Древесные асбестовые текстильные и бумажные материалы кратко

Обновлено: 19.05.2024

Автор: Евгений Живоглядов.
Дата публикации: 17 марта 2015 .
Категория: Статьи.

В электротехнике для изоляции токоведущих частей и обеспечения их надежной работы находят применение множество электроизоляционных материалов с различными изоляционными свойствами. Среди этого множества можно выделить наиболее часто используемые.

Асбест

Минерал, имеющий волокнистое строение. Длина волокна – от десяти долей миллиметра до нескольких сантиметров. Из асбеста изготовляют пряжу, ленты, ткани, бумагу, картон и другие изделия. Ценным качеством асбеста является его высокая нагревостойкость. Нагрев до 300 – 400 °С не меняет свойств асбеста. Благодаря низкой теплопроводности асбест применяют в качестве тепловой изоляции при высоких температурах. Асбест обладает гигроскопичностью, которая уменьшается при пропитке его смолами, битумами и тому подобным. Асбестовое волокно, пропитанное битумом и подклеенное к проводу лаком, образует дельта-асбестовую изоляцию. Асбест входит в качестве наполнителя в состав пластичных масс. Электроизоляционные свойства асбеста невысоки. Электрическая прочность его 0,6 – 1,2 кВ/мм. Поэтому он не применяется при высоких напряжениях.

Асбоцемент

Пластическая масса холодного прессования. В качестве наполнителя входит асбестовое волокно, связующим веществом является цемент. Асбоцемент идет на изготовление щитков, панелей, оснований аппаратов, труб и тому подобного. Асбоцемент обладает хорошими механическими свойствами, высокой дугостойкостью, теплостойкостью и негорючестью. Электроизоляционные свойства асбоцемента низки. Пропитка его расплавленным парафином, льняным маслом, битумом и другими составами уменьшает гигроскопичность асбоцемента.

Бакелит

Искусственная смола, получаемая варкой фенола (спирта) с формалином (водным раствором формальдегида – продукта окисления спирта). Полученная в результате варки масса называется бакелитом стадии А. Температура размягчения бакелита А около 80 °С. Он может растворяться в спирте и в ацетоне. При нагреве до 110 – 140 °С бакелит А переходит в бакелит С, который не плавится и не растворяется. Бакелит применяют для пропитки дерева и других материалов, изготовления пластических масс – гетинакса, текстолита, склейки фанеры. Электрическая прочность бакелита 10 – 20 кВ/мм; ε = 4,5 – 6.

Бумага

Изготовляется путем специальной обработки щелочью измельченной древесины деревьев хвойных пород. В электротехнике применяют следующие основные сорта электроизолирующих бумаг: конденсаторную, кабельную, пропиточную (для изготовления листового гетинакса), намоточную (для изготовления бумажно-бакелитовых цилиндров), микалентную (для изготовления клееной слюдяной изоляции), оклеечную (для изготовления листов электротехнической стали).

Галовакс

Получают хлорированием нафталина. Галовакс имеет температуру плавления 95 – 135 °С. Ввиду высокой диэлектрической проницаемости (около 5) галовакс применяют для пропитки бумажных конденсаторов. В отличие от парафина и церезина галовакс не горюч.

Гетинакс

Изготовляют из бумаги, пропитанной искусственной смолой (бакелитом). Листы бумаги сдавливают прессом, одновременно нагревают до 160 – 165 °С, в результате чего бакелит стадии А переходит в стадию С. Таким образом получают гетинаксовые доски, которые имеют толщину от 0,5 до 50 мм. Гетинакс хорошо подвергается механической обработке: сверлению, обтачиванию, фрезерованию, распиливанию. При толщине от 2,5 до 3 мм гетинакс можно штамповать. Под действием электрической дуги блестящая поверхность гетинакса обугливания и становится электропроводящей. Гетинакс применяется для изготовления щитков, панелей, прокладок, каркасов изоляции в трансформаторах. Электрическая прочность гетинакса 20 – 25 кВ/мм; ε = 5 – 6.

Древесина

Природный волокнистый органический материал. Применяется для изготовления малоответственных изоляционных деталей. Используют обычные твердые лиственные породы: березу, дуб, бук, клен. Для повышения электрической прочности древесины ее пропитывают парафином, льняным маслом, смолами. Древесину в электротехнике применяют для опорных и крепежных деталей трансформаторов, пазовых клиньев электрических машин, деревянных опор линий связи и электропередач и так далее.

Канифоль

Хрупкая смола светло-желтого или коричневого цвета, получаемая путем обработки смолы хвойных деревьев (сосны). Канифоль растворяется в нефтяных маслах, жидких углеводородах, растительных маслах, спирте, скипидаре. Температура размягчения канифоли 50 – 70 °С. Электрическая прочность канифоли 10 – 15 кВ/мм. Канифоль употребляют для приготовления пропиточных и заливочных масс.

Картон электротехнический

Отличается от бумаги повышенной толщиной. Изготовляют два сорта картона: ЭВ – для работы на воздухе и ЭМ – для работы в масле. Картон применяют для изготовления мелких деталей. Электрическая прочность картона 8 – 10 кВ/мм; ε = 2,5 – 4.

Картон электротехнический

Каучук

Каучук (резина) получается из сока растений каучуконосов. Такой каучук называют натуральным (НК). Каучук можно получить также искусственным путем. Искусственный или синтетический каучуке (СК) изготовляют из спирта или нефтепродуктов. Нагретый до 50 °С каучук размягчается и становится липким, а при низкой температуре – хрупким. Каучук хорошо растворяется в углеводородах и сероуглероде. Для увеличения механической прочности, нагревостойкости и морозоустойчивости, стойкости к растворителям к каучуку добавляют 3 – 10 % серы. Этот процесс называется вулканизацией, в результате чего получается резина. В электротехнике резину применяют для изоляции установочных и монтажных проводов и кабелей некоторых конструкций, для изолирующих трубок, защитных перчаток, галош, ковриков и тому подобного. Резина обладает высокими электроизоляционными свойствами, влагостойкостью, непроницаемостью для воды и газов, имеет невысокую нагревостойкость (при нагреве свыше 60 – 75 °С резина делается хрупкой и трескается), при действии на резину нефтяных масел она набухает, при действии света – стареет. Электрическая прочность резины 24 кВ/мм; ε = 2,5 – 3.

Лаки электроизоляционные

Лакоткани

Изготовляют из хлопчатобумажной, шелковой или стеклянной ткани, которую затем пропитывают масляным или масляно-битумным лаком. Лакоткани применяют для изолирования обмоток машин и аппаратов. Хлопчатобумажные лакоткани имеют толщину 0,15 – 0,25 мм, электрическую прочность 35 – 40 кВ/мм. Шелковые лакоткани имеют толщину 0,05 – 0,1 мм и повышенную электрическую прочность (в 1,5 – 2 раза по сравнению с хлопчатобумажными лакотканями).

Трансформаторное масло

Мрамор

Горная порода зернисто-кристаллического строения. Глыбы мрамора распиливают на доски, которые затем фрезеруют и полируют. Недостатки мрамора: гигроскопичность, хрупкость, способность растрескиваться при сильном нагреве, способность разлагаться кислотами. Пропитка мрамора парафином, битумом, канифолью делает его практически негигроскопичным. Электрическая прочность мрамора 2,5 – 3,5 кВ/мм; ε = 8.

Пластические массы

Пропиточные и заливочные составы

По другому такие составы называют – компаунды. Они применяются для пропитки и заливки различных частей электрических установок. Эти составы изолируют отдельные токоведущие части, создают водостойкую изоляцию и улучшают условия охлаждения. Пропиточные и заливочные составы изготовляют из нефтяных битумов и сплавов минерального масла с канифолью. Иногда для увеличения теплопроводности в битумы вводят наполнитель, например кварцевый песок.

Пропиточные и заливочные составы

Слюда

Минерал кристаллического строения. Благодаря своему строению слюда легко расщепляется на отдельные листочки. Она обладает высокой электрической прочностью (80 – 200 кВ/мм), высокой нагревостойкостью, влагостойкостью, механической прочностью и гибкостью. В электротехнике применяют два вида слюды: мусковит и флогопит, различающиеся по составу, цвету и свойствам. Лучшей слюдой является мусковит. Из листочков слюды штампуют прямоугольные пластинки для конденсаторов, шайбы для электротехнических приборов и тому подобное. Однако чаще отдельные листочки слюды при помощи клеящих лаков (глифталевого, битумно-масляного, шеллачного и других) склеивают между собой. Такой материал называется миканитом. Различают миканиты: коллекторный (для изоляции коллекторных пластин), прокладочный (для изоляции шайб, прокладок), формовочный (прессуется при нагреве для изготовления фасонных деталей), гибкий (для межвитковой и пазовой изоляции электрических машин), жароупорный (для электронагревательных приборов). Иногда пластинки слюды наклеивают на бумагу или ткани (микалента, микафолий, стекломикафолий).

предохранителей, патронов, штепселей и тому подобные). Электрическая прочность фарфора 6 – 10 кВ/мм; ε = 5 – 6,5. Кроме фарфора, применяется другой керамический материал – стеатит, изготовляемый на основе минерала – талька. Стеатит по сравнению с фарфором обладает более высокими электроизоляционными и физико-механическими свойствами.

Фарфор электротехнический

Фибра

Изготовляется из пористой бумаги, обработанной раствором хлористого цинка. Фибра хорошо поддается механической обработке. Большим недостатком фибры является ее гигроскопичность. Фибра разъедается кислотами и щелочами. Из нее изготовляют мелкие детали, прокладки, каркасы катушек. Электрическая прочность фибры 5 – 11 кВ/мм; ε = 2,5 – 5. тонкая фибра (0,1 – 0,5 мм) называется летероидом.

Церезин

Получают путем очистки воскообразного минерала – озокерита или петролатума. Церезин по сравнению с парафином имеет повышенную температуру плавления (65 – 80 °С) и повышенную стойкость против окисления. Церезин применяют для пропитки бумажных конденсаторов, приготовления изолирующих составов и другого. Электрическая прочность церезина 15 кВ/мм.

Древесные материалы, конструкционные, изоляционные и поделочные материалы, получаемые путём обработки натуральной древесины давлением при повышенных температурах, пропиткой связующими веществами (например, синтетической смолой), склеиванием и т.д. По сравнению с натуральной древесиной Древесные материалы обладают улучшенными эксплуатационными свойствами, менее анизотропны. В зависимости от способа изготовления Древесные материалы подразделяют на древесину прессованную, пропитанную, клеёную слоистую, древесные пластики и плиты. См. Древесина прессованная, Древесина модифицированная, Фанера, Шпон, Столярные плиты, Древесные пластики, Древесноволокнистые плиты, Древесностружечные плиты. К Древесные материалы иногда относят лесоматериалы и пиломатериалы.

Асбестовые материалы

Спектр продукции, которую выпускают предприятия резиновой промышленности, включает в себя резинотехнические изделия (РТИ), асбестотехнические изделия (АТИ), изоленту, оргстекло и текстолит.

К ассортименту резинотехнических изделий относятся ремни приводные, ремни приводные клиновые, ремни вариаторные, конвейерная лента, металлические рукава, рукава высокого давления, рукава напорно-всасывающие, амортизаторы, защитные колпачки, кольца, манжеты и многие другие виды продукции.

Асбестотехнические изделия представлены сальниковыми набивками из асбестовых волокон, тормозными лентами, а также продукцией, произведенной на основе асбестовых материалов, — асбеста хризотилового, асбестовых бумаги и картона, асбестовой ленты, асбестовой ткани.

Асбест хризотиловый является основой для производства всех остальных видов АТИ. Хризотиловый асбест представляет собой неметаллическое сырье минерального происхождения, относящееся к магнезиальным гидросиликатам. Отличительная особенность этого вида асбеста — его специфическая волокнистая структура, способная расщепляться на отдельные эластичные волокна с минимальным диаметром каждого. Кроме того, хризотиловый асбест обладает замечательной механической прочностью, что позволяет ему без ущерба выдерживать высокие температуры (до +500°С).

Волокна хризотилового асбеста могут быть длинными или короткими. На основе асбеста с короткой длиной волокон производятся асбестовая бумага и асбестовый картон. Из асбеста с длинными волокнами изготавливается асбестовая ткань.

Так, картон асбестовый с содержанием асбеста до 99 % производится при помощи чередования слоев хризотилового асбеста с добавками из пластмасс. Температура рабочей среды данного вида АТИ достигает +500°С. К достоинствам асбестового картона относится его пожаро- и взрывобезопасность; кроме того, он не боится воды. Асбестовый картон применяется для уплотнения соединений различных коммуникаций, аппаратуры и приборов, в виде прокладок используется в промышленной теплоизоляции, выступает и как огнезащитный материал.

Картон теплоизоляционный керамоволокнистый, отличающийся высокой огнеупорностью и низкой теплопроводностью, также ипользуется для теплоизоляции. Другие сферы его применения — утепление стенок термических печей и печей в металлургии и стекловарении, использование в качестве материала для стен промышленных реакционных и нагревательных агрегатов и некоторые другие.

Асбестовая бумага, как и асбестовый картон, изготавливается на основе коротких волокон хризотилового асбеста, в которые добавляются такие органические склеивающие вещества, как крахмал или казеин. Асбестовая бумага бывает гладкой или гофрированной; последняя применяется в производстве ячеистой разновидности асбестового картона. Предельная температура использования асбестовой бумаги достигает 5 000°С.

Асбестовая бумага, в зависимости от своего назначения, классифицируется на несколько видов. Так, теплоизоляционная асбестовая бумага предназначена для теплоизоляции приборов; она может выдерживать температуру до 500°С. Гидроизоляционная асбестовая бумага используется в качестве защитного покрытия, препятствующего коррозионным процессам; также при проведении кровельных работ она может выступать как прокладочный материал.

Электроизоляционная асбестовая бумага применяется для изоляции катушек; кроме того, она востребована в изготовлении слоистых пластиков. Сфера применения диафрагменной разновидности асбестовой бумаги — производство диафрагм, используемых при электролизе некоторых химических веществ. Наконец, каландровая асбестовая бумага участвует в производстве конденсаторной бумаги, где она используется в качестве набивки для валов каландров.

Из асбеста с длинными волокнами изготавливают асбестовую пряжу, для чего волокна прочесывают, уплотняют и скручивают. Из асбестовой пряжи производят асбестовые ткани и асбестовый лист.

Ткани асбестовые, представляющие собой полотно, сотканное из асбестовой пряжи на ткацких станках, также являются материалом, обладающим высокими теплоизоляционными качествами. Асбестовые ткани используются для производства асбестовых текстолитов и пластиков, колец, рукавов и манжет. Жаропрочная одежда пожарников также изготавливается из асбестовой ткани.

Наконец, лента асбестовая также представляет собой тканое полотно из волокон хризотилового асбеста. Такие ленты предназначены для электроизоляции кабелей, катушек, проводов; используются они и как полупроводящие высоковольтные покрытия.

В электротехнике весьма широко применяются волокнистые материалы, то есть материалы, которые состоят преимущественно (или целиком) из частиц удлиненной формы — волокон.

Преимущества многих волокнистых материалов: дешевизна, довольно большая механическая прочность и гибкость, удобство обработки. Недостатками их являются невысокие электрическая прочность и теплопроводность. Гигроскопичность их более высокая, чем у массивного материала того же химического состава (так как развитая поверхность волокон легко поглощает влагу, проникающую в промежутки между ними). Свойства волокнистых материалов могут быть существенно улучшены путем пропитки, вот почему эти материалы в электрической изоляции обычно применяют в пропитанном состоянии.

Большая часть волокнистых материалов — органические вещества. К ним принадлежат материалы растительного происхождения (дерево, хлопчатобумажное волокно, бумага и прочие материалы, состоящие в основном из целлюлозы) и животного происхождения (шелк, шерсть), искусственные волокна, получаемые путем химической переработки природного волокнистого (в основной целлюлозного) сырья и, наконец, приобретающие особо важное значение в последнее время синтетические волокна, изготовляемые из синтетических полимеров.

Волокнистые целлюлозные материалы имеют сравнительно большую гигроскопичность, что связано как с химической природой целлюлозы, содержащей большое число полярных гидроксильных групп, так и особенностями строения растительных волокон, а также невысокую нагревостойкость (в непропитанном состоянии — класс Y, а в пропитанном — А. Некоторые искусственные, и в особенности синтетические, волокнистые материалы имеют значительно меньшую гигроскопичность и повышенную нагревостойкость по сравнению с целлюлозными материалами.

В тех случаях, когда требуется особо высокая рабочая температура изоляции, которую волокнистые органические материалы обеспечить не могут, применяют волокнистые неорганические материалы — на основе стеклянного волокна и асбеста.

Дерево. Благодаря своей распространенности, дешевизне и легкости механической обработки дерево явилось одним из первых электроизоляционных и конструкционных материалов, получивших применение в электротехнике. Дерево обладает неплохими механическими свойствами, в особенности, если учесть его легкость: прочность дерева, отнесенная не к геометрическим размерам, а к массе, не ниже, чем у стали. Прочность дерева в различных направлениях различна: прочность поперек волокон меньше, чем вдоль.

Недостатки дерева: высокая гигроскопичность, обусловливающая резкое снижение электроизоляционных свойств дерева при его увлажнении, а также коробление и растрескивание деталей, изготовленных из влажного дерева, при его высушивании (вследствие того, что влажное дерево при сушке дает уменьшение размеров, неодинаковое в различных направлениях); нестандартность свойств дерева даже одной и той же породы, неоднородность свойств образцов дерева в зависимости от направления их выпиливания, наличие сучков и других дефектов; низкая нагревостойкость, а также горючесть.Свойства дерева улучшаются при его пропитке льняным маслом, различными смолами и т. д.

Бумага и картон.Бумага и картон — это листовой или рулонный материал коротковолокнистого строения, состоящий в основном из целлюлозы. Для производства бумаги обычно применяют древесную целлюлозу. В состав древесины помимо целлюлозы и воды входят различные вещества, которые рассматриваются как примеси: лигнин (при­дающий древесине хрупкость), смолы (особенно в древесине хвойных пород), соли и другие. Обычная писчая и печатная бумага, в том числе и бумага, на которой напечатано это пособие, изготавливаются из сульфитной целлюлозы, напучен­ной в результате варки древесины в растворе, содержащем сернистую кислоту H2SO3; такая целлюлоза в процессе ее изготовления легко приобретает белый цвет.




При изготовлении же бумаги, применяемой в качестве электрической изоляции применяется сульфатная и натронная целлюлоза, получаемая путем варки древесины в растворах, содержащих едкий натрий NaOH. Щелочная целлюлоза обычно не отбеливается и сохраняет желтоватый цвет, обусловленный не удаленными красящими веществами древесины. Щелочная целлюлоза дороже сульфитной. Однако, поскольку в процессе щелочной варки исходная целлюлоза древесины в меньшей мере подвергаемся деструкции (разрушению макромолекул) и сохраняет более высокую молекулярную массу и длину волокон, чем в процессе кислотной варки, щелочные бумаги имеют более высокую механическую прочность и более стойки к тепловому старению.Кабельная бумага выпускается различных марок, обозначаемых буквами. К, КМ, KB, КВУ, КВМ и КВМУ (эти буквы обозначают: К — кабельная, М — многослойная, В — высоковольтная, У — уплотненная) и цифрами от 15 до 240 (обозначающими номинальную толщину бумаги — от 15 до 240 мкм).

Телефонная бумага марок КТ и КТУ согласно имеет толщину 50 мкм.

Конденсаторная бумага — весьма важный и ответственный материал: в пропи­танном виде она используется как диэлектрик бумажных конденсаторов. Выпу­скается двух видов: КОН — обычная конденсаторная бумага и силкон — бумага для силовых конденсаторов.

Микалентная бумага, применяемая в качестве подложки микаленты, — одна из немногих разновидностей электроизоляционных бумаг, производимых не из древесной целлюлозы щелочной варки, а из длинноволокнистого хлопка. Она имеет толщину 20 ± 2 мкм и массу 1 м 2 , равную 17 г; выпускается в рулонах шириной 450 или 900 мм.

Картон в основном отличается от бумаги большей толщиной. Электроизоля­ционные картоны изготовляются двух типов: воздушные более твердые и упругие, предназначенные для работы на воздухе (прокладки для пазов электрических ма­шин, каркасы катушек, шайбы), и масляные — более рыхлой структуры и более мягкие, предназначаемые в основном для работы в трансформаторном масле. Масляные картоны хорошо пропитываются маслом и в пропитанном виде имеют высокую электриче­скую прочность. Электроизоляционные картоны изготовляются из древесной или хлопковой целлюлозы.

Особая бумага и картон. Так, бумаги из смеси целлюлозы с полиэтиленовым волокном имеют er, tg d и гигроскопичность меньшие, а механи­ческую прочность большую, чем чисто целлюлозные бумаги. Такие бумаги, в ча­стности, находят применение в изоляции кабелей весьма высокого напряжения.

Фибра.Фибра изготавливается из тонкой бумаги, которая пропускается через теплый раствор хлористого цинка, а затем наматывается на стальной барабан, причем слои прилипают друг к другу, образуя нужную толщину. После чего бумага тщательно промывается водой и прессуется Фибра имеет невысокие электроизоляционные свойства и значительную гигроскопичность, однако она отличается высокой механической прочностью, хорошо обрабатывается. При воздействии на фибру электрической дуги она разлагается, выделяя газ, способствующий гашению дуги, поэтому фибру используют для изготовления стреляющих разрядников. В настоящее время фибра заменяется некоторыми синтетическими смолами.

ЛЕКЦИЯ №8

Волокнистые материалы. Дерево, бумага, картон. Текстильные материалы. Натуральные, синтетические и искусственные волокна.

Пластмассы. Слоистые пластики. Гетинакс, текстолит, асбогетинакс, стеклотекстолит

В электротехнике весьма широко применяются волокнистые материалы, то есть материалы, которые состоят преимущественно (или целиком) из частиц удлиненной формы — волокон.

Преимущества многих волокнистых материалов: дешевизна, довольно большая механическая прочность и гибкость, удобство обработки. Недостатками их являются невысокие электрическая прочность и теплопроводность. Гигроскопичность их более высокая, чем у массивного материала того же химического состава (так как развитая поверхность волокон легко поглощает влагу, проникающую в промежутки между ними). Свойства волокнистых материалов могут быть существенно улучшены путем пропитки, вот почему эти материалы в электрической изоляции обычно применяют в пропитанном состоянии.

Большая часть волокнистых материалов — органические вещества. К ним принадлежат материалы растительного происхождения (дерево, хлопчатобумажное волокно, бумага и прочие материалы, состоящие в основном из целлюлозы) и животного происхождения (шелк, шерсть), искусственные волокна, получаемые путем химической переработки природного волокнистого (в основной целлюлозного) сырья и, наконец, приобретающие особо важное значение в последнее время синтетические волокна, изготовляемые из синтетических полимеров.

Волокнистые целлюлозные материалы имеют сравнительно большую гигроскопичность, что связано как с химической природой целлюлозы, содержащей большое число полярных гидроксильных групп, так и особенностями строения растительных волокон, а также невысокую нагревостойкость (в непропитанном состоянии — класс Y, а в пропитанном — А. Некоторые искусственные, и в особенности синтетические, волокнистые материалы имеют значительно меньшую гигроскопичность и повышенную нагревостойкость по сравнению с целлюлозными материалами.

В тех случаях, когда требуется особо высокая рабочая температура изоляции, которую волокнистые органические материалы обеспечить не могут, применяют волокнистые неорганические материалы — на основе стеклянного волокна и асбеста.

Дерево. Благодаря своей распространенности, дешевизне и легкости механической обработки дерево явилось одним из первых электроизоляционных и конструкционных материалов, получивших применение в электротехнике. Дерево обладает неплохими механическими свойствами, в особенности, если учесть его легкость: прочность дерева, отнесенная не к геометрическим размерам, а к массе, не ниже, чем у стали. Прочность дерева в различных направлениях различна: прочность поперек волокон меньше, чем вдоль.

Недостатки дерева: высокая гигроскопичность, обусловливающая резкое снижение электроизоляционных свойств дерева при его увлажнении, а также коробление и растрескивание деталей, изготовленных из влажного дерева, при его высушивании (вследствие того, что влажное дерево при сушке дает уменьшение размеров, неодинаковое в различных направлениях); нестандартность свойств дерева даже одной и той же породы, неоднородность свойств образцов дерева в зависимости от направления их выпиливания, наличие сучков и других дефектов; низкая нагревостойкость, а также горючесть.Свойства дерева улучшаются при его пропитке льняным маслом, различными смолами и т. д.

Бумага и картон.Бумага и картон — это листовой или рулонный материал коротковолокнистого строения, состоящий в основном из целлюлозы. Для производства бумаги обычно применяют древесную целлюлозу. В состав древесины помимо целлюлозы и воды входят различные вещества, которые рассматриваются как примеси: лигнин (при­дающий древесине хрупкость), смолы (особенно в древесине хвойных пород), соли и другие. Обычная писчая и печатная бумага, в том числе и бумага, на которой напечатано это пособие, изготавливаются из сульфитной целлюлозы, напучен­ной в результате варки древесины в растворе, содержащем сернистую кислоту H2SO3; такая целлюлоза в процессе ее изготовления легко приобретает белый цвет.

При изготовлении же бумаги, применяемой в качестве электрической изоляции применяется сульфатная и натронная целлюлоза, получаемая путем варки древесины в растворах, содержащих едкий натрий NaOH. Щелочная целлюлоза обычно не отбеливается и сохраняет желтоватый цвет, обусловленный не удаленными красящими веществами древесины. Щелочная целлюлоза дороже сульфитной. Однако, поскольку в процессе щелочной варки исходная целлюлоза древесины в меньшей мере подвергаемся деструкции (разрушению макромолекул) и сохраняет более высокую молекулярную массу и длину волокон, чем в процессе кислотной варки, щелочные бумаги имеют более высокую механическую прочность и более стойки к тепловому старению.Кабельная бумага выпускается различных марок, обозначаемых буквами. К, КМ, KB, КВУ, КВМ и КВМУ (эти буквы обозначают: К — кабельная, М — многослойная, В — высоковольтная, У — уплотненная) и цифрами от 15 до 240 (обозначающими номинальную толщину бумаги — от 15 до 240 мкм).

Телефонная бумага марок КТ и КТУ согласно имеет толщину 50 мкм.

Конденсаторная бумага — весьма важный и ответственный материал: в пропи­танном виде она используется как диэлектрик бумажных конденсаторов. Выпу­скается двух видов: КОН — обычная конденсаторная бумага и силкон — бумага для силовых конденсаторов.

Микалентная бумага, применяемая в качестве подложки микаленты, — одна из немногих разновидностей электроизоляционных бумаг, производимых не из древесной целлюлозы щелочной варки, а из длинноволокнистого хлопка. Она имеет толщину 20 ± 2 мкм и массу 1 м 2 , равную 17 г; выпускается в рулонах шириной 450 или 900 мм.

Картон в основном отличается от бумаги большей толщиной. Электроизоля­ционные картоны изготовляются двух типов: воздушные более твердые и упругие, предназначенные для работы на воздухе (прокладки для пазов электрических ма­шин, каркасы катушек, шайбы), и масляные — более рыхлой структуры и более мягкие, предназначаемые в основном для работы в трансформаторном масле. Масляные картоны хорошо пропитываются маслом и в пропитанном виде имеют высокую электриче­скую прочность. Электроизоляционные картоны изготовляются из древесной или хлопковой целлюлозы.

Особая бумага и картон. Так, бумаги из смеси целлюлозы с полиэтиленовым волокном имеют er, tg d и гигроскопичность меньшие, а механи­ческую прочность большую, чем чисто целлюлозные бумаги. Такие бумаги, в ча­стности, находят применение в изоляции кабелей весьма высокого напряжения.

Фибра.Фибра изготавливается из тонкой бумаги, которая пропускается через теплый раствор хлористого цинка, а затем наматывается на стальной барабан, причем слои прилипают друг к другу, образуя нужную толщину. После чего бумага тщательно промывается водой и прессуется Фибра имеет невысокие электроизоляционные свойства и значительную гигроскопичность, однако она отличается высокой механической прочностью, хорошо обрабатывается. При воздействии на фибру электрической дуги она разлагается, выделяя газ, способствующий гашению дуги, поэтому фибру используют для изготовления стреляющих разрядников. В настоящее время фибра заменяется некоторыми синтетическими смолами.

К листовым древесным материалам относятся шпон, фанера, древесностружечные плиты (ДСП), древесноволокнистые плиты (ДВП).

Шпон — это тонкие древесные листы, срезанные с кряжей или чураков, которые сначала пропаривают в горячей воде. Из дуба, ореха и других пород древесины с красивой текстурой шпон получают строганием, поэтому он называется строганым. На шпонострогалъных станках режущий инструмент (нож) быстро движется вперёд-назад и слой за слоем срезает древесину с четырёх-шести скреплённых рядом кряжей. Стандартный строганый шпон имеет толщину 0,4; 0,6; 0,8 и 1,0 мм.

На лущильных станках (нож) срезает тонкий слой древесины с вращающегося чурака, как бы разворачивая его наподобие рулона бумаги. Такой шпон называется лущёным. Толщина его 0,35—4,0 мм.

Вариатор - это устройство, способное передавать крутящий момент плавно изменяя передаточное отношение. Изменение передаточного отношения происходит в определенном диапазоне и может происходить автоматически (в соответствии с настроенной программой) или вручную.

Большинству современных машин, участвующих в технологических и производственных процессах, необходимо иметь регулирование скоростей рабочих органов, которые определяются условиями технологического процесса. Здесь на помощь приходят передачи, называемые вариаторами, которые позволяют бесступенчато в определенных диапазонах изменять передаточное число привода. В вариаторах в качестве механизма главного движения используются передачи разных видов: фрикционные, ременные, цепные, планетарные, реализуемые в виде отдельных механизмов, основу которых образует непосредственный контакт шкивов (ведущего и ведомого) или промежуточный элемент (например, ремень).

Пневматический привод, состоящий из комплекса устройств для приведения в действие машин и механизмов, является далеко не единственным направлением использования воздуха (в общем случае газа) в технике и жизнедеятельности человека. В подтверждение этого положения кратко рассмотрим основные виды пневматических систем, отличающихся как по назначению, так и по способу использования газообразного вещества.

К первой группе отнесем системы с естественной конвекцией (циркуляцией) газа (чаще всего воздуха), где движение и его направление обусловлено градиентами температуры и плотности природного характера, например, атмосферная оболочка планеты, вентиляционные системы помещений, горных выработок, газоходов и т.п.

В трубопроводах всасывающих пневмотранспортных установок допустимая величина разрежения, создаваемая воздуходувной машиной, обычно принимается не ниже 0,4, так как дальнейшее разрежение ведет к значительному уменьшению плотности воздуха. В результате этого несущая способность воздушного потока и надежность работы пневмотранспортной установки становятся меньше.

Всасывающие (вакуумные) пневмотранспортные установки применяются для выгрузки щепы, опилок, дробленки и других видов сыпучих грузов из вагонов, барж, щеповозов и перемещения их на короткие расстояния.

Натяжные устройства конвейеров обеспечивают постоянное натяжение ленты на приводном барабане, чтобы исключить её проскальзывание и создать между барабаном и лентой трение, достаточное для передачи необходимого тягового усилия. При этом натяжные устройства также ограничивают провисание ленты между роликопорами и компенсируют её удлинение, происходящее за счёт вытягивания ленты под нагрузкой в процессе эксплуатации. Чаще всего натяжное устройство на конвейерах топливоподачи устанавливается в хвостовой части конвейера, в этом случае концевой барабан является натяжным.

На ленточных конвейерах применяются натяжные устройства двух типов: винтовые и грузовые. Тип натяжного устройства и длина его хода определяются в основном длиной конвейера и упругими свойствами ленты.

Читайте также: