Аэробное дыхание это кратко

Обновлено: 30.06.2024

При выполнении гематологических исследований используются два типа организмов аэробные и анаэробные. Они отличаются потребностью в наличии кислорода в окружающей среде. Аэробные микроорганизмы могут функционировать только при наличии кислорода, в то время, как анаэробные в нем совсем не нуждаются.

Классификация этих видов проводится на основе реакции на наличие или отсутствие кислорода. Из-за этого аэробные и анаэробные микроорганизмы по-разному выполняют свои функции в процессе клеточного дыхания.

Особенности аэробных микроорганизмов

Аэробные микроорганизмы не могут существовать без кислорода. Он необходим им для роста, развития и участвует в процессах размножения. Благодаря кислороду они способны окислять моносахариды, например, глюкозу.

Генерация энергии в этих микроорганизмах происходит при гликолизе. После него следует цикл Кребса и цепь переноса электронов. Среды, насыщенные кислородом – отличная питательная среда для таких микроорганизмов. Примеры аэробов – бациллы и нокардии.

Типы аэробов

Аэробные микроорганизмы классифицируют по уровню необходимого для жизнедеятельности кислорода:

  • Облигатные аэробы или аэрофилы. В обязательном порядке нуждаются в кислороде. Они используют его для клеточного дыхания и окисления органических веществ – сахаров и жиров, из которых получают энергию. Примеры облигатных аэробных микроорганизмов - Nocardia, Mycobacterium tuberculosis и Vibrio cholerae.
  • Микроаэрофильные аэробы. Обладают способностью выживать при малых концентрациях кислорода (около 10 процентов). Пример – Хеликобактер пилори.

Бактерии, нуждающиеся в кислороде для выживания, легко выделяются при культивировании в жидкой среде. Так для полноценной жизнедеятельности им необходим кислород, то чтобы выжить они всплывают на поверхность.

Схема сравнение аэробной и анаэробной сред

Особенности анаэробов

В процессе энергетического обмена эти микроорганизмы не используют кислород. Для этого им необходимы марганец, сера, кобальт, азот, метал или железо. В процессе образования энергии анаэробные микроорганизмы подвергаются ферментации. Для выживания они используют энергию, производимую при анаэробных процессах брожения:

Классификация анаэробных микроорганизмов также определяется по уровню токсичности кислорода:

  • Аэротолерантные. Для выживания кислород им не требуется, а его присутствие не наносит им вреда. Пример – лактобациллы.
  • Облигатные. Для таких микроорганизмов кислород губителен. Они живут и растут только при полном его отсутствии в среде. Пример – клостридии, метаносарцины.
  • Факультативные. На их развитие и жизнедеятельность не влияет наличие кислорода. Они могут жить как при его наличии, так и при отсутствии. Пример – кишечная палочка.

Анаэробы не способны выживать в среде, богатой кислородом. Для облигатных разновидностей он токсичен, а вот факультативным видам он не вредит.

Сходства между аэробами и анаэробами

  • Являются прокариотическими микроорганизмами.
  • Их начальная стадия клеточного дыхания – гликолиз.
  • Их основу составляют патогенные болезнетворные микроорганизмы.
  • Применяются в различных сферах промышленности.

Различия аэробов и анаэробов

Отличительные особенности микроорганизмов представлены в таблице.

Параметр сравненияАэробыАнаэробы
Условия выживанияНуждаются в кислороде, так как он конечный акцептор электронов в их клеточном дыханииДля клеточного дыхания им не нужен кислород
Конечные электронные акцепторыКислородСера, метан, азот, железо
Процессы, участвующие в клеточном дыханииГликолиз, Цикл Кребса, Цепь переноса электроновГликолиз, Ферментация
РазновидностиОблигатные, Микроаэрофильные, Факультативные, АэротолерантныеОблигатные, Факультативные
Среда для ростаБогатые уровнем кислорода средыСреды, в которых отсутствует кислород
Токсичность кислородаНетоксиченТоксичен
Кислородные детоксифицирующие ферментыПрисутствуютОтсутствуют
Уровень производства энергииВысокая эффективность производства энергииНизкая эффективность производства энергии
ПримерыСенная палочка (Bacillus spp), Синегнойная палочка (Pseudomonas aeruginosa), Палочка Коха (Mycobacterium tuberculosis)Актиномицеты (Actinomyces), Бактероиды (Bacteroides), Пропионовокислые бактерии (Propionibacterium), Вейлонелла (Veillonella), Пептострепококки (Peptostreptococcus), Порфиромонас (Porphyromonas), Клостридии (Clostridium spp)

Аэробы и анаэробы требуют различных по уровню кислорода питательных сред для выживания. Аэробным микроорганизмам кислород необходим для энергетического обмена, а анаэробные микроорганизмы его не используют. Вместо этого они используют нитраты, серу и метан. Именно поэтому ключевыми отличиями этих микроорганизмов являются типы конечных акцепторов электронов, которые используются в процессе клеточного дыхания.

Внимание! Компания Медика Групп занимается продажей автоматических микробиологических анализаторов и флаконов с питательными средами, но не оказывает услуги по сбору или расшифровке результатов анализов крови.


Мы все неоднократно слышали из самых разных источников, и большинство научных исследований указывают на то, что дыхание через нос является правильным и наиболее оптимальным способом дыхания.

Наш нос - это специальный орган, который являются частью дыхательной системы. Тот факт, что мы можем вдыхать и выдыхать воздух ртом, точно не делает нос лишним!

Знаете ли вы, что наш организм предназначен именно для дыхания через нос? Правильное и постоянное дыхание через нос имеет много преимуществ для нашего здоровья.

Во-первых, носовое дыхание помогает нам бороться с инфекциями.

Ноздри и пазухи фильтруют и нагревают воздух, поступающий в легкие. Также в пазухах носа образуется оксид азота, который в небольших дозах вреден для бактерий. Когда мы вдыхаем воздух через нос, он нагревается, увлажняется, кондиционируется и смешивается с оксидом азота, который выполняет две важные функции: убивает опасные бактерии и действует как сосудорасширяющее средство в дыхательных путях, артериях и капиллярах.

Во-вторых, носовое дыхание обеспечивает лучший кровоток в легких. Расширение сосудов оксидом азота увеличивает площадь поверхности альвеол, которые поглощают кислород, что означает, что кислород усваивается лучше, когда мы дышим через нос.

Носовое дыхание (в отличие от дыхания через рот) повышает циркуляцию крови, благотворно влияет на уровень кислорода и углекислого газа в крови, замедляет частоту дыхания и увеличивает общий объем легких.

В-третьих, носовое дыхание помогает поддерживать температуру тела.

Через нос обеспечивается выделение около 33% выдыхаемого тепла и влаги, таким образом, поддерживается нормальная температура тела.

В-четвертых, дыхание через нос помогает улучшить функции мозга. Гипоталамус отвечает за многие функции в нашем организме, особенно те, которые мы считаем автоматическими: сердцебиение, поддержание кровяного давления, чувство жажды и голода, циклы сна и бодрствования. Гипоталамус также отвечает за выработку химических веществ, которые влияют на память и эмоции. Увеличение воздушного потока через правую ноздрю коррелирует с повышенной активностью левого полушария мозга и улучшением вербальной функции, тогда как увеличение воздушного потока через левую ноздрю связано с повышенной активностью правого полушария мозга и улучшенными пространственными характеристиками.

Дыхание через нос ограничивает потребление воздуха и заставляет замедляться сердцебиение. Правильное дыхание через нос уменьшает артериальное давление и уровень стресса у большинства людей.

В-пятых, носовое дыхание помогает во время тренировок.



Легкие извлекают кислород из воздуха, которым мы дышим, прежде всего, на выдохе. Когда мы выдыхаем через ноздри, довольно маленькие по сравнению со ртом, создается обратное давление, что приводит к замедлению движения выдыхаемого воздуха и позволяет легким поглотить большего количества кислорода. Носовое дыхание создает примерно на 50 % больше сопротивления потоку воздуха у здоровых людей, чем дыхание через рот, что приводит к увеличению поглощения кислорода на 10-20 %.

При правильном обмене кислорода и углекислого газа наша кровь поддерживает сбалансированный уровень pH. Если углекислый газ выделяется из организма слишком быстро, как при дыхании через рот, поглощение легкими кислорода уменьшается. Если вы хотите улучшить свои показатели во время тренировок, вам следует исключить гипервентиляцию, то есть дыхание через рот.

Если вы дышите через рот, вы пропускаете много важных этапов в процессе дыхания, и это может привести к различным проблемам со здоровьем, например к храпу и апноэ во сне. Дыхание через нос помогает замедлить дыхательный цикл, чтобы обеспечить надлежащее накопление СО2 и лучшее поглощение кислорода.

Также следует помнить, что слизистая оболочка, выстилающая нос, простирается до бронхов. Микробы, попадающие в слизь, секретируемую слизистой оболочкой, в большинстве своем погибают. Дыхание через рот делает нас более восприимчивыми к простуде и другим инфекциям.

Дыхание через рот также плохо влияет на легкие, сердце и другие органы и системы нашего организма. Некоторые исследования показывают, что дыхание через рот и связанная с ним гипервентиляция усугубляют астму, артериальную гипертонию, болезни сердца и другие проблемы, связанные со здоровьем.

Дыхание через рот приводит к снижению уровня углекислого газа, что замедляет деятельность мозга и рефлексы, а также может вызвать приступы головокружения, и, иногда, потери сознания. Хроническое дыхание через рот также вызывает сужение дыхательных путей.

Когда мы вдыхаем или выдыхаем через рот, дыхательные пути остаются недостаточно увлаженными, сосуды сужаются, что приводит к снижению количества кислорода, которое фактически абсорбируется через альвеолы в легких.

Дыша через рот, вы отказываете своему сердцу, мозгу и всем другим органам в оптимальном количестве кислорода. Даже если у вас нет симптомов сердечных заболеваний, у вас могут развиться аритмии и другие нарушения.

Дыхание через рот может привести к храпу или апноэ во сне.

Когда вдыхаемый воздух проходит через нос, слизистая оболочка носа рефлекторно отправляет сигналы через нервные окончания в область мозга, которая контролирует дыхание. При дыхании через рот слизистая оболочка носа остается не задействованной, что может привести к нерегулярному дыханию. Храп является предшественником апноэ во сне, а апноэ - предшественником низкого уровня внутриклеточного кислорода, что с течением времени может привести к сердечному приступу и смерти во сне.

Апноэ во сне - это разновидность нарушения дыхания во сне, при котором дыхание у спящего прерывается более чем на 10 секунд, а чаще – на 20-30 секунд. В тяжёлых случаях дыхание во сне может прерываться на 2-3 минуты и такие перерывы могут занимать до 60 % общего времени ночного сна.

Храп не только является серьезной проблемой для здоровья, но и социально неприемлем. Другие люди могут жаловаться на шум, который раздражает и не позволяет выспаться, находясь в одной комнате с храпящим.

Дыхание через рот приводит к сужению кровеносных сосудов.

Можно подумать, что при дыхании через рот мы вдыхаем больше воздуха, но на самом деле наше дыхание просто замедляется. При дыхании через рот наш мозг думает, что углекислый газ теряется слишком быстро, и стимулирует бокаловидные клетки, которые вырабатывают слизь, замедляют дыхание и вызывают сужение кровеносных сосудов.

Дыхание ртом лишает нас многих радостей жизни. Все эти прекрасные запахи, которыми мы наслаждаемся, влияют на наше поведение, воспоминания и многие функции вегетативной нервной системы.

Это происходит потому, что рецепторы в носу (обонятельные луковицы) являются прямыми расширениями части головного мозга - гипоталамуса. Каждая из наших ноздрей иннервируется пятью черепными нервами с противоположной стороны мозга.

Каждая ноздря функционирует независимо и синергетически в отношении фильтрации, нагревания, увлажнения, осушения и обоняния воздуха. Дыхание через рот может повлиять на внешний вид, привести к изменению прикуса, удлинению лица, и, из-за плохого качества сна, образованию мешков под глазами. Дыхание через рот также ускоряет потерю воды, увеличивая возможное обезвоживание.

Как избавиться от привычки дышать ртом?

Первый шаг - осознать, как вы дышите, когда не спите. Тренируйте себя дышать носом во время бодрствования, это поможет дышать носом и во время сна. Простая истина заключается в том, что дыхание через рот - верный способ помешать правильному дыханию и заполучить всевозможные проблемы со здоровьем. Если мы хотим прожить долгую и здоровую жизнь, мы никогда не должны дышать через рот, даже во сне.


Аэробное дыхание – основной процесс катаболизма (энергетического метаболизма) многих прокариот. При аэробном дыхании донором водорода или других электронов являются обычно органические (реже неорганические) вещества, а конечным акцептором электронов – молекулярный кислород [2] .

Аэробное дыхание характерно тем, что основное количество энергии при этом процессе образуется в электротранспортной цепи, то ест в результате мембранного фосфорилирования [2] .

Зависимость микробов от аэробного дыхания

Аэробное дыхание присуще широкому кругу микроорганизмов. Однако различают микроорганизмы – строгие аэробы и факультативные анаэробы. Последние, способны расти как в присутствии, так и в отсутствии кислорода. Факультативные анаэробы способны синтезировать АТФ (аденозинтрифосфорную кислоту) при брожении, но при наличии молекулярного кислорода способ получения АТФ меняется и начинается осуществляться процесс дыхания [1] .

К факультативным анаэробам относят микробы, у которых анаэробное дыхание происходит при использовании в качестве акцепторов электронов нитратов [1] .

Строгими анаэробами считаются микробы, осуществляющее анаэробное дыхание, при котором акцепторами электронов служат карбонаты и сульфаты [1] .

Фазы аэробного дыхания

Процесс аэробного дыхания подразделяется на две фазы:

  1. Серия реакций, благодаря которым органический субстрат окисляется до CO2 , а освобождающиеся атомы водорода перемещаются к акцепторам. Эта фаза состоит из цикла реакций гликолиза, приводящих к образованию пирувата (пировиноградной кислоты) и цикла реакций Кребса (цикла трикарбоновых кислот – ЦТК) [1] .
  2. Окисление освобождающихся атомов водорода кислородом с образованием аденозинтрифосфорной кислоты(АТФ) [1] .

Обе фазы приводят к окислению субстрата до углекислого газа (CO2) и воды (H2O), и образованию биологически полезной энергии в виде различных соединений: аденозинтрифосфата (АТФ); цитозинтрифосфата (ЦТФ); уридинтрифосфата (УТФ); гуанозинтрифосфата (ГТФ); креатинфосфата; ацетилфосфата [1] .


Из этой статье вы узнаете, в чем заключаются различия между двумя основными типами клеточного дыхания: аэробным и анаэробным. Мы рассмотрим основы каждого типа дыхания, какие организмы их используют и какие продукты они создают.

Клеточное дыхание

Клеточное дыхание – это процесс, при котором организмы расщепляют глюкозу из пищи, чтобы создать пригодную для использования форму энергии, называемую АТФ. Сокращенно от аденозинтрифосфата, АТФ легко переносит энергию по организму. Когда одна из трех фосфатных групп АТФ отрывается, энергия высвобождается для использования всеми клетками. Ясно, что клеточное дыхание – важный процесс, и существует два основных типа клеточного дыхания: аэробное и анаэробное. Давайте рассмотрим и сравним эти процессы.

Аэробное дыхание


Аэробное дыхание может происходить только в присутствии кислорода. Во время аэробного дыхания реагенты кислород и глюкоза превращаются в продукты диоксид углерода, воду и АТФ.

Эти продукты образуются во время аэробного дыхания в течение трех этапов: гликолиза, цикла лимонной кислоты и окислительного фосфорилирования. Во время гликолиза молекулы глюкозы распадаются на две более мелкие молекулы пирувата. В цикле лимонной кислоты электроны высвобождаются и собираются молекулами акцептора. Во время окислительного фосфорилирования электроны помогают создать градиент концентрации с ионами водорода, которые помогают молекуле, называемой АТФ-синтаза, создавать АТФ.

Большинство эукариотических организмов используют аэробное дыхание. Эукариотические организмы – это организмы, клетки которых содержат ядро ​​и другие мембраносвязанные органеллы. Практически все растения, животные и грибы используют аэробное дыхание, а также некоторые бактерии.

Анаэробное дыхание


Анаэробное дыхание происходит при отсутствии кислорода. Оно состоит из двух этапов. Первым этапом, как и при аэробном дыхании, является гликолиз, который производит АТФ из реагирующей глюкозы. На втором этапе, ферментации, образуется молочная кислота или этанол, в зависимости от типа ферментации. Молочная кислота образуется в результате ферментации молочной кислоты, а этанол – в результате ферментации спирта. Вот почему мы используем дрожжи в производстве хлеба или пива, чтобы создать этанол.

Анаэробное дыхание обычно осуществляется микроорганизмами, такими как бактерии, которые являются прокариотическими и лишены ядра. Бактерии и клетки животных используют молочнокислое брожение. Примером молочнокислого брожения является ощущение жжения в мышцах после пробежки. Это происходит, когда ваши мышечные клетки не получают достаточно кислорода и им приходится дышать анаэробно. Молочная кислота дает вашим мышцам ощущение жжения, а недостаток АТФ заставляет вас чувствовать усталость.

Отличия

Как мы уже говорили, основное различие между аэробным и анаэробным дыханием заключается в том, присутствует ли кислород. Для аэробного дыхания нужен кислород, а для анаэробного – нет. Это присутствие кислорода определяет, какие продукты будут созданы. Во время аэробного дыхания вырабатываются углекислый газ, вода и АТФ. Во время анаэробного дыхания образуются молочная кислота, этанол и АТФ.

При анаэробном дыхании синтезируется только 2 молекулы АТФ, а при аэробном дыхании – 36. Более того, аэробное дыхание имеет тенденцию происходить у эукариотических организмов, клетки которых имеют ядро, тогда как анаэробное дыхание происходит у прокариотических организмов. Однако важно отметить, что животные подвергаются молочнокислой ферментации, которая является анаэробной. Это происходит, когда мышечные клетки не могут получать достаточно кислорода.

Подведение итогов

Клеточное дыхание – это процесс, при котором организмы вырабатывают АТФ из глюкозы. Это происходит в присутствии кислорода во время аэробного дыхания, и без доступа к кислороду во время анаэробного дыхания. Небольшие прокариотические организмы, такие как бактерии, обычно используют анаэробное дыхание для производства 2 молекул АТФ. Более крупные эукариотические организмы обычно используют аэробное дыхание для синтеза 36 молекул АТФ.

Читайте также: