Динамика поступательного движения кратко

Обновлено: 05.07.2024

Для формулировки первого закона Ньютона необходимо дать определение инерциальной системы отсчета:

Инерциальными системами отсчета называются такие системы, в которых свободные (т.е. не участвующие во взаимодействиях с другими телами) тела движутся без ускорения (т.е. равномерно и прямолинейно) или покоятся (состояние покоя, вообще говоря, следует рассматривать как частный случай равномерного движения с нулевой скоростью).

Первый закон Ньютона: существуют такие системы отсчета, относительно которых тело (материальная точка) при отсутствии на нею внешних воздействий (или при их взаимной компенсации) сохраняет состояние покоя или равномерного прямолинейного движения.

Масса — это свойство тела, характеризующее его инертность. При одинаковом воздействии со стороны окружающих тел одно тело может быстро изменять свою скорость, а другое в тех же условиях – значительно медленнее. Принято говорить, что второе из этих двух тел обладает большей инертностью, или, другими словами, второе тело обладает большей массой.. a1/a2=m2/m1

Сила— это количественная мера взаимодействия тел. Сила является причиной изменения скорости тела. В механике Ньютона силы могут иметь различную физическую причину: сила трения, сила тяжести, упругая сила и т. д. Сила является векторной величиной. Векторная сумма всех сил, действующих на тело, называется равнодействующей силой.

Второй закон Ньютона — основной закон динамики поступательного движения-сила, действующая на тело, равна произведению массы тела на ускорение, сообщаемое этому телу силой. F=ma.

Третий закон Ньютона: Тела действуют друг на друга с силами, направленными вдоль одной и той же прямой, равными по модулю и противоположными по направлению


Импульсом тела (материальной точки) называется величина, = произведению массы тела на его скорость.

Закон сохранения импульса является следствием второго и третьего законов Ньютона.


Закон сохранения импульса формулируется так: если сумма внешних сил равна нулю, то импульс системы тел сохраняется. Иначе говоря, в этом случае тела могут только обмениваться импульсами, суммарное же значение импульса не изменяется.


Сила, возникающая в месте соприкосновения тел и препятствующая их относительному перемещению, называется силой трения. Направление силы трения противоположно направлению движения. Различают силу трения покоя и силу трения скольжения. Если тело скользит по какой-либо поверхности, его движению препятствует сила трения скольжения (Н)

Через каждую точку тела можно провести лишь одну такую прямую, действуя вдоль которой сила вызывает поступательное движение тела. Точку пересечения линий действия сил, вызывающих поступательное движение тела, называют центром масс этого тела

.Уравнение движения тела переменной массы. Уравнение Мещерского является следствием законов механики Ньютона (в частности, второго закона Ньютона) и ряда допущений о процессе движения материальной точки переменной массы . При этом величина:Fpназывается «реактивной силой (Н)

Энергия — это мера способности или возможности производить работу.

Работа-результирующая сила заставляющая двигаться тело на расстояние, измеряемое в направлении действия этой силы. A = F S cos a.(Жд)

Мощность- физическая величина, равная в общем случае скорости изменения энергии системы. В более узком смысле мощность равна отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени. Чтобы охарактеризовать скорость совершения работы, вводят понятие мощности: N=A/t(Ватт)

Кинети́ческая эне́ргия — энергия механической системы,энергия движения зависящая от скоростей движения её точек. Еk=mv 2 /2

Потенциальная энергия — скалярная физическая величина, характеризующая способность некого тела (или материальной точки) совершать работу за счет своего нахождения в поле действия сил.Ep=mgh

Механической энергией, или полной механической энергией, называется энергия механического движения и взаимодействия.

Закон сохранения механической энергии- В замкнутой механической системе сумма механических видов энергии (потенциальной и кинетической энергии, включая энергию вращательного движения) остается неизменной Wп+ Wк+ Wвр= Wполн=const, Wп — Потенциальная энергия тела, энергия положения (Джоуль),Wк — Кинетическая энергия тела, энергия движения (Джоуль),Wвр — Энергия вращения тела.

Абсолютно упругий удар - соударение двух тел, в результате которого в обоих участвующих в столкновении телах не остается никаких деформаций и вся кинетическая энергия тел до удара после удара снова превращается в первоначальную кинетическую энергию (отметим, что это идеализированный случай). Обозначим скорости шаров массами m1 и m2 до удара через ν1 и ν2, после удара - через ν1' и ν2' (рис. 1). Для прямого центрального удара векторы скоростей шаров до и после удара лежат на прямой линии, проходящей через их центры. Проекции векторов скоростей на эту линию равны модулям скоростей. Их направления учтем знаками: положительное соотнесем движению вправо, отрицательное - движению влево. Абсолютно неупругий удар - соударение двух тел, в результате которого тела соединяются, двигаясь дальше как единое целое.

Абсолютно неупругий удар можно продемонстрировать с помощью шаров из пластилина (глины), которые движутся навстречу друг другу Если массы шаров m1 и m2, их скорости до удара ν1 и ν2, то

, используя закон сохранения импульса

Механика твёрдого тела:

Момент инерции- величина, характеризующая распределение масс в теле и являющаяся наряду с массой мерой инертности тела при непоступательном движении (кг·м²)Кинетическая энергия тела, движущегося произвольным образом, равна сумме кинетических энергий всех n материальных точек па которые это тело можно разбить: Величину

равную произведению силы на ее плечо, называют моментом силы. Момент силы характеризует вращательное действие этой силы и во вращательном движении играет ту же роль, что и сила в поступательном движении. M= F·l= F·r·sin(α) M — момент силы (Ньютон · метр),F — Приложенная сила (Ньютон),r — расстояние от центра вращения до места приложения силы (метр),

l — длина перпендикуляра, опущенного из центра вращения на линию действия силы (метр),α — угол, между вектором силы F и вектором положения r.


Уравнение динамики вращательного движения Так как в случае поступательного движения

все элементарные массы твердого тела движутся с одинаковыми скоростями и ускорениями

Моме́нт и́мпульсахарактеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение. L=J*w; J-момент инерции тела; w-угловая скорость.


Закон сохранения импульса: полный импульс замкнутой системы тел остается постоянным при любых взаимодействиях тел этой системы между собой.

Деформация — изменение формы и размеров тела. Причина деформации заключается в том, что различные части тела совершают неодинаковые перемещения при действии на тело внешних сил.

Деформации, которые полностью исчезают после прекращения действия силы, — упругие, которые не исчезают, — пластические. При упругих деформациях происходит изменение расстояния между частицами тела. При пластической деформации кристалла происходит соскальзывание слоев кристалла относительно друг друга.

Деформация растяжения (сжатия). Линейная деформация возникает при приложении силы F

вдоль оси стержня, закрепленного с одного конца. При линейных деформациях слои тела остаются

параллельными друг другу, но изменяются расстояния между ними. Линейную деформацию характеризуют абсолютным и относительным удлинением.

Деформация сдвига возникает под действием сил, приложенных к двум противоположным граням. Эти силы вызывают смещение слоев тела, параллельных направлению сил. Расстояние между слоями не изменяется. Любой прямоугольный параллелепипед, мысленно выделенный в теле, превращается в наклонный.

Тяготение- Тяготение, гравитация, гравитационное взаимодействие, универсальное взаимодействие между любыми видами материи. Если это взаимодействие относительно слабое и тела движутся медленно (по сравнению со скоростью света)

Первый закон Кеплера. Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

Второй закон Кеплера (закон равных площадей). Радиус-вектор планеты за равные промежутки времени описывает равновеликие площади. Другая формулировка этого закона: секториальная скорость планеты постоянна.

Третий закон Кеплера. Квадраты периодов обращений планет вокруг Солнца пропорциональны кубам больших полуосей их эллиптических орбит.Закон всемирного тяготения-F = G * ( m_1 * m_2 ) / r^2 ,

СИЛА ТЯЖЕСТИ — (тяготения), гравитационная сила притяжения, существующая на поверхности любой планеты или другого небесного тела.F=mg

Вес — сила воздействия тела на опору (или подвес или другой вид крепления), препятствующую падению, возникающая в поле сил тяжести. (В случае нескольких опор под весом понимается суммарная сила, действующая на все опоры. P=mg m-масса телаP – вес тела; g – ускорение свободного падения, равное 9,8 Н/кг.

Невесомость —состояние материального тела, при котором действующие на него внешние силы или совершаемое им движение не вызывают взаимных давлений частиц друг на друга.

транстве силовое поле, которое в месте нахождения тела 2 проявляется в виде действующих на него сил. В свою очередь тело 2 возбуждает аналогичное силовое поле, действующее на тело 1.

Поле – это объективная реальность, посредством которой передаётся взаимодействие. Поле, наряду с веществом, является одним из видов материи. Итак, гравитационное поле порождается телами и, так же как вещество и другие физические поля (например, электромагнитное), является одной из форм материи. Основное свойство поля тяготения, которое отличает его от других полей, состоит в том, что на любую материальную точку массой m, внесенную в это поле, действует сила притяжения F, пропорциональная m: . G=F/m, где – вектор, не зависящий от m и названный напряженностью поля тяготения.

Динамика − раздел механики, в котором изучается движение тел под действием приложенных сил. Основной задачей динамики является определение кинематического уравнения движения материальной точки, если известны, приложенные силы к ней со стороны окружающих тел и начальные условия, положение и скорость тела в начальный момент времени.

В основе динамики лежат три закона И. Ньютона, которые являются результатом обобщения опытных данных и теоретических сведений в области механики. Для формулировки законов динамики необходимо дать определение следующих динамических характеристик: инертность, масса, импульс тела и сила.

Инертностью (или инерцией ) называется свойство тела сохранить неизменным состояние покоя или равномерного прямолинейного движения. Количественной мерой инертности тел является инертная масса ), а количественной мерой гравитационного взаимодействия яв-ляется гравитационной массы . К настоящему времени экспериментально показано, что инертная и гравитационная массы с большой степенью точности совпадают, т. е. они эквивалентны. Этот фундаментальный закон природы называется принципом эквивалентности .

Масса − это физическая величина, являющаяся мерой инерционных и гравитационных свойств тела. Единицей массы в СИ является килограмм: [m] = кг . Масса − величина аддитивная, т. е. масса тела равна сумме масс всех частей этого тела.

Импульс тела (или количество движения ) − это векторная физическая величина, равная произведению массы тела на его скорость


Единица измерения импульса в СИ - $$ <[p]>= $$ .

Сила − это векторная физическая величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате, которого тело деформируется или приобретает ускорение. Единица измерения силы в СИ − Ньютон $$ = кг× =H$$ . Сила, приложенная к телу, считается заданной, если указаны ее точка приложения, направление действия и численное значение.

Первый закон Ньютона (или закон инерции ), который формулируется следующим образом: всякое тело находится в состоянии покоя или равномерного и прямолинейного движения, пока действие со стороны других тел не выведут его из этого состояния. Система отсчета, в которой выполняется первый закон Ньютона, называется инерциальной . Рассмотрим две системы отсчета, двигающиеся друг относительно друга с некоторым ускорением. Если относительно одной из них тело покоится, то относительно другой оно будет двигаться с ускорением. Получается, что в одной системе отсчета первый закон Ньютона выполняется, а в другой не выполняется. Любая система отсчета, движущаяся относительно некоторой инерциальной системы прямолинейно и равномерно будет также инерциальной. Системы отсчета, по отношению к которым первый закон Ньютона не выполняется, называются неинерциальными системами отсчета.

Второй закон Ньютона : ускорение тела прямо пропорционально результирующей сил приложенных к нему и обратно пропорционально его массе.



Скорость изменения импульса материальной точки равна действующей на нее силе. Уравнения (2.1.2) и (2.1.3) являются математическим выражением второго закона Ньютона. Второй закон Ньютона позволяет решать основную задачу механики. Поэтому его называется основным уравнением динамики поступательного движения .

Третий закон Ньютона : сила, с которой одно тело действует на другое, равна по величине и противоположна по направлению силе, с которой второе тело действует на первое.


2.2. Преобразования Галилея. Механический принцип относительности


Рассмотрим две инерциальные системы XYZ (система К ) и X'Y'Z' (система К' ), первая из которых будет неподвижной, а вторая движется поступательно вдоль положительного направления оси 0X с постоянной скоростью υ0 . Найдем связь между координатами х, у, z некоторой точки M в системе К и координатами х', у', z' . той же точки в системе К' . Если начать отсчет времени с того момента, когда начала координат обеих систем совпадали, то, как следует из рис. 2.2.1 в момент времени t координаты точки М в этих системах будут связаны соотношениями


Формулы (2.2.1) называются преобразованиями Галилея для координат и времени. Они могут быть представлены также в виде обратного преобразования:


Из преобразований Галилея вытекает классический закон сложения скоростей. Продифференцировав соотношения (2.2.2) по времени, найдем связь между скоростями точки М по отношению к системам отсчета К и К'


Согласно векторному соотношению (2.2.3) скорость υ точки М относительно неподвижной системы координат (абсолютная) равна векторной сумме ее скорости υ' относительно подвижной системы (относительная) и скорости υ0 подвижной системы относительно неподвижной (переносная).

Продифференцировав выражение (2.2.3) по времени t , получим при условии, что υ0 = const


Отсюда следует, что ускорение какого-либо тела во всех системах отсчета, движущихся друг относительно друга прямолинейно и равномерно, оказывается одним и тем же. Поэтому, если одна из этих систем инерциальна, то и остальные будут инерциальными.

Так как масса в классической механике не зависит от скорости, то произведение массы тела на его ускорение во всех инерциальных системах будет одинаковым, т. е. вид второго закона Ньютона, описывающего движение тела, будет одинаковым во всех инерциальных системах отсчета. Неизменность выражения для закона Ньютона отражает тот факт, что все механические явления во всех инерциальных системах отсчета протекают одинаково при одинаковых условиях. Другими словами − все инерциальные системы отсчета эквивалентны между собой. Это утверждение носит название принципа относительности Галилея (или механический принцип относительности ). Он означает, что никакими опытами внутри инерциальной системы отсчета невозможно установить покоится эта система или движется равномерно и прямолинейно. Принцип относительности справедлив не только для механических, но и для любых физических явлений.

Используя преобразования Галилея, можно показать, что отрезки длин (масштабы) и интервалы времени между двумя какими-либо событиями одинаковы во всех инерциальных системах отсчета.


Понятие времени в классической механике является абсолютным, поэтому


Физические величины, не изменяющиеся при переходе от одной инерциальной системе к другой, называются инвариантными. Следовательно, отрезки длин и интервалы времени являются инвариантами классической механики.

2.3. Система материальных точек. Закон сохранения импульса

Механической системой называется совокупность материальных точек, рассматриваемых как единое целое. Силы взаимодействия между материальными точками механической системы называются внутренними . Силы, с которыми на материальные точки системы действуют внешние тела, называются внешними . Механическая система тел, на которую не действуют внешние силы, называется замкнутой механической системой .

Импульс механической системы, представляет собой сумму импульсов всех материальных точек, входящих в механическую систему.


Рассмотрим систему материальных точек массами m1 , m2, …, mn , движущихся со скоростями υ1 , υ2 , …, υn . Пусть на каждую из этих точек действуют равнодействующие внутренних сил F 1 i , F 2 i , …, F n i , и равнодействующие внешних сил F 1 e , F 2 e , …, F n e .

Используя второй закон Ньютона для системы точек, запишем


Сложим эти уравнения:


Согласно третьему закону Ньютона, силы, действующие между материальными точками механической системы, будут равны и противоположно направлены, т. е. геометрическая сумма внутренних сил равна нулю.


С учетом выражения (2.3.1) получим закон изменения импульса механической системы : производная по времени от импульса механической системы равна векторной сумме внешних сил, действующих на систему.


В случае замкнутой механической системы,


Выражение (2.3.6) выражает закон сохранения импульса: импульс замкнутой системы не изменяется с течением времени.

Закон сохранения импульса носит универсальный характер и выполняется также в релятивистской и квантовой механике. Закон сохранения импульса − это фундаментальный закон природы. Он является следствием определенного свойства симметрии пространства − его однородности. Под однородностью пространства понимают одинаковость свойств пространства во всех его точках.

2.4. Центр масс. Уравнение движения центра масс

В классической механике масса тела не зависит от его скорости движения, и импульс системы может быть выражен через скорость ее центра масс.

Центром масс (или центром инерции ) системы материальных точек называется воображаемая точка С , положение которой характеризует распределение массы этой системы, и радиус-вектор которой определяется выражением:


где mi и r i − масса и радиус-вектор i-ой точки системы; $$m = ^n>m_i$$ − суммарная масса системы.

Соотношения координат центра инерции системы равны


В случае непрерывного распределения массы в системе (например, в случае протяженного тела) радиус-вектор центра масс системы определяется выражением


где r − радиус-вектор малого элемента системы, масса которого равна dm , а интегрирование проводится по всем элементам системы, т. е. по всей ее массе m .

Определим скорость центра масс механической системы


Учитывая выражение (2.3.1) получим


Таким образом, импульс механической системы равен произведению массы системы на скорость ее центра масс.

С учетом выражения (2.3.5) получим


Это выражение представляет собой закон движения центра масс : центр масс системы движется как материальная точка, в которой сосредоточена масса всей системы, и на которую действует сила, равная векторной сумме всех внешних сил, приложенных к системе.

Закон движения центра масс показывает, что для изменения скорости центра масс системы необходимо, чтобы на систему действовала внешняя сила. Внутренние силы взаимодействия частей системы могут вызвать изменения скоростей этих частей, но они не могут повлиять на суммарный импульс системы и скорость ее центра масс.

Первый закон Ньютона: существуют такие системы отсчета, в которых всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит ее изменить это состояние. Такие системы отсчета называются инерциальными.

Стремление тела сохранять состояние покоя или равномерного прямолинейного движения называется инертностью. Поэтому первый закон Ньютона называют также законом инерции.

Второй закон Ньютона – основной закон динамики поступательного движения – отвечает на вопрос, как изменяется механическое движение тела под действием приложенной к нему силы: если на тело действует сила, то это тело приобретает ускорение, прямо пропорциональное действующей силе и обратно пропорциональное массе данного тела:

В том случае, если на тела действует не одна, а несколько сил, то приведенная в этой формуле сила является равнодействующей всех действующих на это тело сил и определяется их векторной суммой.

Из уравнения второго закона Ньютона следует: .

В случае неизменности массы тела можно записать:

Вектор называется импульсом (или количеством движения) тела.

Отсюда следует иная формулировка второго закона Ньютона, называемая формулировкой в дифференциальном виде, а именно: скорость изменения импульса тела равна силе, действующей на этр тело,то есть

В том случае, если на тела действует не одна, а несколько сил, то приведенная в этой формуле сила является равнодействующей всех действующих на это тело сил и определяется их векторной суммой.

Третий закон Ньютона определяет взаимодействие между материальными точками: если первая материальной точка действует на вторую с силой , то вторая точка действует на первую с силой , по модулю равной, а по направлению противоположной силе (силы и направлены по прямой, соединяющей взаимодействующие точки).

Импульс системы тел. Если принять, что импульс системы, состоящей из n тел, можно определить, как векторную сумму импульсов всех n тел, то есть , то из третьего закона Ньютона при условии отсутствия внешних сил (то есть, для замкнутой системы) следует:

Таким образом, импульс замкнутой системы тел не изменяется с течением времени, что является законом сохранения импульса.

Первый закон Ньютона: существуют такие системы отсчета, в которых всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит ее изменить это состояние. Такие системы отсчета называются инерциальными.

Стремление тела сохранять состояние покоя или равномерного прямолинейного движения называется инертностью. Поэтому первый закон Ньютона называют также законом инерции.

Второй закон Ньютона – основной закон динамики поступательного движения – отвечает на вопрос, как изменяется механическое движение тела под действием приложенной к нему силы: если на тело действует сила, то это тело приобретает ускорение, прямо пропорциональное действующей силе и обратно пропорциональное массе данного тела:

В том случае, если на тела действует не одна, а несколько сил, то приведенная в этой формуле сила является равнодействующей всех действующих на это тело сил и определяется их векторной суммой.

Из уравнения второго закона Ньютона следует: .

В случае неизменности массы тела можно записать:

Вектор называется импульсом (или количеством движения) тела.

Отсюда следует иная формулировка второго закона Ньютона, называемая формулировкой в дифференциальном виде, а именно: скорость изменения импульса тела равна силе, действующей на этр тело,то есть

В том случае, если на тела действует не одна, а несколько сил, то приведенная в этой формуле сила является равнодействующей всех действующих на это тело сил и определяется их векторной суммой.

Третий закон Ньютона определяет взаимодействие между материальными точками: если первая материальной точка действует на вторую с силой , то вторая точка действует на первую с силой , по модулю равной, а по направлению противоположной силе (силы и направлены по прямой, соединяющей взаимодействующие точки).




Импульс системы тел. Если принять, что импульс системы, состоящей из n тел, можно определить, как векторную сумму импульсов всех n тел, то есть , то из третьего закона Ньютона при условии отсутствия внешних сил (то есть, для замкнутой системы) следует:

Таким образом, импульс замкнутой системы тел не изменяется с течением времени, что является законом сохранения импульса.

Читайте также: