Цикл пароэжекторной холодильной установки кратко

Обновлено: 07.07.2024

сора, а изобары 5-6 и 7-8 — промежуточному охлаждению газа 1) . Линия 9-10-1 изображает изобарный процесс отвода теплоты в конденсаторе (здесь 9-10 — охлаждение газа до температуры насыщения и 10-1 — процесс конденсации. Следует заметить, что в современных установках предусматривается сжатие в каждой ступени до все бóльших температур (с промежуточным охлаждением). Процесс расширения организован также ступенчато.

Ступенчатое сжатие в циклах холодильных установок применяется не только при производстве твердого диоксида углерода. Если в охлаждаемом объеме надо поддерживать температуру ниже –25 ° С, то это сложно даже для такого подходящего для этой цели хладагента, как аммиак, ибо для достижения более низких значений Т 2 при одном и том же значении Т 1 нужен больший перепад давлений на редукционном вентиле, т.е. более высокая степень повышения давления в компрессоре. При этом нужные значения p 1 ⁄ p 2 получаются столь высокими, что становится необходимым при-

менение ступенчатого сжатия с промежуточным водяным охлаждением. При значениях Т 2 примерно от –25 до –55 °С применяется двухступенчатое сжатие, а при значениях от –55 до –85 °С — трехступенчатое сжатие.

13.4. Цикл пароэжекторной холодильной установки

Цикл пароэжекторной холодильной установки, так же как и цикл парокомпрессионной установки, осуществляется с хладагентом в виде влажного пара. Основное отличие состоит в том, что если в цикле парокомпрессионной установки сжатие пара по выходе из охлаждаемого объема производится с помощью компрессора, то в пароэжекторной установке для этой цели используется паровой эжектор. Принцип действия эжектора описан в § 7.9.

Чем вызвано применение парового эжектора вместо компрессора? Для получения в холодильных установках не слишком низких температур (примерно от 3 до 10 °С) в качестве хладагента может быть использован водяной пар. Однако при температурах вблизи 0 °С удельный объем пара весьма велик (например,

при Т = 5 °С v′′ = 147,2 м 3 /кг). Поршневой компрессор, сжимающий пар столь малой плотности, представлял бы собой весьма громоздкую машину. Именно поэтому в цикле холодильной установки, работающей на водяном паре, применяется значительно более компактный, хотя и гораздо менее совершенный, аппарат— паровой эжектор, в котором используется дешевый пар низких параметров.

Пароэжекторная установка представляет собой один из самых старых типов холодильных установок.

Схема пароэжекторной холодильной установки изображена на рис. 13.16. Водяной пар, образовавшийся при расширении насыщенной воды в редукцион-

ном вентиле 1 от давления р 1 до давления р 2 , поступает в испаритель 2, размещен-

ный в охлаждаемом объеме. Температура в испарителе пароэжекторной холодильной установки может быть ниже температуры тройной точки воды (0,01 °С), если в качестве хладагента использовать водный раствор соли. Из испарителя пар высокой степени сухости при давлении р 2 направляется в камеру смешения парового эжек-

1) Организация процесса в компрессоре, показанная в T, s-диаграмме на рис. 13.15, т.е. с нагревом

в каждой ступени до одной и той же температуры, не обязательна.

Глава 13 . ХОЛОДИЛЬНЫЕ ЦИКЛЫ

тора 3. В сопло эжектора подается пар из котла 4 с давлением р к . Расходы пара, пода-

ваемого в камеру смешения эжектора из испарителя и в сопло эжектора из котла, подбираются таким образом, чтобы давление пара на выходе из диффузора эжектора равнялось р 1 . Из эжектора сухой насыщенный пар направляется в конденсатор 5, где

он конденсируется, отдавая теплоту охлаждающей воде. Поток конденсата при давлении р 1 , выходящий из конденсатора, раздваивается — бóльшая часть воды направ-

ляется в холодильный контур, на вход редукционного вентиля 1, а меньшая часть — к насосу 6, в котором давление воды повышается до р к . Насос 6 подает воду в котел.

Парообразование происходит за счет теплоты, подводимой в котле. Существенным отличием пароэжекторной установки от парокомпрессион-

ной является то, что для привода компрессора необходима механическая энергия (от электрического или другого двигателя), а для сжатия пара с помощью эжектора — кинетическая энергия пара, образовавшегося в котле.

Цикл пароэжекторной установки изображен в Т, s-диаграмме на рис. 13.17. В этой диаграмме, как и в случае цикла парокомпрессионной установки, линия 1-2 изображает процесс адиабатного дросселирования насыщенной воды

в редукционном вентиле, а линия 2-3 — изобарно-изотермический процесс

в испарителе (положим для определенности, что из испарителя выходит сухой насыщенный пар).

В этой же диаграмме изображен цикл, совершаемый той частью пара, которая циркулирует в контуре котел — эжектор — конденсатор — котел. Не следует забывать об условном характере изображения этого цикла — расходы пара

в каждом из двух контуров установки различны, тогда как в Т, s-диаграмме оба цикла изображены в расчете на 1 кг пара. Здесь I-II — процесс повышения давления воды в насосе; II-III-IV — процесс подвода теплоты в котле по изобаре p к = const

(II-III — нагрев до кипения, III-IV — парообразование), a IV-V — процесс расширения пара в сопле эжектора. Пар расширяется в сопле до давления р 2 (точка V ) и

смешивается затем с паром того же давления, поступившим в эжектор из испарителя (точка 3). В результате смешения влажного пара в состоянии V с сухим насыщенным паром в состоянии 3 получается пар промежуточной (между V и 3) степени сухости — точка А.

Линия А-4 соответствует повышению давления обоих потоков пара в диффузоре эжектора от р 2 до р 1 , а линия 4-1 — процессу конденсации этого количе-

ства пара в конденсаторе установки.

Поскольку в цикле установки работа извне не подводится 1) , а вместо нее подводится теплота в котле, эффективность цикла такой установки характеризуется коэффициентом теплоиспользования ξ, определяемым в виде

1) Работой насоса, подающего воду в котел, h II — h I пренебрегаем вследствие ее малости, т.е. считаем, что h I ≈ h II .

13.4. Цикл пароэжекторной холодильной установки

где q 2 — теплота, отводимая из охлаждаемого объема, a q ка — теплота, подводимая в котле.

Пользуясь обозначениями на рис. 13.17, можно записать это соотношение в следующем виде:

где g обозначено отношение количества пара с давлением р ка , подаваемого в сопло эжектора из котла, к количеству пара, поступающего в камеру смешения эжектора из испарителя.

Коэффициент теплоиспользования нельзя непосредственно сравнивать с холодильным коэффициентом ε, поскольку в выражении для ε фигурирует затраченная в цикле работа l ц , а в выражении для ξ — затраченная в цикле теплота q ка . Если обозна-

чить через l * работу, которая могла бы быть получена из этого количества теплоты в теплосиловом цикле, осуществляемом между источниками с температурами T ка и T 1 , а

через η т — термический КПД этого цикла, то тогда q кa = l * / η т и из (13.23) следует, что

где ε * — холодильный коэффициент рассматриваемой установки, определяемый как ε * = q 2 / l * . Поскольку значение η т в принципе точно не известно, так как не известен вид теплосилового цикла, очевидна вся условность такого приема. Для определенности можно лишь принять, что упомянутый теплосиловой цикл является циклом Карно. Из сказанного очевидно, что непосредственное сравнение эффективности циклов парокомпрессионной и пароэжекторной установок методически сложно.

Температура Т 2 в цикле установки этого типа, как уже отмечено выше, лежит в пределах от 3 до 10 °С (давление насыщенных паров воды при этих температурах составляет соответственно от 0,7 до 1,2 кПа.

Верхняя температура цикла Т 1 обычно поддерживается в пределах от 30 до 40 °С (давление насыщенных паров соответственно от 4,2 до 7,4 кПа).

Давление р к сухого насыщенного пара, подаваемого в сопло эжектора из котла, обычно выбирается в пределах от 0,3 до 1 МПа (температура в котле Т ка

достигает 180 °С).

С точки зрения термодинамики цикл пароэжекторной холодильной установки весьма несовершенен по сравнению с циклом парокомпрессионной установки, поскольку процесс смешения в эжекторе сопровождается значительными потерями работоспособности вследствие принципиально необратимого характера этого процесса. Тем не менее благодаря своей простоте (компактность, отсутствие движущихся частей 1) ) и возможности использования дешевого пара низких параметров пароэжекторные холодильные установки находят применение. Пароэжекторные установки могут работать не только с водяным паром;

в качестве хладагента в них могут быть использованы, например, фреоны.

1) За исключением водяного насоса.

Глава 13 . ХОЛОДИЛЬНЫЕ ЦИКЛЫ

13.5. Понятие о цикле абсорбционной холодильной установки

Еще одной разновидностью холодильных циклов, в которых используется хладагент в виде влажного пара, является цикл абсорбционной холодильной установки. От уже рассмотренных циклов паровых холодильных установок — парокомпрессионной и пароэжекторной — он отличается способом сжатия пара, выходящего из испарителя.

В рассматриваемой установке используется явление абсорбции пара жидким раствором. Абсорбцией называют поглощение вещества всем объемом поглощающего тела. Как известно, пар чистого вещества может быть поглощен (сконденсирован) этим же веществом в жидком состоянии лишь в том случае, если жидкость имеет температуру меньшую, чем температура пара. На этом принципе, в частности, основаны рассмотренные в гл. 9 смешивающие регенеративные подогреватели.

В отличие от чистых веществ растворы обладают замечательной способностью абсорбировать (поглощать) пар раствора одного состава жидким раствором другого состава даже в том случае, когда температура жидкости выше температуры пара. Именно это свойство раствора и используется в абсорбционных холодильных установках.

Поскольку детальное рассмотрение процессов в растворах выходит за рамки настоящей книги, мы только кратко остановимся на процессе абсорбции.

Температура кипения бинарного раствора при постоянном давлении зависит от состава раствора. При этом температура кипения будет тем выше, чем больше в растворе доля компонента с более высокой температурой кипения. Зависимость температуры кипения бинарного раствора при постоянном давлении от состава раствора изображается кривой кипения в Т, С-диаграмме, где С — массовая доля высококипящего компонента. T, С-диаграмма изображена на рис. 13.18 (кривая кипения — сплошная линия). Характерной особенностью растворов является то, что пар, получающийся при кипении раствора, имеет иной состав, чем находящийся с ним в равновесии жидкий раствор; пар более богат низкокипящим компонентом. Кривая пара — линия составов пара, находящегося в равновесии с жидкостью, изображена в T, С-диаграмме на рис. 13.18 штриховой линией. Как видно из рис. 13.18, при температуре Т 1 в равновесии

с жидким раствором состава С М находится пар раствора состава С N , а при температуре T 2 жидкому раствору состава C m соответствует пар состава С n . Если теперь пар состава С n , имеющий температуру Т 2 , привести в соприкосновение

с жидким раствором состава С M при температуре T 1 , по отношению к которому пар состава С n является переохлажденным, то очевидно, что пар будет конденси-

роваться (абсорбироваться жидким раствором). Давление жидкости и пара в этом процессе одно и то же. Теплота парообразования, выделяющаяся в процессе абсорбции при температуре Т 1 , отводится из раствора. Получается раствор

состава С, причем С m N .

Схема абсорбционной холодильной установки представлена на рис. 13.19. В качестве одного из возможных хладагентов в такой установке используется влажный пар аммиака. Жидкий насыщенный аммиак, дросселируясь в редукционном вентиле 1 от давления p 1 до давления p 2 , охлаждается от температуры T I

до температуры T 2 . Затем влажный пар аммиака поступает в испаритель 2, где степень сухости пара увеличивается до х = 1 за счет притока теплоты q 2 от охлаждаемого объема. Сухой насыщенный пар аммиака при температуре Т 2 поступает


Цикл пароэжекторной холодильной установки, так же как и цикл парокомпрессионной установки, осуществляется с хладагентом в виде влажного пара. Основное отличие состоит в том, что если в цикле парокомпрессионной установки сжатие пара по выходе из охлаждаемого объема производится с помощью компрессора, то в пароэжекторной установке для этой цели используется паровой эжектор. Схема пароэжекторной холодильной установки изображена на рис. 13.16.Водяной пар, образовавшийся при расширении насыщенной воды в редукционном вентиле 1 от давления р1 до давления р2, поступает в испаритель 2, размещенный в охлаждаемом объеме. Температура в испарителе пароэжекторной холодильной установки может быть ниже температуры тройной точки воды (0,01 °С), если в качестве хладагента использовать водный раствор соли. Из испарителя пар высокой степени сухости при давлении р2 направляется в камеру смешения парового эжек тора 3. В сопло эжектора подается пар из котла 4 с давлением рк. Расходы пара, подаваемого в камеру смешения эжектора из испарителя и в сопло эжектора из котла, подбираются таким образом, чтобы давление пара на выходе из диффузора эжектора равнялось р1. Из эжектора сухой насыщенный пар направляется в конденсатор 5, где он конденсируется, отдавая теплоту охлаждающей воде. Поток конденсата при давлении р1, выходящий из конденсатора, раздваивается — бульшая часть воды направляется в холодильный контур, на вход редукционного вентиля 1, а меньшая часть —к насосу 6, в котором давление воды повышается до рк. Насос 6 подает воду в котел. Парообразование происходит за счет теплоты, подводимой в котле.

В этой же диаграмме изображен цикл, совершаемый той частью пара, которая циркулирует в контуре котел — эжектор — конденсатор — котел. Не следует забывать об условном характере изображения этого цикла — расходы пара в каждом из двух контуров установки различны, тогда как в Т, s-диаграмме оба цикла изображены в расчете на 1 кг пара. Здесь I-II — процесс повышения давления воды в насосе; II-III-IV — процесс подвода теплоты в котле по изобаре pк = const (II-III — нагрев до кипения, III-IV — парообразование), a IV-V — процесс расширения пара в сопле эжектора. Пар расширяется в сопле до давления р2 (точка V ) и смешивается затем с паром того же давления, поступившим в эжектор из испарителя (точка 3). В результате смешения влажного пара в состоянии V с сухим насыщенным паром в состоянии 3 получается пар промежуточной (между V и 3) степени сухости — точка А.

Поскольку в цикле установки работа извне не подводится1), а вместо нее подводится теплота в котле, эффективность цикла такой установки характеризуется коэффициентом теплоиспользования ξ, определяемым в виде:

где g обозначено отношение количества пара с давлением рка, подаваемого в сопло эжектора из котла, к количеству пара, поступающего в камеру смешения эжектора из испарителя.

Коэффициент теплоиспользования нельзя непосредственно сравнивать с холодильным коэффициентом ε, поскольку в выражении для ε фигурирует затраченная в цикле работа lц, а в выражении для ξ — затраченная в цикле теплота qка. Если обозначить через l* работу, которая могла бы быть получена из этого количества теплоты в теплосиловом цикле, осуществляемом между источниками с температурами Tка и T1, а через ηт — термический КПД этого цикла, то тогда qкa = l* / ηт и из (13.23) следует, что ξ = ε* ηт, (13.25) где ε* — холодильный коэффициент рассматриваемой установки, определяемый как ε* = q2/ l *. Поскольку значение ηт в принципе точно не известно, так как не известен вид теплосилового цикла, очевидна вся условность такого приема. Для определенности можно лишь принять, что упомянутый теплосиловой цикл является циклом Карно. Из сказанного очевидно, что непосредственное сравнение эффективности циклов парокомпрессионной и пароэжекторной установок методически сложно.




Холодильные машины и установки. Устройство, виды, принцип действия холодильных машин.

Холодильные машины и установки предназначены для искусственного снижения и поддержания пониженной температуры ниже температуры окружающей среды от 10 °С и до -153 °С в заданном охлаждаемом объекте. Машины и установки для создания более низких температур называются криогенными. Отвод и перенос теплоты осуществляется за счет потребляемой при этом энергии. Холодильная установка выполняется по проекту в зависимости от проектного задания, определяющего охлаждаемый объект, необходимого интервала температур охлаждения, источников энергии и видов охлаждающей среды (жидкая или газообразная).

Холодильная установка может состоять из одной или нескольких холодильных машин, укомплектованных вспомогательным оборудованием: системой энерго- и водоснабжения, контрольно-измерительными приборами, приборами регулирования и управления, а также системой теплообмена с охлаждаемым объектом. Холодильная установка может быть установлена в помещении, на открытом воздухе, на транспорте и в разных устройствах, в которых надо поддерживать заданную пониженную температуру и удалять излишнюю влагу воздуха.

Система теплообмена с охлаждаемым объектом может быть с непосредственным охлаждением холодильным агентом, по замкнутой системе, по разомкнутой, как при охлаждении сухим льдом, или воздухом в воздушной холодильной машине. Замкнутая система может также быть с промежуточным хладагентом, который переносит холод от холодильной установки к охлаждаемому объекту.

Началом развития холодильного машиностроения в широких размерах можно считать создание Карлом Линде в 1874 году первой аммиачной паро-компрессорной холодильной машины. С тех пор появилось много разновидностей холодильных машин, которые можно сгруппировать по принципу работы следующим образом: паро-компрессионнные, упрощенно называемые компрессорные, обычно с электроприводом; теплоиспользующие холодильные машины: абсорбционные холодильные машины и пароэжекторные; воздушно-расширительные, которые при температуре ниже -90 °С экономичнее компрессорных, и термоэлектрические, которые встраиваются в приборы.

Каждая разновидность холодильных установок и машин имеет свои особенности, по которым выбирается их область применения. В настоящее время холодильные машины и установки применяются во многих областях народного хозяйства и в быту.

2. Термодинамические циклы холодильных установок

Перенос теплоты от менее нагретого к более нагретому источнику становится возможным в случае организации какого-либо компенсирующего процесса. В связи с этим циклы холодильных установок всегда реализуются в результате затрат энергии.

2.1. Воздушные холодильные установки


Схема воздушной холодильной установки

Рис. 14. Схема воздушной холодильной установки: ХК - холодильная камера; К - компрессор; ТО - теплообменник; Д - расширительный цилиндр (детандер)

Температура воздуха, поступающего из холодильной камеры ХК в цилиндр компрессора К, поднимается в результате адиабатного сжатия (процесс 1 - 2) выше температуры Т3 окружающей среды. При протекании воздуха по трубкам теплообменника ТО его температура при неизменном давлении понижается - теоретически до температуры окружающей среды Тз. При этом воздух отдает в окружающую среду теплоту q (Дж/кг). В результате удельный объем воздуха достигает минимального значения v3, и воздух перетекает в цилиндр расширительного цилиндра - детандера Д. В детандере, вследствие адиабатного расширения (процесс 3-4) с совершением полезной работы, эквивалентной затемненной площади 3-5-6-4-3, температура воздуха опускается ниже температуры охлаждаемых в холодильной камере предметов. Охлажденный подобным образом воздух поступает в холодильную камеру. В результате теплообмена с охлаждаемыми предметами температура воздуха при постоянном давлении (изобара 4-1) повышается до своего исходного значения (точка 1). При этом от охлаждаемых предметов к воздуху подводится теплота q2 (Дж/кг). Величина q 2, называемая хладопроизводительностью, представляет собой количество теплоты, получаемой 1 кг рабочего тела от охлаждаемых предметов.

2.2. Парокомпрессорные холодильные установки

В парокомпрессорных холодильных установках (ПКХУ) в качестве рабочего тела применяют легкокипящие жидкости (табл. 1), что позволяет реализовать процессы подвода и отвода теплоты по изотермам. Для этого используются процессы кипения и конденсации рабочего тела (хладагента) при постоянных значениях давлений.

Осуществить в холодильной установке подвод и отвод теплоты по изотермам удается в том случае, если в качестве хладагента используется влажный пар какой-либо легкокипящей жидкости, т.е. жидкости, у которой температура кипения при атмосферном давлении меньше температуры окружающей среды ts≤20°C). В этом смысле подобный цикл напоминает теплосиловой цикл Ренкина, осуществляемый во влажном паре также с целью обеспечения изотермических процессов подвода и отвода теплоты.

Схема холодильной установки, осуществляющей цикл с влажным паром, представлена на рис.2.

Сжатый в компрессоре 3 до давления р1 влажный пар поступает в охладитель (конденсатор) 4, где за счет отдачи теплоты охлаждающей воде происходит конденсация пара. Процесс конденсации происходит по изобаре-изотерме, так что из конденсатора выходит жидкость в состоянии насыщения. В случае, когда процесс отвода теплоты происходит по изотерме, разность температур конденсирующегося пара и охлаждающей воды может быть весьма малой.

Казалось бы, что далее жидкий хладагент должен быть направлен в детандер. Однако создание детандера, в котором расширяется и совершает работу не газ и даже не пар, а насыщенная жидкость, представляет собой трудную задачу. Поэтому в холодильных установках, использующих в качестве хладагентов влажные пары легкокипящих жидкостей, как правило, детандеры не применяются и вместо процесса расширения с отдачей внешней работы используется процесс расширения без отдачи внешней работы, т.е. процесс дросселирования. Процесс адиабатного дросселирования сопровождается ростом энтропии дросселируемого вещества; энтальпия вещества в результате адиабатного дросселирования не изменяется.

Жидкость при давлении р1 и температуре Т1 направляется в дроссельный (или, как иногда говорят, редукционный) вентиль 1, где она дросселируется до давления р2. Из редукционного вентиля выходит влажный пар при температуре Т2 и с малой степенью сухости. По выходе из редукционного вентиля влажный пар направляется в помещенный в охлаждаемом объеме испаритель 2, где за счет теплоты, отбираемой от охлаждаемых тел, содержащаяся во влажном паре жидкость испаряется; степень сухости влажного пара при этом возрастает. Давление р2 выбирается таким образом, чтобы соответствующая этому давлению температура насыщения была несколько ниже температуры охлаждаемого объема. В отличие от детандера редукционный вентиль позволяет осуществлять плавное регулирование температуры в охлаждаемом объеме посредством изменения степени открытия редукционного вентиля, обусловливающей давление и температуру влажного пара в испарителе.


Из испарителя пар высокой степени сухости направляется в компрессор, где он адиабатно сжимается от давления р2 до давления р1 . В процессе адиабатного сжатия степень сухости пара возрастает, так что из компрессора выходит сухой насыщенный пар. Обычно пар после охлаждаемого объема сепарируется, в результате чего влага отделяется и в компрессор поступает сухой насыщенный пар; это приводит к повышению внутреннего относительного КПД компрессора. В разных режимах работы установки возможны случаи, когда состояние пара, выходящего из компрессора, может оказаться как в области насыщения, так и в области перегрева. Затем пар направляется в конденсатор 4, и цикл замыкается.

Такого рода установка называется парокомпрессионной, так как в ней сжатие влажного пара осуществляется с помощью компрессора.

3.Цикл пароэжекторной холодильной установки

Цикл пароэжекторной холодильной установки, так же как и цикл парокомпрессионной установки, осуществляется с хладагентом в виде влажного пара. Основное отличие состоит в том, что если в цикле парокомпрессионной установки сжатие пара по выходе из охлаждаемого объема производится с помощью компрессора, то в пароэжекторной установке для этой цели используется паровой эжектор.

Для получения в холодильных установках не слишком низких температур (примерно от 3 до 10 °С) в качестве хладагента может быть использован водяной пар. Однако при температурах вблизи 0 °С удельный объем пара весьма велик (например, при Т=5°С v''=147,2 м3/кг). Поршневой компрессор, сжимающий пар столь малой плотности, представлял бы собой весьма громоздкую машину. Именно поэтому в цикле холодильной установки, работающей на водяном паре, применяется значительно более компактный, хотя и гораздо менее совершенный, аппарат— паровой эжектор, в котором используется дешевый пар низких параметров.

Пароэжекторная установка представляет собой один из самых старых типов холодильных установок.

Схема пароэжекторной холодильной установки изображена на рис.3.

Водяной пар, образовавшийся при расширении насыщенной воды в редукционном вентиле 1 от давления р1 до давления р2, поступает в испаритель 2, размещенный в охлаждаемом объеме. Температура в испарителе пароэжекторной холодильной установки может быть ниже температуры тройной точки воды (0,01 °С), если в качестве хладагента использовать водный раствор соли. Из испарителя пар высокой степени сухости при давлении р2 направляется в камеру смешения парового эжектора 3. В сопло эжектора подается пар из котла 4 с давлением рк. Расходы пара, подаваемого в камеру смешения эжектора из испарителя и в сопло эжектора из котла, подбираются таким образом, чтобы давление пара на выходе из диффузора эжектора равнялось р1. Из эжектора сухой насыщенный пар направляется в конденсатор 5, где он конденсируется, отдавая теплоту охлаждающей воде. Поток конденсата при давлении р1, выходящий из конденсатора, раздваивается — бoльшая часть воды направляется в холодильный контур, на вход редукционного вентиля 1, а меньшая часть — к насосу 6, в котором давление воды повышается до рк. Насос 6 подает воду в котел. Парообразование происходит за счет теплоты, подводимой в котле.

Существенным отличием пароэжекторной установки от парокомпрессионной является то, что для привода компрессора необходима механическая энергия (от электрического или другого двигателя), а для сжатия пара с помощью эжектора — кинетическая энергия пара, образовавшегося в котле.


С точки зрения термодинамики цикл пароэжекторной холодильной установки весьма несовершенен по сравнению с циклом парокомпрессионной установки, поскольку процесс смешения в эжекторе сопровождается значительными потерями работоспособности вследствие принципиально необратимого характера этого процесса. Тем не менее благодаря своей простоте (компактность, отсутствие движущихся частей 7)) и возможности использования дешевого пара низких параметров пароэжекторные холодильные установки находят применение. Пароэжекторные установки могут работать не только с водяным паром; в качестве хладагента в них могут быть использованы, например, фреоны.

В качестве рабочего вещества используется вода и хладоны. Промышленное применение получили водяные ПЭХМ. Они широко применяется для работы составе систем кондиционирования воздуха на промышленных предприятиях. Эффективность ПЭХМ возрастает при используется для работы дешевых источников теплоты(отработавшего водяного пара).

Схема и принцип действия ПЭХМ


Г-парогенератор; Э- эжектор; К-конденсатор; -конденсатный насос; РВ- регулирующий вентиль; И- испаритель; -циркуляционный насос; ПХ- потребитель холода.

Рабочий пар с изонтропно расширяется в сопле эжектора до -1-2s.состояние пара на выходе из И—точка 9. в сопле потенциальная энергия раб пара преобразуется в кинетическую. Скорость пара значительно возрастает (до 1000 м/с). Струя раб пара эжектирует (увлекает) холодный пар из И и смешивается с ним в камере эжектора. Состояние смеси паров хар точка 3. Смесь поступает в диффузор эжектора, где происходит преобразование кинетической энергии струи в потенциальную. В результате скорость потока снижается, а давление изонтропно повышается от до --3-4s.


TS-диаграмма2

Процессы расширения 11-2s от до с последующим сжатием смешанного пара 3-4s от до выполняется для передачи работы прямого цикла обратному.Изображение цикла ПЭХМ в диаграмме имеет условный характер, т.к. в контуре Г-Э-КД-Г и контуре И-Э-КД-И циркулирует разное количество раб вещества. Если принять, что через И проходит 1кг раб вещества, я через Г а кг через Э и КД будет проходить (1+а) кг.а-кратность циркуляции, коэф удельного расхода пара ; - массовые расходы раб и холодного паров.а показывает сколько расходуется раб пара на 1 кг холодного.Принимаем, что работа прямого цикла передается обратному без потерь Энергетический баланс ; ; ; ; ; .Эффективность ПЭХМ может быть охарактеризована несколькими коэф.Энергетическая эф-ть хар-ся тепловым коэф тепловым эквивалентом работы насоса пренебрегают

Холодильный коэф , термодинамический КПД прямого цикла

Особенности действительного цикла пароэжекторной ХМ. Изображение действительного цикла в и диаграммах.

Особенности действительного цикла закл-ся в следующем:

1 в камере всасыв-ия эжектора поддерж-ся давление более низкое, чем в И-ле. Это необходимо для преодаления потоком хол. пара потерь давления на участке И-ль-камера всасыв-ия.

2 из-за трения как о стенки каналов, так и в самом потоке процессы расширения пара в сопле, пара, идущего из И-ля, сжатие смеси раб. и хол. паров происходит необратимо с возрастанием энтропии.

3 в камере смешения эжектора процесс смешения происходит необратимо с некоторым повышением давления.

Раб. пар в состоянии 1 подводится к соплу эжектора и расширяется в нем до р2

Процессы в эжекторе.

РС-рабочее сопло, ПК- приемная камера, КС-камера смешения, Д-диффузор.

Рабочее сопло Э-ра ПЭХМ выполняется по типу сопло Лаваля. Оно состоит из сужающейся и расширяющейся частей, разделенных коротким цилиндр-ким участком. В суж-ейся части скорость потока увел-ся до местной скорости звука в узком (критическом) сечении сопло. Эта скорость и соотв-щее ей давление наз-ся критическим. В расшир-ся части сопла происходит переход через скорость звука и дальнейшее ускорение потока с умен-ем давления. Раб. пар поступает в ПК с выс. скоростью (1000м/с) и эжектирует хол. пар, скорость которого значит-но меньше (100м/с). По мере удаления от сопла расход движущегося сверхзвукового потока возрастает за счет присоед-ия массы хол. пара. При этом потоки раб. и хол. паров внедряются друг в друга. На некот-ом расстоянии от сопла не возмущенные потоки раб. и хол. паров исчезают и все сечение камеры смешения заполняет смесь паров. Это сечение наз-ся граничным. Профиль скоростей в гранич. сечении измен-ся от очень малой у стенок камеры до максим-ой в центре потока. За граничным сечением начинается основной участок КС, на котором продолжается выравнивание скоростей потока по сечению. Далее поток поступает в диффузор, где кинетич-ая энергия потока превращ-ся в потенц-ую. В рез-те давление смеси паров умен-ся, а скорость падает. Если принебречь сопротивлением тракта, соедин-щего Э-р и КД-р, то давление на выходе из Э-ра принимается давлению конденсации.

АВХМ

В Г за счет подвода теплоты qГ от внешнего греющего источника кипит крепкий по аммиаку раствор. Из раствора выделяется более летучий аммиак. Пар аммиака поступает в КД, где за счет отвода теплоты внешним охлаждающим источником в количестве qК охлаждается и конденсируется. Образовавшаяся жидкость поступает в РВ2, дросселируется от давления в КД до давления в И и поступает в И. В И за счет подвода теплоты от охлаждаемого источника в количестве q0 кипит жидкий аммиак и образовавшийся пар направляется в А. Из Г слабый по аммиаку раствор поступает в РВ1, дросселируется до давления в А и направляется в А. Здесь слабый раствор поглощает пары аммиака, поступающие из И. Теплота абсорбции в количестве qА отводится внешним охлаждающим источником. Концентрация раствора в результате поглощения пара возрастает до крепкого раствора, который забирается насосом и подается в Г.

Для построения цикла необходимо по известным параметрам внешних источников определить возможные параметры раствора в узловых точках цикла как для жидкой, так и для паровой фаз. Температурный режим работы АВХМ определяется тремя независимыми параметрами внешних источников: 1) Высшей температурой греющего источника th1; 2) Низшей температурой охлаждающей среды tW1; 3) Низшей температурой охлаждаемого хладоносителя tS2. По th1 находят высшую температуру кипения раствора в Г (на выходе из Г): t2 = th1 – Δth, (Δth ≈ 10°С). По tW1 находят давление и температуру конденсации: tK = tW1 – ΔtK, (ΔtK ≈ 5°С), далее, используя таблицы со свойствами чистого аммиака, находим PK = f(tK). Наличие в парах аммиака паров воды снижает PK, но использование таблиц свойств чистого аммиака дает некоторое завышение PK в запас и к ошибке не приводит.

Подача охлаждающей среды в КД и А может осуществляться параллельно и последовательно сначала в КД, затем в А. Параллельная подача: по tW1 находим низшую температуру раствора при абсорбции пара в А (t4 = tW1 + ΔtA). Последовательная подача: tW2 = tW1 + ΔtW, ΔtW – нагрев воды в КД (ΔtW = 2 ÷ 5°С). Далее t4 = tW2 + ΔtA.

По tS2 находим низшую температуру кипения в И: t0 = tS2 – Δt0, Δt0 ≈ 5°С. C помощью таблиц со свойствами чистого аммиака по t0 находим Р0′. Действительное значение Р0 будет ниже Р0′: Р0 = Р0′ - ΔР, ΔР учитывает наличие воды в аммиаке. По t0 определяем высшую температуру кипения в И: t8 = t0 + Δt0′. Для упрощения расчетов пренебрегают гидравлическим сопротивлением паровых трубопроводов между Г и КД, между И и А. Тогда давление в Г равно давлению в КД, давление в И равно давлению в А (Ph = PK, PA = P0).

Построение цикла. На диаграмме отмечают РK и Р0 для паровой и жидкой фаз раствора. На пересечении t4 и Р0 = РА находят положение т.4 в области жидкости. Т.4 имеет параметры t4, Р0 = РА, ξR, h4. Т.4 характеризует состояние крепкого раствора на выходе из А. Изменением энтальпии раствора при прохождении насоса пренебрегают. В Г раствор подогревается до равновесного состояния т.10 (t10, РК, ξR, h10), а затем кипит при РК = Рh (процесс 102). Т.2 (t2, PK, ξA, h2), характеризующую состояние раствора в конце процесса кипения, находят на пересечении t2 и PK в области жидкости. Состояние пара, равновесного жидкости в начале процесса кипения, характеризуется т.1' (t10, РК, h1'), а состояние пара, равновесного жидкости в конце процесса кипения (т.2), характеризуется т.2' (t2, PK, h2'). Положение т.1' и т.2' находят, используя вспомогательную линию изобары РК в области пара. Эти точки лежат на пересечении t10 и t2, проведенных в области влажного пара, и линии PK для сухого насыщенного пара. Считают, что из Г выходит пар, равновесный среднему состоянию раствора в процессе кипения: ξm = (ξA + ξR) / 2. Положение т.5' (t5, PK, ξ d, h5') находят с помощью вспомогательной линии изобары PK в области паровой фазы. Эта точка лежит на пересечении t5, проведенной в области влажного пара, и линии PK для сухого насыщенного пара. Пар с состоянием 5' поступает в КД, где конденсируется за счет охлаждения внешним охлаждающим источником (процесс 5'6). Жидкость, состояние которой характеризуется т.6 (t6, PK, ξ d, h6), дросселируется в РВ2 от PK до Р0 и в состоянии влажного пара поступает в И. Так как при дросселировании энтальпия не меняется, то состояние влажного пара будет характеризоваться т.7 (t7, P0, ξ d, h6), совпадающей на диаграмме с т.6. Влажный пар при P0 состоит из жидкости (т.70 (t7 = t70, P0, h7)) и пара (т.7' (t0, P0, h7')). Положение т.70 находят на пересечении t0 и P0 в области жидкости. Положение т.7' находят на пересечении t0, проходящей в области влажного пара через т.7, и изобары P0 для сухого насыщенного пара. В И за счет подвода теплоты от охлаждаемого источника жидкость в состоянии 70 кипит (процесс 7080), температура при этом меняется от низшей t0 до высшей t8. Положение т.80 (t8, P0, h80), характеризующей состояние жидкости в конце процесса кипения, находят на пересечении t8 и P0 в области жидкости. Т.8' (t8, P0, h8'), характеризующая состояние пара, равновесного жидкости в конце процесса кипения, находится с помощью вспомогательной линии изобары P0 в области паровой фазы. Считают, что из И выходит влажный пар, состояние которого характеризуется т.8 (t8, P0, ξ d, h8). Т.8 лежит на пересечении t8 в области влажного пара и линии постоянной концентрации ξ d. Слабый раствор из Г (т.2) дросселируется в РВ1 от Ph до PА и поступает в А. Поскольку при дросселировании энтальпия не меняется, то т.3 (t30, PА, ξА, h3'), характеризующая состояние влажного пара после дросселирования жидкости, на диаграмме совпадает с т.2. Влажный пар при P0 состоит из жидкости (т.30 (t30, PА, h30)) и насыщенного пара (т.3' (t30, PА, h3')). Положение т. 3' и т.30 находят методом последовательных приближений. Т.30 лежит на пересечении t30, проведенной в области влажного пара, и P0 для насыщенной жидкости. Т.3' лежит на пересечении t30, проведенной в области влажного пара, и P0 для насыщенного пара. В А при давлении PА происходит поглощение пара раствором (процесс 304). Концентрация раствора увеличивается до ξR.

Тепловой расчет простейшей АВХМ

Пренебрегая тепловым эквивалентом работы насоса, тепловой баланс:

Допустим в конденсаторе конденсируется G (кг/с) пара, а в генератор поступает F (кг/с) крепкого раствора. Тогда количество слабого раствора на выходе из генератора составит (G–F) кг/с. Это же количество раствора поступает в абсорбер, где в результате поглощения G пара из испарителя образуется F крепкого раствора. Если пренебречь тепловым моментом работы насоса, то тепловой баланс машины можно записать так:

Тепловой баланс машины, отнесенный к одному кг пара, сконденсированного в конденсаторе, можно написать так:

Если расход раствора, циркулирующего через абсорбер и генератор, отнести к расходу пара, конденсирующегося в конденсаторе, то получим кратность циркуляции (кг/кг).Материальный баланс генератора по аммиаку может быть записан в виде равенства: ;

где – количество аммиака, поступающего с крепким раствором; – количество аммиака, отводимое с 1 кг пара; – количество аммиака, отводимое со слабым раствором. Отсюда: ;

Для определения удельных тепловых потоков составим тепловые балансы аппаратов:Тепловой баланс генератора: Отсюда: В испарителе кипит 1 кг вещества. Количество подведенной от внешнего охлаждаемого источника теплоты может быть определено как разность значений энтальпий вещества на выходе из аппарата и на входе в него:

Тепловой баланс машины, отнесенный к 1 кг пара, сконденсированного в конденсаторе, можно написать так:

Количество отведенной теплоты в конденсаторе определяется разностью значений энтальпий в начале и конце процесса конденсации. Так как в аппарате сжижается 1 кг пара, то: ;В абсорбер поступает (f–1) кг слабого раствора из генератора с энтальпией и 1 кг влажного пара из испарителя с энтальпией . Выходит из аппарата f крепкого раствора с энтальпией . Из теплового баланса аппарата: Тепловой эквивалент работы насоса: Насос водоаммиачного раствора перекачивает f жидкости из абсорбера в генератор. Определив удельный объем раствора можно подсчитать работу насоса: где давление конденсации и кипения.Тепловой коэффициент тепловой машины: .

АБХМ

Из Кд жидкость в сост. 3 через гидравл. затвор поступает в И. Учитывая, что в процессе дросселир-ия энтальпия не меняется, на входе в И х/а состояния 3 будет представлять собой влажный пар, состоящий из насыщенного пара т. ) и насыщенной жидкости т.1 ( ). Положение точек 1 и находят на пересечении изобары в области жидкости и вспомогат. линии в области пара с линией .

Читайте также: