виде суперпозиции:

1. равномерного прямолинейного движения вдоль поля со скоростью
V| | = v cos α;

2. равномерного движения со скоростью по окружности в плоскости, перпендикулярной полю. Радиус окружности определяется формулой
(3.16).

В результате сложения обоих движений возникает движение по спирали, ось которой параллельна магнитному полю (рис.31). Шаг винтовой линии h = v|| T = v T cos α. Подставив в последнее выражение (3.17), получим

Направление, в котором закручивается спираль, зависит от знака заряда части­цы.

Если скорость v заряженной частицы составляет угол а с направлением вектора В неоднородного поля, индукция которого возрастает в направлении движения частицы, то г и h уменьшаются с ростом В. На этом основана фоку­сировка заряженных частиц в магнитном поле.

Выражение для силы Лоренца позволяет найти ряд закономерностей дви­жения заряженных частиц в магнитном поле. Направление силы Лоренца и на­правление вызываемого ею отклонения зависят от знака заряда Q частицы. На этом основано определение знака частиц, движущихся в магнитных полях.

Для вывода общих закономерностей будем считать, что магнитное поле однородно и на частицы электрические поля не действуют. Если заряженная частица движется в магнитном поле со скоростью V вдоль линии магнитной индукции, то угол а между векторами и равен 0 или π. Тогда по формуле (3.16) сила Лоренца равна нулю, т.е. магнитное поле на частицу не действует, и она движется равномерно и прямолинейно.

Если заряженная частица движется в магнитном поле со скоростью , перпендикулярной вектору , то сила Лоренца постоянна по моду­лю и нормальна к траектории частицы. Согласно второму закону Ньютона, эта сила создает центростремительное ускорение. Отсюда следует, что частица бу­дет двигаться по окружности, радиус r которой определяется из условия

Период вращения частицы, т.е. время Т, затрачиваемое ею на
один полный оборот,.

Подставив сюда выражение (3.16), получим

Период вращения частицы в однородном магнитном поле определяется только величиной, обратной удельному заряду () частицы и магнитной индукции поля, но не зависит от ее скорости. На этом основано действие цикли­ческих ускорителей заряженных частиц.

Если скорость v заряженной частицы направлена под углом а к вектору В (рис. 40), то ее движение можно представить в виде суперпозиции:

1. равномерного прямолинейного движения вдоль поля со скоростью
V| | = v cos α;

2. равномерного движения со скоростью по окружности в плоскости, перпендикулярной полю. Радиус окружности определяется формулой
(3.16).

В результате сложения обоих движений возникает движение по спирали, ось которой параллельна магнитному полю (рис.31). Шаг винтовой линии h = v|| T = v T cos α. Подставив в последнее выражение (3.17), получим




Направление, в котором закручивается спираль, зависит от знака заряда части­цы.

Если скорость v заряженной частицы составляет угол а с направлением вектора В неоднородного поля, индукция которого возрастает в направлении движения частицы, то г и h уменьшаются с ростом В. На этом основана фоку­сировка заряженных частиц в магнитном поле.

Под действием силы Лоренца электрические заряды в магнитном поле движутся по криволинейным траекториям. Рассмотрим наиболее характерные случаи движения заряженных частиц в однородном магнитном поле.


а) Если заряженная частица попадает в магнитное поле под углом α = 0°, т.е.летит вдоль линий индукций поля, то Fл = qvBsma = 0. Такая частица будет продолжать свое движение так, как если бы магнитного поля не было. Траектория частицы будет представлять собой прямую линию.

б)Частица с зарядом q попадает в магнитное поле так, что направление ее скорости v перпендикулярно индукции В магнитного поля (рисунок - 3.34). В таком случае сила Лоренца обеспечивает центростремительное ускорение a = v 2 /R и частица движется по окружности радиусом R в плоскости, перпендикулярной линиям индукции магнитного поля.под действием силы Лоренца: Fn = qvB sinα, учитывая, что α = 90°, запишем уравнение движения такой частицы: т v 2 /R= qvB. Здесь m — масса частицы, R – радиус окружности по которой движется частица. Откуда можно найти отношение e/m — называют удельным зарядом, который показывает заряд единицы массы частицы.

с) Если заряженная частица влетает со скоростью v0 в магнитное поле под любым углом α , то данное движение можно представить ее как сложное и разложить ее на две составляющие по направлениям α = 0 и α = 90, и тем самым свести к рассмотренным предыдущим двум случаям: со с скоростями v — перпендикулярную к В и v —параллельную В (рисунок - 3.35). Модули этих составляющих равны v = v0sinα, и v = v0 cosα . Магнитная сила имеет модуль F = ev0sinαB, и лежит в плоскости, перпендикулярной к В. Создаваемое этой силой ускорение является для составляющей v - нормальным.


Составляющая магнитной силы в направлении В равна нулю, поэтому повлиять на величину v эта сила не может.

2) равномерного движения по окружности в плоскости, перпендикулярной к вектору В со скоростью v =v0sinα. Траектория движения представляет собой винтовую линию, ось которой совпадает с направлением В (рис. 72.2). Направление, в котором закручивается траектория, зависит от знака заряда частицы. Если заряд положителен, траектория закручивается против часовой стрелки. Траектория, по которой движется отрицательно заряженная частица, закручивается по часовой стрелке (предполагается, что мы смотрим на траекторию вдоль направления В; частица при этом летит от нас.

Если имеются одновременно электрическое и магнитное поля, сила, действующая на заряженную частицу, равна

Это обобщенное выражение силы Лоренца при одновременном действии электрического и магнитного полей. Действие электрической слагаемой силы Лоренца сводится к изменению скорости (кинетической энергии) в соответствии c законом сохранения энергии:

Читайте также: