Циклы газотурбинных установок кратко

Обновлено: 08.07.2024

Одним из основных недостатков, присущих поршневым двигателям внутреннего сгорания, является неизбежная неравномер­ность работы двигателя во времени — в течение цикла температуры и давления в цилиндре резко меняются; для преобразования возвратно-по­ступательного движения поршня во вращательное неизбежно примене­ние кривошипно-шатунного механизма. Средняя скорость рабочего тела относительно двигателя невелика. Все эти обстоятельства не позволяют при создании двигателей внутреннего сгорания сосредоточить большую мощность в одном агрегате.

От этих недостатков свободен двигатель внутреннего сгорания дру­гого типа — газотурбинная установка. Цикл газотурбинной установки со­стоит из тех же процессов, что и цикл поршневого двигателя внутренне­го сгорания, но существеннейшее различие заключается в следующем: если в поршневом двигателе эти процессы происходят последовательно, один за другим, в одном и том же элементе двигателя — цилиндре, то в газотурбинной установке эти процессы происходят в различных элемен­тах этой установки и, таким образом, в ней нет такой неравномерности условий работы элементов двигателя, как в поршневом двигателе. В газотурбинных установках средняя скорость рабочего тела в 50— 100 раз выше, чем в поршневых двигателях. Все это позволяет сосредо­точить в малогабаритных газотурбинных установках большие мощности. Термический КПД газотурбинных установок высок. Эти важные преи­мущества делают газотурбинную установку весьма перспективным дви­гателем. Пока еще ограниченное применение газовых турбин в высоко­экономичных крупных энергетических установках объясняется в основ­ном тем, что из-за недостаточной жаропрочности современных конструк­ционных материалов такая турбина может надежно работать в области температур, меньших области температур в двигателях внутреннего сгорания поршнего типа (ибо в поршневых двигателях температура ра­бочего тела меняется во времени и, следовательно, тепловой режим ра­боты поршня, стенок цилиндра и других узлов является не очень напря­женным, тогда как в газотурбинной установке многие конструкционные элементы работают в условиях постоянного воздействия высоких тем­ператур); это обстоятельство приводит к снижению термического КПД установки. Дальнейший прогресс в создании новых жаропрочных мате­риалов позволит газовой турбине работать в области более высоких тем­ператур.

В настоящее время газотурбинные двигатели широко применяются в авиации, на магистральных газопроводах, на колесных и гусеничных машинах, во флоте, в некоторых странах применяются на железнодо­рожном транспорте.

Циклы газотурбинных установок разделяются на две основные груп­пы: со сгоранием p=const; со сгоранием при V=const.

Таким образом, газотурбинные установки классифицируются по то­му же признаку, что и поршневые двигатели внутреннего сгорания, — по способу сжигания топлива.

Принципиальная схема газотурбинной установки со сгоранием при постоянном давлении представлена на рис. 10.12. На общем валу нахо­дятся газовая турбина 9, компрессор 1, топливный насос 3 и потреби­тель энергии 8 (на, рис. 10.12 он изображен как электрогенератор; по­нятно, конечно, что это может быть и любой другой потребитель энер­гии— гребной винт, ведущее колесо и т. п.).

Компрессор засасывает атмосферный воздух, сжимает его до неко­торого давления и направляет в камеру сгорания 4. Туда же топливным насосом из бака 2 подается топливо, которое может быть как жидким, так и газообразным; в последнем случае вместо насоса применяется га­зовый компрессор.


Сгорание топлива происходит в камере сгорания при p=const. Продукты сгорания, расширившись в соплах 5 газовой турбины, попада­ют на лопатки 6 турбины, производят там работу за счет своей кинети­ческой энергии и затем выбрасываются в атмосферу через выпускной патрубок 7. Давление отработавших газов несколько превышает атмос­ферное (поскольку отработавшим газам нужно преодолеть сопротивле­ние выходного патрубка).

Идеализированный цикл рассматриваемой газотурбинной установки изображен в р,

υ-диаграмме на рис. 10.13.

Принцип построения этого идеализированного цикла такой же, как использованный ранее для поршневых двигателей: предполагается, что цикл замкнутый, т. е. количество рабочего тела в цикле сохраняется по­стоянным; выход отработавших газов в атмосферу заменяется изобар­ным процессом с отводом теплоты к холодному источнику; считается, что теплота q1 подводится к рабочему телу извне, через стенки корпуса установки, а рабочим телом турбины является газ неизменного состава, например чистый воздух.

В р, υ -диаграмме на рис. 10.13 процесс 1-2 представляет собой сжа­тие воздуха в компрессоре (как показано в § 7.9, сжатие в компрессоре может быть адиабатным, изотермическим или политропным). По изоба­ре 2-3 к рабочему телу подводится теплота (этот процесс соответствует сгоранию топлива в камере сгорания). Далее рабочее тело (в действи­тельном цикле — это воздух и продукты сгорания) адиабатно расши­ряется в сопловом аппарате турбины и отдает работу турбинному коле­су (3-4). Изобарный процесс 4-1 соответствует выходу отработавших газов из турбины*.

Определим термический КПД цикла газотурбинной установки со сгоранием при p=const, иногда называемого циклом Брайтона. Как и раньше, считаем рабочее тело идеальным газом с постоянной теплоем­костью.

Значение ηт рассматриваемой установки будет различным — изотер­мическим, адиабатным или политропным в зависимости от процесса сжатия, осуществляемого в компрессоре.

Рассмотрим вначале цикл газотурбинной установки со сгоранием при p=const с изотермическим сжатием воздуха в компрессоре**. Цикл

* Может возникнуть вопрос — почему при рассмотрении поршневых двигателей внутреннего сгорания мы считаем процесс выхлопа, происходящим по изохоре, а для газотурбинной установки — по изобаре? Дело в том, что поршневый двигатель является машиной периодического действия (т. е. параметры рабочего тела в фиксированной точке цилиндра меняются с течением врем'ени), а турбина является машиной непрерыв­ного действия (в стационарном режиме работы параметры рабочего тела неизменны во времени). Следовательно, давление отработавших газов на выходе из турбины всегда постоянно (р4=const) и близко к атмосферному, тогда как в поршневом двигателе при открытии выхлопного клапана давление в цилиндре снижается до атмосферного прак­тически мгновенно, за время, в течение которого поршень смещается весьма мало (t> = =const).

** В § 7.9 было показано, что единственным путем, обеспечивающим сохранение температуры газа после сжатия равной температуре до сжатия, является применение многоступенчатого сжатия с промежуточным охлаждением сжимаемого газа в специ­альных холодильниках-теплообменниках. Понятно, что при этом изотерма 1-2 на рис. 10.14 должна быть заменена линией сжатия в многоступенчатом компрессоре (типа изображенной на рис. 7.29).

такой установки в Т, s-диаграмме изображен на рис. 10.14.

В этом случае теплота от рабочего тела к холодному источнику бу­дет отводиться и в изобарном процессе 4-1 (площадь b-l-4-c-b на рис. 10.14), и в изотермическом процессе сжатия 1-2 (площадь a-2-l-b-a); при этом количество теплоты, отводимой в изобарном процессе 4-1, сос­тавляет:

а количество теплоты, отводимой в изотермическом процессе 1-2, в со­ответствии с уравнением (7.22а) составляет:

таким образом, в сумме

Количество теплоты, подводимой к рабочему телу в изобарном про­цессе 2-3,

Подставляя эти значения q1 и q2 в общее соотношение ηт = 1—q2/ q1 получаем:

Разделив числитель и знаменатель правой части этого уравнения на cpT1 и учтя, что T1 = T2 и что для идеального газа

В дальнейшем мы будем использовать введенное в предыдущем па­раграфе обозначение для степени предварительного расширения р = υ3/ υ2.

Отношение давления в конце процесса сжатия к давлению в начале процесса обозначим

эту величину называют степенью повышения давления в процессе сжа­тия. Очевидно, что в изобарном процессе 2-3

а в адиабатном процессе 3-4

Подставляя (10.41) и (10.43) в (10.39) и учитывая при этом, что

получаем выражение для термического КПД газотурбинной установки со сгоранием при р=const (изотермическое сжатие воздуха):


Зависимость ηт от р для разных значений β (при κ=l,40), описыва­емая уравнением (10.44), представлена в виде графика на рис. 10.15.

Из уравнения (10.44) можно найти максимальное значение ηт для каждой степени предварительного расширения р. Возьмем для этого пер­вую производную от ηт по степени увеличения давления β при p=const. После соответствующих преобразований получим:

Приравнивая теперь это выражение нулю, получаем следующее ус­ловие максимального термического КПД:

Заменяя в соотношении (10.44) β по уравнению (10.46), получаем уравнение для максимального ηт при данном р;

На графике рис. 10.15 максимальные значения т]т нанесены штрихо­вой линией*.

Рассмотрим теперь цикл газотурбинной установки со сгоранием при p=const для адиабатного сжатия воздуха в компрессоре. Такой цикл в Т, s-диаграмме изображен на рис. 10.16.

В данном случае

Отсюда следует, что термический КПД этого цикла определяется выражением

*Рассматривая приведенную на рис. 10.15 зависимость , следует иметь в виду, что при р>3 получаются нереально высокие значения степени повышения давления β. Поэтому для этих значений р приведенная зависимость представляет огра­ниченный интерес.


Отношения температур в уравнении (10.50) легко выражаются че­рез р и β. В самом деле, для адиабатного процесса 1-2

Таким образом, для рассматриваемого цикла

Зависимость ηт этого цикла от β (при κ=1,40) изображена на рис. 10.17.

Сравнение эффективности циклов газотурбинной установки со сго­ранием при p=const для изотермического и адиабатного сжатия, про­водимое при условии равенства в обоих циклах подводимых теплот q1, максимальных давлений р3 и максимальных температур Т3 цикла (по­скольку в обоих случаях начальное давление цикла р4 равно атмосфер­ному, то условие равенства значений р3 соответствует условию равен­ства значений β), показывает, что термический КПД цикла с адиабат­ным сжатием превышает КПД цикла с изотермическим сжатием:

Этот вывод очевиден, в частности, из рассмотрения Т, s-диаграммы, на которой совмещены анализируемые циклы (рис. 10.18). В соответ­ствии с принятыми нами условиями сравнения давление в процессе под­вода теплоты (2.3) и давление в процессе выхлопа (4-1'-1) одинаковы в обоих циклах; для этих циклов одинаковы также значения q1 и T3. Из Т, s-диаграммы очевидно, что работа цикла с адиабатным сжатием (площадь 1-2-3-4-1) больше, чем работа цикла с изотермическим сжа­тием (площадь 2-3-4-1'-2). При одном и том же значении q1 это приво­дит к неравенству (10.54)

Понятно, что термический КПД газотурбинной установки со сгора­нием р=const для случая, когда сжатие воздуха осуществляется по политропе с показателем 1

Газотурбинные установки относятся к числу двигателей внутреннего сгорания. Газ, получившийся в результате сгорания топлива в камере сгорания, направляется на турбину. Продукты сгорания, расширяясь в сопловом аппарате и на рабочих лопатках турбины, производят на колесе турбины механическую работу.

ГТУ по сравнению с поршневыми двигателями обладают целым рядом преимуществ:

1) простота силовой установки;

2) отсутствие поступательно движущихся частей, что позволяет повысить механический к.п.д.;

3) получение больших чисел оборотов, что позволяет существенно снизить вес и габариты установки;

4) осуществление цикла с полным расширением и тем самым большим термическим к.п.д.

Эти преимущества ГТУ способствовали ее распространению во многих отраслях техники и особенно в авиации.

В основе работы ГТУ лежат идеальные циклы, состоящие из простейших термодинамических процессов. Термодинамическое изучение этих циклов базируется на предположениях аналогичных тем, которые были сделаны в предыдущем разделе (циклы ДВС), а именно: циклы обратимы, подвод теплоты происходит без изменения химического состава рабочего тела цикла, отвод теплоты предполагается обратимым, гидравлические и тепловые потери отсутствуют, рабочее тело представляет собой идеальный газ с постоянной теплоемкостью.

К числе возможных идеальных циклов ГТУ относят:

а) цикл с подводом теплоты при постоянном давлении (р = const) - цикл Брайтона;

б) цикл с подводом теплоты при постоянном объеме (v = const);

в) цикл с регенерацией теплоты.

Во всех циклах ГТУ отвод теплоты при наличии полного расширения в турбине происходит при постоянном давлении.

Из-за сложной конструкции камеры сгорания цикл ГТУ с изохорным подводом теплоты применяется крайне редко даже несмотря на то, что имеет повышенный КПД по сравнению с циклом Брайтона. Из перечисленных циклов наибольшее применение получил цикл с подводом теплоты при р = const, поэтому далее подробно его рассмотрим.

Схема и цикл ГТУ с подводом теплоты при p=const

(цикл Брайтона)

Обратимый цикл ГТУ при p=const называется циклом Брайтона. Схема ГТУ представлена на рис. 10. Компрессор (ВК) , приводимый в движение газовой турбиной (ГТ), подает сжатый воздух в камеру сгорания (КС), в которую впрыскивается жидкое топливо, подаваемое насосом (ТН), находящимся на валу турбины. Продукты сгорания расширяются на рабочих лопатках турбины и выбрасываются в атмосферу.

Рис. 10. Схема ГТУ (ВК – воздушный компрессор,

ТН – топливный насос, КС – камера сгорания,

ГТ – газовая турбина, ЭГ – электрогенератор)

Изобразим цикл на рабочей и тепловой диаграмме (рис.11).

Характеристиками этого цикла являются:

степень повышения давления воздуха (или степень сжатия )

степень предварительного расширения .

При расчете цикла определяют параметры в характерных точках. Как правило, исходными данными являются параметры в точке 1: .

Рис. 11. Цикл Брайтона. Рабочая (p-v) и тепловая (T-s) диаграммы.

(1-2 – адиабатное сжатие в компрессоре,

2-3 – изобарный подвод теплоты в камере сгорания,

3-4 – адиабатное расширение продуктов сгорания на лопатках газовой турбины,

4-1 – изобарный отвод теплоты от продуктов сгорания в атмосферу)

Газотурбинные установки относятся к числу двигателей внутреннего сгорания. Газ, получившийся в результате сгорания топлива в камере сгорания, направляется на турбину. Продукты сгорания, расширяясь в сопловом аппарате и на рабочих лопатках турбины, производят на колесе турбины механическую работу.

ГТУ по сравнению с поршневыми двигателями обладают целым рядом преимуществ:

1) простота силовой установки;

2) отсутствие поступательно движущихся частей, что позволяет повысить механический к.п.д.;

3) получение больших чисел оборотов, что позволяет существенно снизить вес и габариты установки;

4) осуществление цикла с полным расширением и тем самым большим термическим к.п.д.

Эти преимущества ГТУ способствовали ее распространению во многих отраслях техники и особенно в авиации.

В основе работы ГТУ лежат идеальные циклы, состоящие из простейших термодинамических процессов. Термодинамическое изучение этих циклов базируется на предположениях аналогичных тем, которые были сделаны в предыдущем разделе (циклы ДВС), а именно: циклы обратимы, подвод теплоты происходит без изменения химического состава рабочего тела цикла, отвод теплоты предполагается обратимым, гидравлические и тепловые потери отсутствуют, рабочее тело представляет собой идеальный газ с постоянной теплоемкостью.




К числе возможных идеальных циклов ГТУ относят:

а) цикл с подводом теплоты при постоянном давлении (р = const) - цикл Брайтона;

б) цикл с подводом теплоты при постоянном объеме (v = const);

в) цикл с регенерацией теплоты.

Во всех циклах ГТУ отвод теплоты при наличии полного расширения в турбине происходит при постоянном давлении.

Из-за сложной конструкции камеры сгорания цикл ГТУ с изохорным подводом теплоты применяется крайне редко даже несмотря на то, что имеет повышенный КПД по сравнению с циклом Брайтона. Из перечисленных циклов наибольшее применение получил цикл с подводом теплоты при р = const, поэтому далее подробно его рассмотрим.

Схема и цикл ГТУ с подводом теплоты при p=const

(цикл Брайтона)

Обратимый цикл ГТУ при p=const называется циклом Брайтона. Схема ГТУ представлена на рис. 10. Компрессор (ВК) , приводимый в движение газовой турбиной (ГТ), подает сжатый воздух в камеру сгорания (КС), в которую впрыскивается жидкое топливо, подаваемое насосом (ТН), находящимся на валу турбины. Продукты сгорания расширяются на рабочих лопатках турбины и выбрасываются в атмосферу.

Рис. 10. Схема ГТУ (ВК – воздушный компрессор,

ТН – топливный насос, КС – камера сгорания,

ГТ – газовая турбина, ЭГ – электрогенератор)

Изобразим цикл на рабочей и тепловой диаграмме (рис.11).

Характеристиками этого цикла являются:

степень повышения давления воздуха (или степень сжатия )

степень предварительного расширения .

При расчете цикла определяют параметры в характерных точках. Как правило, исходными данными являются параметры в точке 1: .

Рис. 11. Цикл Брайтона. Рабочая (p-v) и тепловая (T-s) диаграммы.

(1-2 – адиабатное сжатие в компрессоре,

2-3 – изобарный подвод теплоты в камере сгорания,

3-4 – адиабатное расширение продуктов сгорания на лопатках газовой турбины,

Газотурбинные установки (ГТУ) относятся к числу двигателей внутреннего сгорания. Газ, получившийся в результате сгорания топлива в камере сгорания, направляется в турбину. Продукты сгорания, расширяясь в сопловом аппарате и частично на рабочих лопатках турбины, производят на колесе турбины механическую работу.

Газотурбинные установки, по сравнению с поршневыми двигателями, обладают целым рядом технико-экономических преимуществ:

1) простотой устройства силовой установки;

2) отсутствием поступательно движущихся частей;

3) бо′льшим числом оборотов, что позволяет существенно снизить вес и габариты установки;

4) бо′льшей мощностью одного агрегата;

5) возможностью осуществить цикл с полным расширением и тем самым с большим термическим кпд;

6) возможностью применения дешевых сортов топлива (керосина).

Эти преимущества ГТУ способствовали ее распространению во многих областях техники и, особенно, в авиации.

В основе работы ГТУ лежат идеальные циклы, состоящие из простейших термодинамических процессов. Термодинамическое изучение этих циклов базируется на следующих допущениях:

· подвод теплоты происходит без изменения химического состава рабочего тела цикла;

· отвод теплоты предполагается обратимым;

· гидравлические и тепловые потери отсутствуют;

· рабочее тело представляет собой идеальный газ с постоянной теплоемкостью.

К числу возможных идеальных циклов ГТУ относят следующие циклы:

1) с подводом теплоты при постоянном давлении р = const;

2) с подводом теплоты при постоянном объеме v = const;

3) с регенерацией теплоты.

Во всех циклах ГТУ теплота при наличии полного расширения в турбине отводится при постоянном давлении.

Цикл ГТУ с подводом теплоты при p = const (цикл Брайтона)

Из перечисленных циклов наибольшее практическое применение получил цикл с подводом теплоты при р = const.

В простейшей ГТУ со сгоранием топлива при постоянном давлении (рис. 9.19) компрессор 1, приводимый в движение газовой турбиной 4, подает сжатый воздух в камеру сгорания 3, в которую через форсунку впрыскивается жидкое топливо, подаваемое насосом 2, находящимся на валу турбины. Продукты сгорания расширяются в сопловом аппарате и частично на рабочих лопатках турбины и выбрасываются в атмосферу. При сделанных допущениях термодинамический цикл ГТУ со сгоранием при р = const можно изобразить на pv- и TS-диаграммах (рис. 9.20) в виде площади acze. Работа цикла на рv-диаграмме представляет собой разность площадей 1ez2 и 1ас2, соответственно равных работе турбины и компрессора.

На этих диаграммах (рис. 9.20): а–с – процесс адиабатного сжатия воздуха в компрессоре; c-z – процесс подвода теплоты в камеру сгорания при p = const; z-e

адиабатный процесс расширения газа в турбине; е-а – изобарный процесс отдачи газом теплоты окружающему воздуху.

Рис. 9.19. Схема простейшей ГТУ

Параметрами цикла являются степень повышения давления воздуха и степень предварительного расширения .

Термический КПД цикла определяют из общего выражения:

Рис. 9.20. Диаграммы работы цикла ГТУ с подводом теплоты при p = const

Параметры газа в узловых точках цикла находят по формулам, связывающим параметры газа в адиабатном и изобарном процессах:

Найдем выражение для термического КПД цикла:

Выражение (9.13) показывает, что термический КПД ГТУ при данном рабочем теле и постоянном значении показателя адиабаты k зависит только от степени повышения давления в компрессоре, причем с ростом термический КПД цикла увеличивается.

На рис. 9.21 изображен рассматриваемый цикл при различных степенях повышения давления и одинаковом подводимом количестве теплоты. Из графика следует, что при q1 = idem и повышении уменьшается количество теплоты, отдаваемое газом в окружающую среду, а это приводит к увеличению термического КПД цикла. Вместе с тем, с возрастанием работа идеального цикла проходит через максимум. При адиабатных процессах расширения в турбине и сжатия в компрессоре работа турбины и компрессора соответственно равна:

Теоретическая работа цикла ГТУ:

Рис. 9.21. Цикл при различных степенях повышения давления

Взяв производную по , найдем такое оптимальное значение , при котором работа цикла будет максимальной, но не будет обеспечен максимум термического КПД:

Несмотря на то, что увеличение благоприятно сказывается на экономичности газотурбинной установки, повышение этой величины приводит к росту температуры газов перед рабочими лопатками турбины. Но температура лимитируется жаропрочностью сплавов, из которых изготовлены лопатки.

В настоящее время максимально допустимая температура газов перед турбиной составляет 1100…1200 °С, и дальнейшее повышение температуры может быть

достигнуто только при применении новых жаропрочных материалов и внедрении конструкций турбин с охлаждаемыми лопатками.

При расчете высокотемпературных ГТУ необходимо учитывать переменные значения теплоемкости cp = f(T), энтальпии i = f(T), показателя адиабаты k = f(T) как в процессе расширения в турбине, так и в процессе сжатия, особенно в многоступенчатых компрессорах.

Цикл ГТУ с подводом теплоты при v = const (цикл Гемфри)

В газотурбинной установке, работающей по этому циклу, процесс сгорания происходит в замкнутом объеме камеры.

В ГТУ со сгоранием при v = const (рис. 9.22) компрессор 1, приводимый во вращение турбиной 6, подает сжатый воздух в камеру сгорания 4 через управляемый клапан 7.


Второй клапан 5 находится в конце камеры сгорания и предназначен для выхода продуктов сгорания на турбину. Топливо в камеру сгорания подается насосом 2, находящимся на валу турбины, через форсунку. Подача топлива должна осуществляться периодически топливным клапаном 3. В камере сгорания при закрытых клапанах 7 и 5 происходит процесс горения топлива в постоянном объеме.

Рис. 9. 22. Схема ГТУ со сгоранием при v=const

При увеличении давления клапан 5 открывается, и продукты сгорания поступают в сопловой аппарат и на лопатки турбины 6. При прохождении через лопатки турбины газ совершает работу и выбрасывается в окружающую среду.

Цикл этой установки (рис. 9.23) состоит из адиабатного сжатия в компрессоре (а–с); подвода теплоты при v = const (c–z); адиабатного расширения газа в турбине (z–e); изобарной отдачи газом теплоты окружающему воздуху (е–а). Основными параметрами цикла являются степень повышения давления и степень изохорного повышения давления .

Рис. 9.23. Диаграммы работы цикла ГТУ с подводом теплоты при v = const (цикла Гемфри)

Для определения термического КПД, равного

найдем температуру газа в узловых точках цикла:

Подставляя эти выражения для температур в формулу термического КПД, получим:

Эта формула показывает, что термический КПД цикла зависит от степени повышения давления , определяемой повышением давления воздуха в компрессоре, и от степени изохорного повышения давления , характеризующей подведенное количество теплоты в цикле (рис. 9.24). Изменение аналогично изменению термического КПД в цикле с подводом теплоты при p = const.

Рис. 9.24. Зависимость термического КПД цикла от степени повышения давления

Из сравнения между собой циклов с подводом теплоты при p = const и v = const на pv- и TS-диаграммах (рис. 9.25) видно, что при одной и той же степени повышения давления и одинаковом отводимом количестве теплоты цикл при v = const выгоднее цикла при p = const.

Рис. 9.25. Сравнение циклов с подводом теплоты при p = const и v = const на pv- и TS-диаграммах

Это объясняется большей степенью расширения в цикле v = const, а следовательно, и большими значениями термического КПД. Несмотря на это преимущество, цикл с подводом теплоты при v = const широкого применения в практике не нашел в связи с усложнением конструкции камеры сгорания и ухудшением работы турбины в пульсирующем потоке газа, хотя работы по совершенствованию этого цикла продолжаются.

Регенеративные циклы ГТУ

Одной из мер повышения степени совершенства перехода теплоты в работу в ГТУ является применение регенерации теплоты. Регенерация теплоты заключается в использовании теплоты отработавших газов для подогрева воздуха, поступающего в камеру сгорания. Экономичность ГТУ при применении регенерации повышается.

В установке с регенерацией (рис. 9.26) воздух из компрессора 1 направляется в теплообменник 3, где он получает теплоту от газов, вышедших из турбины 5. После подогрева воздух направляется в камеру сгорания 4, в которую через форсунку от насоса 2 подводится топливо. Воздух, уже нагретый отработавшими газами турбины, получает в камере сгорания меньшее количество теплоты для достижения определенной температуры газа перед турбиной.

Рис. 9.26. Схема установки с регенерацией

На pv- и TS-диаграммах цикла (рис. 9.27): а–с – адиабатное сжатие воздуха в компрессоре; с–1 – изобарный подогрев воздуха в регенераторе; 1–z – подвод теплоты при р = const в камере сгорания; z–e – адиабатное расширение газа в турбине; е–2 – отдача теплоты при р = const в регенераторе; 2–а – отдача теплоты при p=const в окружающую среду.

Если предположить, что охлаждение газов в регенераторе происходит до температуры воздуха, поступающего в него с температурой Т2 = ТС, то регенерация будет полной.

Термический КПД цикла при полной регенерации, когда Те – T2 = T1 – Тс, определяется по формуле:

При принятых параметрах цикла ГТУ с подводом теплоты при р = const

Рис. 9.27. Диаграммы работы регенеративных циклов ГТУ

Последняя формула показывает, что термический КПД цикла при полной регенерации зависит как от начальной температуры, так и от температуры в конце адиабатного расширения. Обычно двигатели работают при не полной регенерации, поэтому Т2 > ТС. При этом термический КПД цикла должен учитывать степень регенерации, равную отношению количества теплоты, переданного воздуху, к тому количеству теплоты, которое могло бы быть передано при охлаждении газов до температуры сжатого воздуха.

При наличии регенерации теплоты термический КПД равен:

где – степень регенерации.

При полной регенерации:

при отсутствии регенерации:

Степень регенерации зависит от качества и размеров площади рабочих поверхностей теплообменника (регенератора).

Принципиально регенерацию теплоты можно осуществить и в ГТУ, работающей по циклу v = const. При этом характер цикла (рис. 9.28) изменяется. Подвод теплоты осуществляется как по изохоре, так и по изобаре. В настоящее время регенерация теплоты находит практическое применение в основном в стационарных и реже в транспортных установках из-за большого веса и габаритов регенератора.

Газотурбинные установки (ГТУ) – тепловые машины, в которых тепловая энергия газообразного рабочего тела преобразуется в механическую энергию. Основными компонентами являются: компрессор, камера сгорания и газовая турбина.

Для обеспечения работы и управления в установке присутствует комплекс объединенных между собой вспомогательных систем. ГТУ в совокупности с электрическим генератором называют газотурбинным агрегатом. Вырабатываемая мощность одного устройства составляет от двадцати киловатт до десятков мегаватт. Это классические газотурбинные установки. Производство электроэнергии на электростанции осуществляется при помощи одной или нескольких ГТУ.

Устройство и описание

Газотурбинные установки состоят из двух основных частей, расположенных в одном корпусе, – газогенератора и силовой турбины. В газогенераторе, включающем в себя камеру сгорания и турбокомпрессор, создается поток газа высокой температуры, воздействующего на лопатки силовой турбины.

При помощи теплообменника производится утилизация выхлопных газов и одновременное производство тепла через водогрейный или паровой котел. Работа газотурбинных установок предусматривает использование двух видов топлива – газообразного и жидкого. В обычном режиме ГТУ работает на газе.

В аварийном или резервном при прекращении подачи газа осуществляется автоматический переход на жидкое (дизельное) топливо. В оптимальном режиме газотурбинные установки комбинированно производят электрическую и тепловую энергию. Турбоагрегаты используются на электростанциях как для работы в базовом режиме, так и для компенсирования пиковых нагрузок.

Принцип работы ГТУ

Атмосферный воздух поступает в компрессор, сжимается и под высоким давлением через воздухоподогреватель и воздухораспределительный клапан направляется в камеру сгорания.

Одновременно через форсунки в камеру сгорания подается газ, который сжигается в воздушном потоке.

Сгорание газовоздушной смеси образует поток раскаленных газов, который с высокой скоростью воздействует на лопасти газовой турбины, заставляя их вращаться.

Тепловая энергия потока горячего газа преобразуется в механическую энергию вращения вала турбины, который приводит в действие компрессор и электрогенератор.

Электроэнергия с клемм генератора через трансформатор направляется в потребительскую электросеть.

Горячие газы через регенератор поступают в водогрейный котел и далее через утилизатор в дымовую трубу.

Между водогрейным котлом и центральным тепловым пунктом (ЦТП) при помощи сетевых насосов организована циркуляция воды.

Нагретая в котле жидкость поступает в ЦТП, к которому осуществляется подключение потребителей.

Термодинамический цикл газотурбинной установки состоит из адиабатного сжатия воздуха в компрессоре, изобарного подвода теплоты в камере сгорания, адиабатного расширения рабочего тела в газовой турбине, изобарного отвода теплоты.

В качестве топлива для ГТУ используется природный газ – метан. В аварийном режиме ГТУ переводится на частичную нагрузку, а в качестве резервного топлива используются дизельное топливо или сжиженные газы (пропан-бутан).

Управление

Выделяют два основных режима работы, при которых эксплуатируются газотурбинные установки:

  • Стационарный. В этом режиме турбина работает при фиксированной номинальной или неполной нагрузке.
  • Переменный режим предусматривает возможность изменения мощности ГТУ. Необходимость изменять режим работы турбины может быть вызвана одной из двух причин: если изменилась потребляемая электрогенератором мощность ввиду изменения подключенной к нему нагрузки потребителей, и если изменилось атмосферное давление и температура забираемого компрессором воздуха.

Применение в энергетике

В стационарной энергетике применяются ГТУ разного назначения.

В качестве основных приводных двигателей электрогенераторов на тепловых электростанциях газотурбинные установки используются в основном в районах с достаточным количеством природного газа.

Благодаря возможности быстрого пуска ГТУ широко применяются для покрытия пиковых нагрузок в энергосистемах в периоды максимального потребления энергии.

Резервные газотурбинные агрегаты обеспечивают внутренние нужды ТЭС во время остановки основного оборудования.

Достоинства и недостатки

К преимуществам газовых турбин относятся:

  • Простота устройства. Ввиду отсутствия котельного блока, сложной системы трубопроводов и множества вспомогательных механизмов металлозатраты на единицу мощности у газотурбинных установок значительно меньше.
  • Минимальный расход воды, которая в ГТУ требуется только для охлаждения подаваемого к подшипникам масла.
  • Быстрый ввод в работу. Для газовых турбоагрегатов время пуска из холодного состояния до принятия нагрузки не превышает 20 минут. Для паросиловой установки ТЭС пуск занимает несколько часов.
  • В работе газовых турбоагрегатов используется газ с весьма высокой начальной температурой – более 550 градусов. Это вызывает трудности при практическом исполнении газовых турбин, так как требуются специальные жаростойкие материалы и особые системы охлаждения для наиболее нагреваемых частей.
  • Около половины развиваемой турбиной мощности расходуется на привод компрессора.
  • ГТУ ограничены по топливу, используется природный газ или качественное жидкое топливо.
  • Мощность одной газотурбинной установки ограничена 150 МВт.

Энергетические газотурбинные установки. Циклы газотурбинных установок

Газотурбинные установки (ГТУ) представляют собой единый, относительно компактный энергетический комплекс, в котором спаренно работают силовая турбина и генератор. Система получила широкое распространение в так называемой малой энергетике. Отлично подходит для электро- и теплоснабжения крупных предприятий, отдаленных населенных пунктов и прочих потребителей. Как правило, ГТУ работают на жидком топливе либо газе.

Устройство газотурбинной установки

Установка включает три базовых узла: газовую турбину, камеру сгорания и воздушный компрессор.

Все агрегаты размещаются в сборном едином корпусе. Роторы компрессора и турбины соединяются друг с другом жестко, опираясь на подшипники.

Вокруг компрессора размещаются камеры сгорания, каждая в отдельном корпусе.

Для поступления в компрессор воздуха служит входной патрубок, из газовой турбины воздух уходит через выхлопной патрубок.

Базируется корпус ГТУ на мощных опорах, размещенных симметрично на единой раме.

Принцип работы

В ГТУ используется принцип непрерывного горения, или открытого цикла:

  • Рабочее тело (воздух) закачивается при атмосферном давлении соответствующим компрессором.
  • Воздух сжимается до большего давления и направляется в камеру сгорания.
  • В нее подается топливо, которое сгорает при постоянном давлении, обеспечивая постоянный подвод тепла. Благодаря сгоранию топлива температура рабочего тела увеличивается.
  • Рабочее тело (газ, представляющей собой смесь воздуха и продуктов сгорания) поступает в газовую турбину, где, расширяясь до атмосферного давления, совершает полезную работу (крутит турбину, вырабатывающую электроэнергию).
  • После турбины газы сбрасываются в атмосферу, через которую рабочий цикл и замыкается.
  • Разность работы турбины и компрессора воспринимается электрогенератором, расположенным на общем валу с турбиной и компрессором.

Установки прерывистого горения

В установках прерывистого горения применяются два клапана вместо одного.

  • Компрессор нагнетает воздух в камеру сгорания через первый клапан при закрытом втором клапане.
  • Когда давление в камере сгорания поднимается, первый клапан закрывают. В результате объем камеры оказывается замкнутым.
  • При закрытых клапанах в камере сжигают топливо, естественно, его сгорание происходит при постоянном объеме. В результате давление рабочего тела дополнительно увеличивается.
  • Далее открывают второй клапан, и рабочее тело поступает в газовую турбину. При этом давление перед турбиной будет постепенно снижаться. Когда оно приблизится к атмосферному, второй клапан следует закрыть, а первый открыть и повторить последовательность действий.

Используемое топливо

Подавляющее большинство ГТУ рассчитаны на работу на природном газе.

Иногда жидкое топливо используется в системах малой мощности.

Новым трендом становится переход компактных газотурбинных систем на применение твердых горючих материалов (уголь, торф и древесина).

Одним из основных недостатков, присущих поршневым двигателям внутреннего сгорания, является неизбежная неравномерность работы двигателя во времени — в течение цикла температуры и давления в цилиндре резко меняются; для преобразования возвратно-поступательного движения поршня во вращательное неизбежно применение кривошипно-шатунного механизма. Средняя скорость рабочего тела в двигателе невелика. Все эти обстоятельства не позволяют при создании двигателей внутреннего сгорания сосредоточить большую мощность в одном агрегате. От этих недостатков свободен двигатель внутреннего сгорания другого типа — газотурбинная установка (ГТУ). В отличие от поршневого двигателя внутреннего сгорания, в котором процессы происходят последовательно, один за другим, в одном и том же элементе двигателя — цилиндре, в ГТУ процессы происходят в различных элементах этой установки, и, таким образом, в ней нет такой неравномерности условий работы элементов двигателя, как в поршневом двигателе. В ГТУ средняя скорость рабочего тела значительно выше, чем в поршневых двигателях. Все это позволяет сосредоточить в сравнительно небольших по размеру ГТУ большие мощности.

В настоящее время ГТУ широко применяются в качестве транспортных установок (в авиации, на колесных и гусеничных машинах, на железнодорожном транспорте, на флоте) и для привода нагнетателей газоперекачивающих станций магистральных газопроводов. Газотурбинные установки применяются на электростанциях для производства электрической энергии как в качестве самостоятельных энергоблоков, так и в составе комбинированных парогазовых установок.

В теории термодинамических циклов газотурбинные установки классифицируются по тому же признаку, что и поршневые двигатели внутреннего сгорания, — по способу сжигания топлива: со сгоранием топлива при постоянном давлении и со сгоранием при постоянном объеме. Мы рассмотрим здесь только ГТУ с подводом теплоты при постоянном давлении, так как ГТУ с подводом теплоты при постоянном объеме в связи с техническими сложностями создания специальных камер сгорания сколько-нибудь широкого распространения не получили.

Цикл простой ГТУ.

Принципиальная схема простой ГТУ представлена на рисунке ниже. Воздух из окружающей среды (состояние 1) поступает в компрессор K, где адиабатно сжимается до давления p2, обычно не превышающего 3 МПа. В камере сгорания КС происходит сгорание жидкого или газообразного топлива. Образовавшиеся в КС газы (смесь продуктов сгорания и воздуха, не участвующего в процессе окисления топлива) в состоянии 3 при температуре 1000— 1800 К поступают в газовую турбину T, где адиабатно расширяются до первоначального давления p1, после чего выбрасываются в окружающую среду.

Компрессор К, газовая турбина Т и электрогенератор Г жестко соединены между собой, и поэтому часть работы, производимой турбиной, расходуется на привод компрессора, остальная часть (за вычетом потерь на трение в подшипниках и расхода энергии на привод топливного насоса) и есть работа ГТУ которая передается потребителю.

На рисунке выше в Т, s-диаграмме показан обратимый термодинамический цикл 1-2-3-4-1, осуществляемый рабочим телом ГТУ. Цикл простой ГТУ называют также циклом Брайтона. В обратимых циклах все процессы обратимы, поэтому адиабатные процессы сжатия в компрессоре 1-2 и расширения в турбине 3-4 обратимы, т.е. осуществляются без трения, и поэтому изоэнтропны. Кроме того, будем считать состав рабочего тела по тракту ГТУ неизменным и обладающим свойствами воздуха. Это допущение только на первый взгляд может показаться странным — ведь в компрессоре сжимается воздух, а в турбине расширяются газы, представляющие собой смесь воздуха и продуктов сгорания, по своим свойствам не существенно отличающуюся от свойств воздуха. Далее, при термодинамическом анализе обычно пренебрегают потерей давления в КС и небольшим отличием давления p1 от давления p4. Поэтому процесс 2-3 в камере сгорания представляется как изобарный подвод теплоты q1 к рабочему телу — воздуху, а процесс охлаждения уходящих газов в окружающей среде — это изобарный процесс 4-1. Таким образом, хотя схема простой ГТУ является разомкнутой, но цикл этой установки в T, s-диаграмме изображается как замкнутый. В связи с этим иногда такие установки называют газотурбинными установками, работающими по разомкнутому циклу.

Реальный (необратимый) цикл ГТУ отличается от идеального (обратимого) прежде всего выделением теплоты трения в процессах сжатия и расширения рабочего тела. В обратимых адиабатных процессах сжатия и расширения энтропия не изменяется, а в необратимых она возрастает. Поэтому на T, s-диаграмме действительный процесс сжатия в компрессоре изобразится линией 1-2д, а процесс расширения газа в турбине линией 3—4д. Таким образом, необратимый цикл ГТУ, учитывающий потери на трение в турбине и компрессоре, это цикл 1-2д-3-4д-1.

Читайте также: