Алгоритм построения интервального ряда кратко

Обновлено: 04.07.2024

Результаты группировки собранных статистических данных, как правило, представляются в виде рядов распределения. Ряд распределения - это упорядоченное распределение единиц совокупности на группы по изучаемому признаку.

Ряды распределения делятся на атрибутивные и вариационные, в зависимости от признака, положенного в основу группировки. Если признак качественный, то ряд распределения называется атрибутивным. Примером атрибутивного ряда является распределение предприятий и организаций по формам собственности (см. табл. 3.1).

Если признак, по которому строится ряд распределения, количественный, то ряд называется вариационным.

Вариационный ряд распределения всегда состоит из двух частей: вариант и соответствующих им частот (или частостей). Вариантой называется значение , которое может принимать признак у единиц совокупности, частотой - количество единиц наблюдения, обладающих данным значением признака. Сумма частот всегда равна объему совокупности. Иногда вместо частот рассчитывают частости - это частоты, выраженные либо в долях единицы (тогда сумма всех частостей равна 1), либо в процентах к объему совокупности (сумма частостей будет равна 100%).

Вариационные ряды бывают дискретными и интервальными. У дискретных рядов (табл. 3.7) варианты выражены конкретными числами, чаще всего целыми.

В интервальных рядах (см. табл. 3.2) значения показателя задаются в виде интервалов. Интервалы имеют две границы: нижнюю и верхнюю. Интервалы могут быть открытыми и закрытыми. У открытых нет одной из границ, так, в табл. 3.2 у первого интервала нет нижней границы, а у последнего - верхней. При построении интервального ряда в зависимости от характера разброса значений признака используют как равные интервальные промежутки, так и неравные (в табл. 3.2 представлен вариационный ряд с равными интервалами).

Если признак принимает ограниченное число значений, обычно не больше 10, строят дискретные ряды распределения. Если вариант больше, то дискретный ряд теряет свою наглядность; в этом случае целесообразно использовать интервальную форму вариационного ряда. При непрерывной вариации признака, когда его значения в определенных пределах отличаются друг от друга на сколь угодно малую величину, также строят интервальный ряд распределения.

3.3.1. Построение дискретных вариационных рядов

Рассмотрим методику построения дискретных вариационных рядов на примере.

Пример 3.2. Имеются следующие данные о количественном составе 60 семей:

Для того чтобы получить представление о распределении семей по числу их членов, следует построить вариационный ряд. Поскольку признак принимает ограниченное число целых значений строим дискретный вариационный ряд. Для этого сначала рекомендуется выписать все значения признака (число членов в семье) в порядке возрастания (т.е. провести ранжирование статистических данных):

Затем необходимо подсчитать число семей, имеющих одинаковый состав. Число членов семей (значение варьирующего признака) - это варианты (будем их обозначать через х), число семей, имеющих одинаковый состав, - это частоты (будем их обозначать через f ). Результаты группировки представим в виде следующего дискретного вариационного ряда распределения:

3.3.2. Построение интервальных вариационных рядов

Покажем методику построения интервальных вариационных рядов распределения на следующем примере.

Пример 3.3. В результате статистического наблюдения получены следующие данные о средней величине процентной ставки 50 коммерческих банков (%):

Как видим, просматривать такой массив данных крайне неудобно, кроме того, не видно закономерностей изменения показателя. Построим интервальный ряд распределения.

Число интервалов на практике часто задается самим исследователем исходя из задач каждого конкретного наблюдения. Вместе с тем его можно вычислить и математически по формуле Стерджесса

где n - число интервалов;

N - объем совокупности (число единиц наблюдения).

Для нашего примера получим: n = 1 + 3,322lgN = 1 + 3,322lg50 = 6,6 " 7.

где хmax - максимальное значение признака;

хmin - минимальное значение признака.

Для нашего примера

Интервалы вариационного ряда наглядны, если их границы имеют "круглые" значения, поэтому округлим величину интервала 1,9 до 2, а минимальное значение признака 12,3 до 12,0.

Интервалы, как правило, записывают таким образом, чтобы верхняя граница одного интервала являлась одновременно нижней границей следующего интервала. Так, для нашего примера получим: 12,0-14,0; 14,0-16,0; 16,0-18,0; 18,0-20,0; 20,0-22,0; 22,0-24,0; 24,0-26,0.

Кроме того, в нашем примере мы могли бы сделать первый и последний интервалы открытыми, т.д. записать: до 14,0; 24,0 и выше.

При подсчете частот может возникнуть ситуация, когда значение признака попадет на границу какого-либо интервала. В таком случае можно руководствоваться правилом: данная единица приписывается к тому интервалу, для которого ее значение является верхней границей. Так, значение 16,0 в нашем примере будет относиться ко второму интервалу.

Результаты группировки, полученные в нашем примере, оформим в таблице.

В последней графе таблицы представлены накопленные частоты, которые получают путем последовательного суммирования частот, начиная с первой (например, для первого интервала - 5, для второго интервала 5 + 9 = 14, для третьего интервала 5 + 9 + 4 = 18 и т.д. ). Накопленная частота, например, 33, показывает, что у 33 банков кредитная ставка не превышает 20% (верхняя граница соответствующего интервала).

В процессе группировки данных при построении вариационных рядов иногда используются неравные интервалы. Это относится к тем случаям, когда значения признака подчиняются правилу арифметической или геометрической прогрессии или когда применение формулы Стерджесса приводит к появлению "пустых" интервальных групп, не содержащих ни одной единицы наблюдения. Тогда границы интервалов задаются произвольно самим исследователем исходя из здравого смысла и целей обследования либо по формулам. Так, для данных, изменяющихся в арифметической прогрессии, величина интервалов вычисляется следующим образом:

где ik - величина вычисляемого интервала;

ik - 1 - величина предыдущего интервала;

с - константа, на которую происходит увеличение длин интервалов.

Порядок расчетов границ неравных интервалов для данных, изменяющихся приблизительно в арифметической прогрессии, показан в табл. 3.15.

Для показателей, приблизительно изменяющихся в геометрической прогрессии, величину интервалов можно вычислить по формуле

где ik - величина вычисляемого интервала;

ik - 1 - величина предыдущего интервала;

с - константа-множитель геометрической прогрессии.

Для графического изображения дискретного вариационного ряда используется полигон распределения: на оси абсцисс откладывают значения вариант, а на оси ординат - соответствующие им частоты или частости, полученные точки соединяют отрезками (образуется ломаная линия). По данным табл. 3.7 построим полигон распределения (рис. 3.1).

Для графического изображения интервального ряда используют гистограмму, имеющую вид многоступенчатой фигуры, состоящей из прямоугольников. По оси абсцисс откладывают значения границ интервалов. Сами интервалы будут являться основаниями прямоугольников. Высота прямоугольников соответствует частоте или частости интервалов, которые откладываются по оси ординат.

По данным таблицы, приведенной в примере 3.3, построим гистограмму (рис. 3.2).

При неравных интервалах у гистограммы распределения высотами прямоугольников будут являться показатели плотности распределения, рассчитываемые как частное от деления частоты интервала на его величину.

Зависимость между значениями признака и накопленными частотами показывают особые графики, называемые кумулятой и огивой распределения.

Если ряд дискретный, то по оси абсцисс откладывают значения вариант ряда, а по оси ординат - рассчитанные накопленные частоты, получаемые для каждой конкретной варианты как сумма всех предыдущих частот. Полученные точки соединяют ломаной линией. Вместо значений накопленных частот можно взять значения накопленных частостей, тогда верхняя точка на кумулятивной кривой по оси ординат будет соответствовать значению 100%.

В случае интервального ряда при построении кумуляты по оси абсцисс отмечают границы интервальных групп, накопленные частоты по оси ординат относят к верхним границам интервалов.

По данным таблицы, приведенной в примере 3.3, построим кумуляту распределения для интервального ряда (рис. 3.2).

Если у кумулятивной кривой поменять местами ось абсцисс с осью ординат, получим график, называемый огивой распределения (рис. 3.4).

Кроме дискретного вариационного ряда часто встречается такой способ группировки данных, как интервальный вариационный ряд.

Интервальный ряд строится если:

а) признак имеет непрерывный характер изменения;

б) дискретных значений получилось очень много (больше 10)

в) частоты дискретных значений очень малы (не превышают 1-3 при относительно большем количестве единиц наблюдения);

г) много дискретных значений признака с одинаковыми частотами.

Интервальный вариационный ряд – это способ группировки данных в виде таблицы, которая имеет две графы (значения признака в виде интервала значений и частота каждого интервала).

Число, которое показывает, сколько единиц наблюдения попало в каждый выделенный интервал, называется частота значения признака и обозначают fi. Сумма всех частот ряда равна количеству элементов (единиц наблюдения) в изучаемой совокупности.

Если единица обладает значением признака, равным величине верхней границы интервала, то ее следует относить к следующему интервалу.

Например, ребёнок с ростом 100 см попадёт во 2-ой интервал, а не в первый; а ребёнок с ростом 130 см попадёт в последний интервал, а не в третий.

На основании этих данных можно построить интервальный вариационный ряд.

xi (рост ребенка) fi (кол-во детей с таким ростом)
90-100
100-110
110-130
больше 130
Всего

У каждого интервала есть нижняя граница (хн), верхняя граница (хв) и ширина интервала (i).

Граница интервала – это значение признака, которое лежит на границе двух интервалов.

рост детей (см) рост детей (см) количество детей
хн хв
90-100
100-110
110-130
больше 130 -
Всего

Если у интервала есть верхняя и нижняя граница, то он называется закрытый интервал. Если у интервала есть только нижняя или только верхняя граница, то это – открытый интервал. Открытым может быть только самый первый или самый последний интервал. В приведённом примере последний интервал – открытый.

Ширина интервала (i) – разница между верхней и нижней границей.

Ширина открытого интервала принимается такой же, как ширина соседнего закрытого интервала.

рост детей (см) количество детей Ширина интервала (i)
хн хв
100-90=10
110-100=10
130-110=20
для расчётов 130+20=150 20 (потому что ширина соседнего закрытого интервала – 20)
всего

Все интервальные ряды делятся на интервальные ряды с равными интервалами и интервальные ряды с неравными интервалами. В интервальных рядах с равными интервалами ширина всех интервалов одинаковая. В интервальных рядах с неравными интервалами ширина интервалов разная.

В рассматриваемом примере - интервальный ряд с неравными интервалами.

Алгоритм построения интервального вариационного
ряда с равными интервалами

Цель:научиться составлять статистические распределения выборки, строить полигоны, гистограммы, строить эмпирические функции распределения.

Краткие теоретические сведения:

Математическая статистика– это раздел прикладной математики, посвящённый методам сбора, группировки и анализа статистических сведений, полученных в результате наблюдений или экспериментов.

Генеральной совокупностью называют множество объектов, однородных относительно некоторого признака.

Выборочной совокупностью (выборкой) называется совокупность случайно отобранных объектов.

Повторной называют выборку, при которой отобранный объект (перед отбором следующего) возвращается в генеральную совокупность.

Бесповторной называют выборку, при которой отобранный объект в генеральную совокупность не возвращается.

Число объектов совокупности называется её объёмом.

Выборка называется репрезентативной, если каждый объект выборки отобран случайно из генеральной совокупности, и если все объекты имеют одинаковую вероятность попасть в выборку.

Численное значение количественного признака называется вариантой.

Статистическим распределением выборки называют перечень вариант и соответствующих им частот или относительных частот .

Вариационным рядом называется ранжированный в порядке возрастания (или убывания) ряд вариант с соответствующими им частотами.

Вариационный ряд называется дискретным, если любые его варианты отличаются на постоянную величину, и – интервальным, если варианты могут отличаться одна от другой на сколь угодно малую величину.

Дискретный статистический ряд задается таблицей, в которой указываются варианты, частоты или относительные частоты их встречаемости. Графическое изображение дискретного статистического ряда называется полигоном частот (относительных частот).Это ломаная, в которой концы отрезков имеют координаты или , .

Пример. Закон распределения дискретного статистического ряда и полигон частот.




Интервальный статистический ряд для случайных непрерывных величин и для случайных дискретных величин при больших объемах выборок. Интервальный ряд представляет собой таблицу, в которой указаны частичные интервалы, плотности частот или плотности относительных частот. Графическое изображение интервального статистического ряда называется гистограммой.Представляет собой ступенчатую фигуру из прямоугольников с основаниями, равными интервалам значений признака, и высотами, равными частотам интервалов.

Пример. Закон распределения интервального статистического ряда и гистограмма.


(55;60) (60;65) (65;70) (70;75) (75;80) (80;85) (85;90)


Алгоритм построения интервального ряда:

Пусть дана выборка с объёмом .


1) находим размах выборки ,

2) определяем число классов разбиения по формулам:

(формула Стерджесса для )

(формула Брукса для ),


3) находим величину классового интервала ,

4) границы и середины частичных интервалов находим по формулам:

, , , ,

, , ,



5) подсчитываем частоты попадания вариант в каждый интервал.

Кумулятивная кривая (кумулята) – кривая накопленных частот. Для дискретного ряда кумулята представляет собой ломаную, соединяющую точки или , . Для интервального вариационного ряда ломаная начинается с точки, абсцисса которой равна началу первого интервала, а ордината накопленной частоте, равной 0, остальные точки соответствуют концам интервалов.

Эмпирической функцией распределения называется относительная частота того, что признак примет значение, меньшее заданного , то есть .

Для дискретного вариационного ряда эмпирическая функция представляет собой разрывную ступенчатую функцию, для интервального – совпадает с кумулятой.



Основные числовые характеристики вариационного ряда:

Среднее арифметическое вариационного ряда , где - варианты дискретного ряда или середины интервалов интервального, - соответствующие им частоты.

Основные свойства средней арифметической:


1) ,


2) ,


3) ,


4) ,


5) ,

6) , где - общая средняя, - групповая средняя -той группы с объёмом , - число групп.


Дисперсия вариационного ряда .

Основные свойства дисперсии:


1) ,


2) ,


3) ,


4) ,

5) , где - общая дисперсия, - групповая дисперсия, - средняя арифметическая групповых дисперсий, - межгрупповая дисперсия.


6) - дисперсия среднего значения.


Среднее квадратическое отклонение .


Коэффициент вариации .

Медиана вариационного ряда , где - начало медианного интервала, - его длина, - объём выборки, - сумма частот интервалов, предшествующих медианному, - частота медианного интервала. Для дискретного ряда медиана - значение признака, приходящееся на середину ранжированного ряда наблюдений.

Мода , где - начало модального интервала, - его длина, - частота модального интервала, и - частоты соответственно предшествующего и последующего за модальным интервалов. Для дискретного ряда мода - варианта, которой соответствует наибольшая частота.

Начальный момент -го порядка .

Центральный момент -го порядка .


Коэффициент асимметрии .


Эксцесс .

Контрольные вопросы:

1. Генеральная и выборочная совокупности, их объём.

2. Статистическое распределение выборки. Вариационный ряд.

3. Дискретный статистический ряд. Полигон частот.

4. Интервальный статистический ряд. Гистограмма.

5. Алгоритм построения интервального статистического ряда.

6. Эмпирическая функция распределения. Кумулятивная кривая.

7. Среднее арифметическое вариационного ряда и его свойства.

8. Дисперсия и её свойства. СКО.

Контрольные задания:

1. Дано распределение признака , полученное по наблюдениям. Необходимо:

1) построить (полигон) гистограмму, кумуляту и эмпирическую функцию распределения;


2) найти: среднюю арифметическую, моду и медиану, дисперсию, СКО и коэффициент вариации, начальные и центральные моменты -го порядка.



2. Вычислить общие и групповые средние и дисперсии и убедиться в справедливости правила сложения дисперсий.


группа 1 группа 2

3. Изучался рост (см) мужчин возраста 25 лет. По случайной выборке объема 35: 175, 167, 168, 169, 168, 170, 174, 173, 177, 172, 174, 167, 173, 172, 171, 171, 170, 167, 174, 177, 171, 172, 173, 169, 171, 173, 173, 168, 173, 172, 166, 164, 168, 172, 174, найти статистический интервальный ряд распределения и построить гистограмму частот.

Задания для домашней работы:

Дано распределение признака , полученное по наблюдениям. Необходимо:

1) построить (полигон) гистограмму, кумуляту и эмпирическую функцию распределения;


2) найти: среднюю арифметическую, моду и медиану, дисперсию, СКО и коэффициент вариации, начальные и центральные моменты -го порядка.

Правила построения дискретных и интервальных рядов распределения

Что такое группировка статистических данных, и как она связана с рядами распределения, было рассмотрено в первой части этой лекции, там же можно узнать, о том что такое дискретный и вариационный ряд распределения.

Ряды распределения одна из разновидностей статистических рядов (кроме них в статистике используются ряды динамики), используются для анализа данных о явлениях общественной жизни. Построение вариационных рядов вполне посильная задача для каждого. Однако есть правила, которые необходимо помнить.

Как построить дискретный вариационный ряд распределения

Пример 1. Имеются данные о количестве детей в 20 обследованных семьях. Построить дискретный вариационный ряд распределения семей по числу детей .

0 1 2 3 1
2 1 2 1 0
4 3 2 1 1
1 0 1 0 2

Решение:

  1. Начнем с макета таблицы, в которую затем мы внесем данные. Так как ряды распределения имеют два элемента, то таблица состоять будет из двух колонок. Первая колонка это всегда варианта – то, что мы изучаем – ее название берем из задания (конец предложения с заданием в условиях) — по числу детей – значит наша варианта это число детей.

Вторая колонка это частота – как часто встречается наша варианта в исследуемом явление – название колонки так же берем из задания — распределения семей – значит наша частота это число семей с соответствующим количеством детей.

В итоге макет нашей таблицы будет выглядеть так:

И расставим эти данные в первой колонке нашей таблицы в логическом порядке, в данном случае возрастающем от 0 до 4. Получаем

И в заключение подсчитаем, сколько же раз встречается каждое значение варианты.

0 1 2 3 1

2 1 2 1 0

4 3 2 1 1

1 0 1 0 2

В результате получаем законченную табличку или требуемый ряд распределения семей по количеству детей.

Задание. Имеются данные о тарифных разрядах 30 рабочих предприятия. Построить дискретный вариационный ряд распределения рабочих по тарифному разряду. 2 3 2 4 4 5 5 4 6 3

1 4 4 5 5 6 4 3 2 3

4 5 4 5 5 6 6 3 3 4

Как построить интервальный вариационный ряд распределения

Построим интервальный ряд распределения, и посмотрим чем же его построение отличается от дискретного ряда.

Пример 2. Имеются данные о величине полученной прибыли 16 предприятий, млн. руб. — 23 48 57 12 118 9 16 22 27 48 56 87 45 98 88 63. Построить интервальный вариационный ряд распределения предприятий по объему прибыли, выделив 3 группы с равными интервалами.

Общий принцип построения ряда, конечно же, сохраниться, те же две колонки, те же варианта и частота, но в здесь варианта будет располагаться в интервале и подсчет частот будет вестись иначе.

  1. Начнем аналогично предыдущей задачи с построения макета таблицы, в которую затем мы внесем данные. Так как ряды распределения имеют два элемента, то таблица состоять будет из двух колонок. Первая колонка это всегда варианта – то, что мы изучаем – ее название берем из задания (конец предложения с заданием в условиях) — по объему прибыли – значит, наша варианта это объем полученной прибыли.

Вторая колонка это частота – как часто встречается наша варианта в исследуемом явление – название колонки так же берем из задания — распределения предприятий – значит наша частота это число предприятий с соответствующей прибылью, в данном случае попадающие в интервал.

В итоге макет нашей таблицы будет выглядеть так:

ряды распределения формула

  1. Построим интервалы. Следует сказать, что есть несколько способов построения интервала: визуальный способ без дополнительных расчетов на основе логического анализа данных, расчет по формуле, если по условию требуется построить равные интервалы. Для упрощения расчетов величины интервала чаще всего эта формула имеет следующий вид:

где i – величина или длинна интервала,

Хmax и Xmin – максимальное и минимальное значение признака,

n – требуемое число групп по условию задачи.

Рассчитаем величину интервала для нашего примера. Для этого среди исходных данных найдем самое большое и самое маленькое

ряды распределения формула 2

23 48 57 12 118 9 16 22 27 48 56 87 45 98 88 63 – максимальное значение 118 млн. руб., и минимальное 9 млн. руб. Проведем расчет по формуле.

В расчете получили число 36,(3) три в периоде, в таких ситуациях величину интервала нужно округлить до большего, чтобы после подсчетов не потерялось максимальное данное, именно поэтому в расчете величина интервала 36,4 млн. руб.

  1. Теперь построим интервалы – наши варианты в данной задаче. Первый интервал начинают строить от минимального значения к нему добавляется величина интервала и получается верхняя граница первого интервала. Затем верхняя граница первого интервала становится нижней границей второго интервала, к ней добавляется величина интервала и получается второй интервал. И так далее столько раз сколько требуется построить интервалов по условию.

Обратим внимание если бы мы не округлили величину интервала до 36,4, а оставили бы ее 36,3, то последнее значение у нас бы получилось 117,9. Именно для того чтобы не было потери данных необходимо округлять величину интервала до большего значения.

  1. Проведем подсчет количества предприятий попавших в каждый конкретный интервал. При обработке данных необходимо помнить, что верхнее значение интервала в данном интервале не учитывается (не включается в этот интервал), а учитывается в следующем интервале (нижняя граница интервала включается в данный интервал, а верхняя не включается), за исключением последнего интервала.

При проведении обработки данных лучше всего отобранные данные обозначить условными значками или цветом, для упрощения обработки.

23 48 57 12 118 9 16 22

27 48 56 87 45 98 88 63

Первый интервал обозначим желтым цветом – и определим сколько данных попадает в интервал от 9 до 45,4, при этом данное 45,4 будет учитываться во втором интервале (при условии что оно есть в данных) – в итоге получаем 7 предприятий в первом интервале. И так дальше по всем интервалам.

По первому интервалу — 23 + 12 + 9 + 16 + 22 + 27 + 45 = 154 млн. руб.

По второму интервалу — 48 + 57 + 48 + 56 + 63 = 272 млн. руб.

По третьему интервалу — 118 + 87 + 98 + 88 = 391 млн. руб.

Задание. Имеются данные о величине вклада в банке 30 вкладчиков, тыс. руб. 150, 120, 300, 650, 1500, 900, 450, 500, 380, 440,

600, 80, 150, 180, 250, 350, 90, 470, 1100, 800,

500, 520, 480, 630, 650, 670, 220, 140, 680, 320

Построить интервальный вариационный ряд распределения вкладчиков, по размеру вклада выделив 4 группы с равными интервалами. По каждой группе подсчитать общий размер вкладов.

Читайте также: