Бутадиеновый каучук это кратко

Обновлено: 05.07.2024

БУТАДИЕНОВЫЕ КАУЧУКИ

БУТАДИЕНОВЫЕ КАУЧУКИ (дивиниловые каучуки, полибутадиены, СКД, СКДЛ, америпол, буден, буна СВ, диен, интен, карифлекс BR, коперфлекс, нипол BR, солпрен, эуропрен-цис и др.), полимеры 1,3-бутадиена. наиб. значение имеют стереорегулярные бутадиеновые каучуки, синтезируемые в р-ре в присут. катализаторов Циглера - Натты (комплексов соединений переходных металлов, гл. обр. Со, Ni, Ti, с алюминий-орг. соединениями) или литийорг. катализаторов (см. табл. 1). В относительно небольших масштабах вырабатывают бутадиеновые каучуки, получаемые в р-ре в присут. алфиновых катализаторов, напр. комплексов аллилнатрия, изопропилата натрия и Nad, а также каучуки, синтезируемые в эмульсии или массе. К последним относится натрий-бутадиеновый каучук СКВ - первый в мире пром. СК, произ-во к-рого по способу С.В. Лебедева было организовано в СССР в 1932 (мономер - бутадиен, синтезированный из этанола, катализатор-металлич. Na). В современной резиновой пром-сти этот каучук утрачивает свое значение (гл. обр. из-за несовершенства технологии его произ-ва) и заменяется каучуком СКДСР, получаемым полимеризацией мономера в р-ре в присут. литийорг. катализатора и донора электронов. Особая группа бутадиеновых каучуков - жидкие олигомеры (см. Жидкие каучуки).


Структура макромолекул. Свойства каучуков. Звенья бутадиена в макромолекуле бутадиеновых каучуков могут иметь конфигурацию 1,4-цис (ф-ла I), 1,4-транс (II) и 1,2 (III). Соотношение этих звеньев определяется природой катализатора и условиями полимеризации (см. табл. 1).


Табл. 1. - СТРУКТУРА МАКРОМОЛЕКУЛ БУТАДИЕНОВЫХ КАУЧУКОВ

Среднечисловая мол. массастереорегулярных бутадиеновых каучуков составляет 100-250 тыс.. эмульсионных - 40-100 тыс. Индекс полидисперсности (-среднемассовая мол. масса) существенно зависит от типа катализатора и условий полимеризации. Так, для бутадиеновых каучуков, получаемых с применением литийорг. катализаторов, он составляет 1,1-2,0, титановых - 1,5-5,0, никелевых и кобальтовых - 2,0-8,0. наиб. полидисперсны бутадиеновые каучуки, синтезируемые в массе или эмульсии ( > 10). Макромолекулы этих каучуков характеризуются и наиб. разветвленностью. Наименее разветвлены макромолекулы бутадиеновых каучуков, получаемых на литийорг. катализаторах. Следствие малой разветвленности и узкого ММР - неудовлетворительные технол. св-ва таких каучуков. Улучшение этих св-в достигается искусственным повышением разветвленности макромолекул (напр., благодаря использованию при полимеризации небольших кол-в спец. агентов, обычно дивинилбензола) или резким повышением индекса полидисперсности каучука до 5-10.

Бутадиеновые каучуки хорошо раств. в ароматич. углеводородах и их хлор-производных, циклогексане, алифатич. углеводородах С7 и выше. Плотность каучуков всех типов составляет 0,90-0,92 г/см 3 (25°С). Ряд физ. св-в каучуков зависит от структуры их макромолекул (см. табл. 2).

Бутадиеновые каучуки с преимущественным содержанием звеньев 1,4-цис кристаллизуются при охлаждении; т-ра макс. скорости кристаллизации от — 55 до - 60 о С, т-ра плавления кристаллич. фазы 4 о С.

Бутадиеновые каучуки взаимод. с бромом (р-ция идет с количеств. выходом и не сопровождается циклизацией полимера), хлором, а также с соед., содержащими подвижные атомы галогена, напр. N-галогенсукцинимидами. В р-циях гидрогалогенирования бутадиеновые каучуки сравнительно малоактивны. Гидрируются водородом в углеводородных р-рителях (напр., циклогексане) в присут. комплексных соед. типа катализаторов Циглера — Натты или n-толуолсульфонилгидразидом в диметиловом эфире диэтиленгликоля (диглиме). Под действием УФ-излучения в присут. орг. бромидов или меркаптанов цис- или транс-полибутадиены изомеризуются до равновесного соотношения цис- и транс-структур (20 :80). В присут. свободнорадикальных инициаторов бутадиеновые каучуки присоединяют тиолы, при действии надкислот или гидропероксидов эпоксидируются. Реагируют с малеиновым ангидридом, хлоралем, нитрозосоединениями, карбенами. Циклизация, к-рая идет при нагр. до 140°С в присут. конц. H2SO4, сопровождается образованием преим. трициклич. структур.

Табл. 2 - ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ БУТАДИЕНОВЫХ КАУЧУКОВ

Бутадиеновые каучуки окисляются медленнее, чем НК и синтетич. изопреновые каучуки, но быстрее, чем бутадиен-стирольные. Процесс сопровождается структурированием каучука. Стабилизируют бутадиеновые каучуки обычными окрашивающими или неокрашивающими антиоксидантами, напр. N-фенил-2-нафтиламином, N,N'-дифенил-1,4-фенилендиамином, 2,6-ди-трет-бутил-4-метилфенолом (0,3-1,5 мас. ч.; здесь и далее - в расчете на 100 мас. ч. каучука).

Получение каучуков. Для синтеза бутадиеновых каучуков в растворе применяют бутадиен, содержащий99% (по массе) основного в-ва и0,001% влаги. Р-рители - толуол, циклогексан, гексан, гептан, бензин. Мономер полимеризуют непрерывным способом в батарее последовательно соединенных реакторов, снабженных мешалкой и рубашкой, в к-рой циркулирует хладагент. При 25-30°С продолжительность процесса составляет 4-8 ч, конверсия бутадиена - 80-95% в зависимости от типа катализатора (повышение т-ры до 35-40°С, особенно в случае применения титановой каталитич. системы, приводит к заметному увеличению выхода олигомеров, придающих каучуку резкий неприятный запах). Заключительные операции технол. процесса: дезактивация катализатора (обычно с использованием соединений, содержащих подвижные атомы водорода); введение антиоксиданта; отмывка р-ра полимера от остатков каталитич. комплекса; выделение полимера, напр. методом водной дегазации (отгонкой р-рителя и остаточного мономера с водяным паром); отделение крошки каучука от воды; сушка каучука, его брикетирование и упаковка.

В р-р каучука иногда вводят минер. масло и водную или углеводородную дисперсию техн. углерода (сажи). Такие масло- и сажемаслонаполненные каучуки характеризуются улучшенными технол. св-вами (см. также Наполненные каучуки).

Технология получения эмульсионных бутадиеновых каучуков аналогична используемой в произ-ве бутадиен-стиральных каучуков.

Технологические характеристики каучуков. Резиновые смеси. Вязкость по Муни (100°С) каучуков с высоким содержанием звеньев 1,4-цис составляет 30-55 (наполненные каучуки получают из бутадиеновых каучуков с вязкостью до 75). Технол. св-ва этих каучуков хуже, чем у синтетич. изопреновых и бутадиен-стирольных. Перерабатывают стереорегулярные бутадиеновые каучуки (как правило, в смеси с др. эластомерами - бутадиен-стирольными, изопреновыми, хлоропреновыми, бутадиен-нитрильными и др.) на обычном оборудовании резиновых заводов - вальцах, смесителях, каландрах, экструдерах. Изделия вулканизуют обычно при 140-160 °С в прессах, котлах, спец. агрегатах.

Наиб. используемый агент вулканизации бутадиеновых каучуков и их смесей с др. каучуками-сера (до 2,5 мае. ч.). Иногда применяют также тетраметилтиурамдисульфид, орг. пероксиды, алкилфеноло-формальд. смолы. Ускорители серной вулканизации - гл. обр. сульфенамиды (напр., N-циклогексилбензотиазол-2-сульфенамид), их комбинации с дифенилгуанидином и др. (1-2 мас. ч.). В кач-ве наполнителей применяют преим. активный техн. углерод (50-100 мас. ч.), при получении светлых и цветных резин - высокодисперсный SiO2, мел, каолин. наиб. используемые пластификаторы - минер. масла с высоким содержанием ароматич. или парафино-нафтеновых углеводородов.


Свойства вулканизатов. Осн. достоинства вулканизатов стереорегулярных бутадиеновых каучуков- высокие эластичность и износостойкость. Св-ва резин на основе бутадиеновых каучуков, содержащих 87-95% звеньев 1,4-цис (наполнитель - активный техн. углерод; 50 мас. ч.), приведены ниже:

При использовании комбинаций бутадиеновых каучуков с другими каучука-ми получают вулканизаты, в к-рых сочетаются высокие прочность, сопротивление раздиру, эластичность и износостойкость.

Морозостойкость резин из бутадиеновых каучуков (см. табл. 3) тем выше, чем меньше их склонность к кристаллизации при охлаждении. Один из путей повышения морозостойкости резин из кристаллизующихся каучуков с высоким содержанием звеньев 1,4-цис- введение в макромолекулу небольших кол-в звеньев сомономера, напр. изопрена или пиперилена.

Табл. 3. - КОЭФФИЦИЕНТЫ МОРОЗОСТОЙКОСТИ РЕЗИН ИЗ БУТАДИЕНОВЫХ КАУЧУКОВ С РАЗЛИЧНЫМ СОДЕРЖАНИЕМ ЗВЕНЬЕВ 1,4-цис

Бутадиен стирольный каучук

Бутадиен-стирольный каучук – является наиболее распространенным видом полимерных составов в основе которого лежит каучук. Производится из недорогих материалов, способ его изготовления тоже прост, а сфера применения очень разнообразна, поэтому данный состав очень распространен в использовании среди многих промышленностей и заводов.

Бутадиен-стирольный каучук формула

Каучук издавна получали из дерева гевеи в Америке. Но с развитием технологий данное средство пришлось добывать технологическим и химическим путем. Видов каучука в настоящее время несколько. Химпромом выпускаются такие варианты, как фторсодержащий, винилпиридиновый, вспененный. Самым распространённым является бутадиеновый. Впервые получен был искусственным методом в 1932 году компанией инженеров под руководством А.Лебедева.

Данный материал обладает повышенной прочностью, благодаря особой формуле химического соединения. Синтетический каучук стирольный является некристаллизующимся сополимером, звенья которого распределяются мономерно. 25% звеньев стирола находятся изолировано друг от друга, 45 попарно расположены. Благодаря подобной уникальной формуле данное вещество обладает высокой форме изнашивания и прочности. Другое название бутадиен-стирольного каучука – резина. Химическая формула соединения будет выглядеть следующим образом:

Формула бутадиен-стирольного каучука

Получение бутадиен-стирольного каучука

Схема получения данного вещества непростая и имеет несколько ступеней. Даже для синтетического вещества используют природные. Сначала из зерна и картофеля создают этиловый спирт. Именно на основе спирта создают важный элемент для каучука как бутадиен- 1.3.

Это вещество представляет собой газообразный прозрачный состав. Этот газ очень неприятно пахнет. Дальнейшим этапом становится полимеризация производного газа с присутствием металлического натрия. Процедура длится долго, несколько часов при температуре 60С и давлении 0,9 Мпа. Состав улучшают путем удаления из него летучих соединений и дополнительно добавляют противостаритель и стеариновую кислоту. Затем на специальном оборудовании данный состав прорабатывается для однородности и вывода ненужных соединений.

Применение бутадиен-стирольного каучука

Сфера применения изделий из каучука обширна и разнообразна, ввиду недорого производства и его прочности. На основании данного вещества изготавливают:

· Морозостойкие, кислотостойкие эбонитовые резины.

· Шины для автомобилей и велосипедов.

· Подошвы обуви и сама обувь (например, калоши и резиновые сапоги).

· Транспортных лент для тяжелой промышленности.

· Изолирующие части электропроводов.

Основное преимущество данного вида каучука – его высокая прочность и отсутствие вредных и сильных запахов. Поэтому этот материал помимо вышеперечисленных сфер используется для медицинской и пищевой отрасли, только состав дополнительно очищается.

Наиболее массовое применение каучуков – это производство резин для авиационных, автомобильных и велосипедных шин. А также изготавливаются различные уплотнители в санитарной и вентиляционной, пневматической технике. В том числе применяется в строительстве для изготовления герметиков, эластичных мастик и гидроизоляции фундамента и крыши.

Стоит заметить, что синтетический каучук является основой для ракетного топлива, как одно из составляющего. Потребление бутадиен-стирольного каучука просто гигантский и составляет примерно 10 млн тонн в год, что превышает по использованию любых других видов каучука.

Сополимеризация бутадиен-стирольного каучука

Сополимеризация – это то же что и полимиризация, но участие принимают два или более полимера. Благодаря данной процедуре становится возможным соединение ранее несовместимых веществ для образования нового, более качественно-нового по определенным характеристикам и свойствам.

Фактически все разновидности каучука и являются сополиризацией. Ведь самый распространенный бутадиен-стирольный происходит на основании стирола и бутадиена. В сополимерном каучуке находится 60 % молекул этилена и 40 % молекул пропилена. На производственных станциях сополимерных каучуков и латексов емкости с легковоспламеняющимися веществами и газами обязательно располагаются в других помещениях и должны быть в смежных группах, которые разделены ограждающей стеной.

На практике, при изготовлении сополиперных каучуков в которых участвуют канифольные эмульгаторы, используется ступенчатая схема, которая представляет собой три последовательные мешалки, в каждой из которых вещество находится 3, 5 и 7 минут соответственно.

Из-за крупного промышленного производства бутадиен-стирольный сополимерный каучук наряду с метиловым и этиловым спиртами, является самым масштабным продуктом органического синтеза и производится, и поставляется на заводы различного назначения и производительности, в которые входят автопром, обувные фабрики, заводы по изготовлению латекса, детских резиновых игрушек и иных формах производства.

Таким образом, бутадиен-стирольный каучук – наиболее распространенный вид каучука, который применяется в изготовлении резиновых вещей, деталей и элементов. Без данного химического соединения сложно представить современную жизнь, его важность сложно переоценить, потому то без данного состава люди не смогли бы ездить на автомобилях и электричества в доме не было бы тоже. Иными словами, вещество жизненно важное для современного человека.

Свойства бутадиен-стирольного каучука

Формула данного состава позволяет веществу быть устойчивым к внешним механическим воздействиям, агрессивным растворителям и иным неблагоприятным условиям окружающей среды. Отношение к спиртам и кислотам средне-стабильное. Это значит, что состав выдерживает воздействие данных веществ. Но в процессе нагревания заметны изменения химико-физического свойства резины, как следствие ее устойчивость к вредным и механическим воздействиям.

Большим минусом резины, которая основана на основе бутадиен-стирольных каучуков является низкая клейкость, если ее необходимо в процессе каких-то технологий склеивать между собой.

Для производства конечного вещества применяют в основе бутадиен, который составляет 97-99%. Данное вещество обладает следующими характеристиками:

· Температура вулканизации, в основе которой сера, 140-160С.

· Плотность 900-920 кг.

· Чтобы вещество было более пластичным используются минеральные масла.

Мягкие низкотемпературные каучуки имеют плохую вязкость, поэтому их не пластицируют.

Жесткие вариации делают в маленьких объемах, и при температуре около 1300 С подвергают их термоокислительной процедуре. Это необходимо для того чтобы материал был более прочным не восприимчивым к истиранию, был морозостойким.

Есть еще один вид бутадиен-стирольного каучука – с добавлением технического углерода, что делает их очень прочными, их износостойкость увеличена в разы они более стойкие к воздействию кислот, спиртов, щелочей. Подобный состав часто используется для шин машин, резиновой обуви и из подобного вещества делают транспортерные ленты различных заводов и промышленных объектов.


My MODx Site

БУТАДИЕНОВЫЕ КАУЧУКИ

Бутадиеновые каучуки получают полимеризацией бутадиена в присутствии различных катализаторов. В зависимости от типа применяемых катализаторов и способа полимеризации получаются каучуки с разной микроструктурой и техническими свойствами.

Все бутадиеновые каучуки подразделяются на:

К стереорегулярным относятся каучуки, в молекулах которых не меньше 85% мономерных групп. К ним относятся бутадиеновые каучуки, получае­мые с помощью комплексных катализаторов Циглера-Натта ко­бальтового, никелевого и титанового типов, а также каучук, полу­чаемой с помощью литий-органического катализатора.

К бутадиеновым и эмульсионным каучуком нестереорегулярного строения относятся каучуки, получаемые в присутствии щелочных металлов.

Нестереорегулярные бутадиеновые каучуки

Нестсреорегулярный и натрий-бутадиеновый каучук (СКВ), по­лучаемый по способу С. В. Лебедева, является первым синтетиче­ским каучуком, производство которого было организовано в круп­ных масштабах в нашей стране. Долгое время он был основным каучуком общего назначения и вместе с натуральным применялся при изготовлении разнообразных резиновых изделий.

СКВ получают полимеризацией бутадиена в массе в присутст­вии металлического натрия. Полимеризация длится несколько де­сятков часов при температуре 50-60 о С и максимальном давлении в полимери­заторе 0,9 МПа.

Цвет СКВ— желтый с зеленоватым или коричневатым оттен­ком; по степени полимеризации и пластичности каучук неодноро­ден, легко окисляется, содержит примеси летучих веществ, а также металлического натрия и его соединений.

Для улучшения технических свойств каучука его обрабатывают в вакуумсмесителе с целью удаления летучих веществ. Затем к нему добавляют противостаритель и стеариновую кислоту. Далее каучук обрабатывают на рафинировочных пальцах для очистки от жестких включений и придания ему большей однород­ности.

На рафинировочных вальцах каучук обрабатывается в зазоре между вращающимися валками и выходит из зазора в виде тон­кого листа.

Для удаления из общей массы каучука мелких жестких частиц каучука с высокой степенью полимеризации, называемых хрящами, валки рафинировочных вальцов имеют слегка бочкообразную фор­му т. е. имеют бомбировку. При обработке каучука жесткие вклю­чения оттесняются к краю валков, отделяются от основной массы каучука и в виде кромки снимаются с краев валка с помощью специальных кромочных ножен. Так получается рафинированный каучук.

При обработке каучука на рафинировочных вальцах с зазором между валками больше 0,1 мм получают брекированный каучук, а при еще большем зазоре -вальцованный каучук.

СКВ упаковывают в мешки, пропитанные нитролаком, или в прорезиненные мешки.

В зависимости от способа полимеризации выпускают СКВ двух типов: стержневой и бесстержневой, пластичность получаемых каучуков находится в пределах от 0,1 до 0,66.

Марки каучука обозначают числом, соответствующим пластич­ности. Например, пластичность каучука марки 40 составляет 0,36—0.40.

Для обозначении способа полимеризации, метода обработки, содержания мягчителей и назначения каучука к числовому обо­значению марки каучука прибавляется буквы.

Буквы, стоящие за числовым обозначением марки каучука, оз­начают:

с — стержневои полимеризации,

б - бесстержневой полимеризации,

д — предназначенный для резин с повышенными ди­электрическими свойствами,

э — предназначенный для эбонитовых и баллонных изделий,

щ — для резиновых изделий, соприкасаю­щихся с пищевыми продуктами.

Каталитической полимеризацией бутадиена в присутствии ка­лия получают каучук СКВ, отличающийся повышенной морозо­стойкостью.

Полимеризацией бутадиена бесстержневым способом в присут­ствии лития в качестве катализатора получают каучук СКБМ. Этот каучук обладает еще более высокой морозостойкостью, чем СКВ.

Применение. В связи с производством стереорегулярных бута­диеновых каучуков СКБ потерял свое техническое значение, при­менение его значительно сократилось по сравнению с другими каучуками. Причина этого состоит в том, что стереорегулярные бутадиенииые каучуки имеют более ценные технические свойства, они в большей степени отвечают современным требованиям резинового производства, получаются по непрерывной схеме при меньших за­тратах ручного труда.

В настоящее время СКБ, СКВ, СКБМ применяются как

специального назначения и используются при изготовлении некоторых пищевых, морозостойких, кислотощелочестоиких ре­зин, а также эбонитовых и асбестовых изделий. В дальнейшем предполагается заменить их в производите этих изделий на бу­тадиеновые каучуки типа СКБС (линейной структуры) и СКБСР (разветвленной структуры), ко­торые получаются более совершенной растворной полимеризацией. Их вулканизаты отличаются высокой стойкостью к термоокислительной деструкцией к тепловому старению и по комплексу физикомеханических свойств близки к резинам из СКБ.

Стереорегулярные бутадиеновые каучуки

Стереорегулярные бутадиеновые каучуки получают полимери­зацией бутадиена в растворителях в присутствии комплексного ка­тализатора.

Непрерывная полимеризация производится в батарее полимери­заторов при температурах 25—30°С и давлении до 1,0 МПа в течение 4 - 8 ч. После удаления основной массы непрореагировавшего мономера и части растворителя в вакуумиспарителе к полимеризату добавляется антиоксидант (противостаритель), затем полимеризат подвергают водной дегаза­ции. Обработкой паром отделяют растворитель от каучука, при этом удаляется большая часть оставшихся продуктов распада ка­тализатора, растворившихся в воде.

Стереорегулярные бутадиеновые каучуки выпускают в виде брикетов массой около 30 кг, завернутых в полиэтиленовую пленку и упакованных в четырехсложные бумажные мешки.

Свойства

Относительно высокая гибкость макромолекули подвижность макромалекулярных цепей СКД является причиной более низ­кой температуры стеклования по сравнению с температурой стек­ловании натурального канчуки. Температура стеклования промыш­ленного СКД находится в пределах от -105 до - 110°С с повы­шением содержания 1,4-звеньев она понижается.

Бутадиеновые каучуки при содержании более 80% цис-звеньев способны кристаллизоваться при охлаждении. Максимальная ско­рость кристаллизации СКД наблюдается при температурах от -55 до -60 о С. При уменьшении содержания цис-1,4-звеньев, молеку­лярной массы каучука и в результате вулканизации скорость и сте­пень кристаллизации каучуки понижаются.

Каучуки СКД разных марок отличаются вязкостью, вальцуемостью и физико-механическими свойствами вулканизатов (наполненных техническим углеродом).

Резины на основе СКД обладают рядом ценных свойств:

- повышенной износостойкостью и исключитель­но высокой морозостойкостью. Недостатком СКД является его малая когезионная прочность (прочность в невулканизированном со­стоянии) и хладотекучесть, т.е. повышенная текучесть при нормальной температуре и сравнительно малых нагрузках, что за­трудняет получение и хранение каучука и резиновых смесей на его основе. Кроме того, резиновые смеси на оспине СКД обладают пло­хими технологическими свойствами из-за узкого ММР, низкой ад­гезии к металлу и высокой эластической восстанавливаемости, осо­бенно при повышенных температурах.

На свойства СКД, как и свойства других каучуков, большое влияние оказывают параметры молекулярной структуры:

С увеличением молекулярной массы каучука жесткость и вязкость повышаются, а пластичность и вальцуемость ухудшаются. Одновременно повышаются условное напряжение резин (при удлинении 300%), прочность при растяжении, эла­стичность по отскоку и снижаются относительное и остаточное уд­линение, истираемость, теплообразование и сопротивление разра­станию пореза.

Молекулярная масса, разветвленность полимерных цепей промышленного СКД колеблются в узких пределах, в то же время ММР в зависимости от степени регулирования может ме­няться весьма существенно. С увеличением полидисперсности кау­чука заметно снижаются напряжение при 300%-ном удлинении, прочность при растяжении, твердость и эластичность по отскоку наполненных резин, что объясняется уменьшением густоты вулканизационной сетки, а относительное удлинение, теплообразование при многократном сжатии и истираемость возрастают.

В то же время с увеличением полидисперсности каучука улуч­шаются технологические свойства саженаполненных смесей, умень­шается продолжительность их изготовления, температура смеше­ния и вязкость резиновых смесей. Когезионная прочность каучука мало зависит от ММР и в основном определяется молеку­лярной массой.

Бутадиеновые каучуки хорошо растворяются в ароматических и хлорсодержащих углеводородах, бензине и циклогексане, хуже растворяются в ароматических углеводородах. Резины на их основе имеют низкую стойкость к действию масел, растворителей и топлив.

Эти каучуки и резины на их основе благодаря подвижности звеньев обладают несколько большей газопроницаемостью по сравнению с натуральном и бутадиен-стирольными каучуками.

По стойкости к тепловому старению резины на основе СКД уступают резинам на основе бутадиенстирольного каучука, но превосходят резины на основе натурального каучука, они отли­чаются также хорошей эластичностью, усталостной выносливостью и малым теплообразованием при многократных деформациях. Но износостойкости резины на основе СКД превосходит резины на основе других каучуков общего назначения благодаря большему взаимодействию каучука с активными наполнителями и понижен­ному коэффициенту трения.

СКД практически не пластицируются. Эффективность пластика­ции при обработке на промышленном оборудовании незначительна. При более высоких температурах эффект пластикации значительно возрастает, одновременно наблю­дается структурирование каучука.

Применение

СКД обычно применяют в сочетании с другими изопреновым синтетическим каучуком, натуральным, а также бутадиен- стирольными каучуками, которые улучшают тех­нологические свойства резиновых смесей, предназначенных для изготовления шин, транспортерных лепт, изоляции электрических ка­белей, морозостойких изделий, изделий с высокой динамической выносливостью и износостойкость и др.

Бутадиеновый каучук марки СКД-ЛР получают полимериза­цией в растворе в присутствии литиевого катализатора, в него вво­дят нетемнеющий противостаритель. Он обладает хорошей морозо­стойкостью, нетоксичен, не имеет неприятного запаха и поэтому ис­пользуется для изделий, применяемых в пищевой промышленности, медицине, санитарии.

дивиниловые каучуки, группа синтетических каучуков — продуктов полимеризации бутадиена. При полимеризации молекулы бутадиена (1) могут соединяться с участием любой из двух или обеих двойных связей, образуя полимеры с различной конфигурацией химических звеньев в макромолекуле:

В зависимости от условий полимеризации и природы катализатора получают Б. к., различающиеся содержанием в их макромолекулах звеньев конфигурации 1, 4 (как цис-, так и транс-структуры) и звеньев конфигурации 1, 2.

Катализаторами при получении Б. к. служат щелочные металлы (главным образом натрий), комплексные соединения типа CoCl2 + Al (C2H5)2Cl, TiCl4 + Al (C2H5)3 и др. (так называемые координационно-ионные катализаторы Циглера — Натты) и металлорганические соединения (например, бутиллитий). В присутствии щелочных металлов получают нестереорегулярные Б. к., содержащие 60—66% звеньев 1,2 и 34—40% звеньев 1,4 (в основном трансструктуры). В присутствии других названных выше катализаторов протекает реакция стереоспецифической полимеризации (см. Полимеризация), приводящая к образованию стереорегулярных полимеров, которые содержат до 98% звеньев 1,4, в том числе 32—98% звеньев цис-структуры. Содержание последних определяется типом катализатора. Б. к. с высоким содержанием звеньев 1,4-цис (93—98%) получают на кобальтовых, со средним (87— 95%) — на титановых, с низким (35— 40%) — на литийорганических катализаторах.

Наиболее распространённый нестереорегулярный натрий-бутадиеновый каучук (СКБ) был первым в мире промышленным синтетическим каучуком. Его производство по способу акад. С. В. Лебедева было организовано в СССР в 1932. Стереорегулярные Б. к. были впервые получены Дж. Наттой в Италии. В СССР производство стереорегулярного каучука СКД организовано в 1965. Стереорегулярные Б. к., позволяющие получать резины, превосходящие по эластичности и износостойкости резины из натурального каучука, приобрели наибольшее значение.

Б. к. различной структуры имеют одинаковую плотность (900—920 кг/м 3 или 0,90—0,92 г/см 3 ), близкие диэлектрические свойства [удельное объёмное электрическое сопротивление 1—10 Том /м (1014—1015 ом /см), диэлектрическая проницаемость 2,4—2,8], растворимы в бензине, бензоле, хлороформе и др. растворителях. Температура стеклования стереорегулярных Б. к. от —95 °С (для Б. к. с низким содержанием звеньев 1,4-цис) до —122°С (для Б. к. с высоким содержанием этих звеньев), нестереорегулярного СКБ — около —52 °С. При нагревании, действии кислорода, озона, ультрафиолетовых лучей, ионизирующих излучений Б. к. претерпевают структурные превращения, сопровождающиеся уменьшением их растворимости. Скорость этих превращений снижается с увеличением содержания в Б. к. звеньев конфигурации 1, 2.

Для вулканизации стереорегулярных Б. к. применяют серу, органические дисульфиды, перекиси, алкилфеноло-формальдегидные смолы, для нестереорегулярных — главным образом серу. Наполнителями служат преимущественно активные сажи. Саженаполненные резины из стереорегулярных Б. к. существенно превосходят резины из нестереорегулярных Б. к. по прочности, эластичности, износо- и морозостойкости (см. табл.).

Стереорегулярные Б. к. с различным содержанием звеньев 1,4-цис выпускают в ряде зарубежных стран. Торговые марки: америпол СВ, цис-4, буден, диен (США), полисар тактин (Канада), буна СВ (ФРГ), интен (Великобритания), нипол BR, асаден (Япония) и др.

Читайте также: