Вынужденные колебания резонанс конспект

Обновлено: 05.07.2024

Вынужденными колебаниями наз. незатухающие колебания системы, которые вызываются действием внешней периодической силы.

Если сила не будет периодической, то не возникнет и периодических колебаний. Например, если сила постоянна, то возникает статическое отклонение системы.

Примеры: колебания гребных винтов, лопаток турбины, качелей при раскачивании, мостов и балок при ходьбе и т.д.

Сила, вызывающая вынужденные колебания, наз. вынуждающей (возмущающей) силой.

Если внешняя вынуждающая сила изменяется по гармоническому закону , то в системе устанавливаются гармонические колебания с частотой внешней вынуждающей силы (процесс установления колебаний изображен на рисунке: вынужденные колебания накладываются на свободные затухающие колебания; после того, как свободные колебания прекращаются, остаются только вынужденные).

Резонанс.

Явление возрастания амплитуды колебаний при приближении частоты вынуждающей силы ω к собственной частоте колебательной системы ω0, называется резонансом.

Соответственно данная частота наз. резонансной частотой.

При наличии трения резонансная частота несколько меньше собственной частоты колебательной системы. С энергетической точки зрения при резонансе создаются наилучшие условия для передачи энергии от внешнего источника к колебательной системе.

Резонанс применяется для измерения частоты (частотомеры) вибраций, в акустике. Резонанс необходимо учитывать при расчете балок, мостов, станков и т.д.

Автоколебания.

Колебательная система, совершающая незатухающие колебания за счет действия источника энергии, не обладающего колебательными свойствами (периодичностью), наз. автоколебательной.

Примеры: часы, орган, духовые инструменты, сердечно-сосудистая система, паровые машины и двигатели внутреннего сгорания и т.д.

Любая автоколебательная система состоит из 4 частей:

  1. колебательная система;
  2. источник энергии, компенсирующий потери энергии на преодоление сопротивления;
  3. клапан – устройство, регулирующее поступление энергии в колебательную систему определенными порциями и в определенный промежуток времени;
  4. обратная связь – устройство для обратного воздействия автоколебательной системы на клапан, управляющее работой клапана за счет процессов в самой колебательной системе.

Автоколебания

Примером механической автоколебательной системы могут быть часы с анкерным ходом.

Если колебания совершаются под воздействием внешней силы, они называются вынужденными. Работа внешней силы, которая обеспечивает колебательную систему энергией, при этом является положительной. Благодаря ей колебания не затухают и могут противодействовать силам трения.

Внешняя сила не обязательно должна быть постоянной. С течением времени она может изменяться по разным законам. Особый случай – воздействие на колебательную систему внешней силы, которая изменяется по гармоническому закону с частотой, равной ω , в то время как сама система совершает собственные колебания с той же самой частотой.

Установившиеся вынужденные колебания всегда происходят с частотой внешней силы. Частоту свободных колебаний определяют параметры системы.

Когда внешняя сила начинает воздействовать на колебательную систему, должно пройти некоторое время Δ t , прежде чем вынужденные колебания установятся. Это время будет равно тому времени τ , за которое затухают свободные колебания в данной системе.

В момент начала воздействия в системе начинают происходить два процесса одновременно – свободные колебания с собственной частотой ω 0 и вынужденные с частотой ω . Однако из-за сил трения свободные колебания в определенный момент затухают, поэтому по прошествии времени в системе сохраняются лишь стационарные колебания с той частотой, которая соответствует внешней (вынуждающей) силе.

Разберем пример. У нас есть тело на пружине, совершающее вынужденные колебания (см. иллюстрацию ниже). Приложим внешнюю силу, обозначенную F → в н , к свободному концу пружины, после чего этот конец начнет перемещаться по закону, выражаемому формулой:

Здесь буквой ω обозначена круговая частота, а y m – амплитуда колебаний.

Перемещения такого рода обеспечиваются шатунным механизмом, который преобразует круговые движения в возвратно-поступательные.

Вынужденные колебания. Резонанс. Автоколебания

Рисунок 2 . 5 . 1 . Груз на пружине, совершающий вынужденные колебания. Перемещение свободного конца выражено формулой y = y m cos ω t , где l означает длину недеформированной пружины, а k –ее жесткость.

При смещении левого конца пружины на некоторое расстояние y и правого – на x по сравнению с первоначальным положением недеформированной пружины будет происходить ее удлинение. Найти величину этого удлинения можно по следующей формуле:

∆ l = x - y = x - y m cos ω t .

В таком случае мы можем переформулировать второй закон Ньютона для этого случая следующим образом:

m a = - k ( x - y ) = - k x + k y m cos ω t .

Здесь сила, которая действует на тело, показана как сумма двух слагаемых, первым из которых является упругость, стремящаяся к равновесию тела, а вторым – внешнее воздействие, совершающееся с определенными интервалами. Внешнюю силу также называют вынуждающей.

Теперь выразим эту зависимость в строгой математической формуле, учитывающей связь между координатой тела a = x ¨ и его ускорением. У нас получится следующее:

x ¨ + ω 0 2 x = A cos ω t .

Эта зависимость называется уравнением внешних колебаний. Здесь ω 0 = k m является собственной круговой частотой свободного колебания, а ω – циклической частотой внешней (вынуждающей) силы.

Чтобы найти величину A для вынужденного колебания груза на пружине, нужно воспользоваться следующей формулой:

A = k m y m - ω 0 2 y m .

То уравнение, что мы записали перед этим, не учитывает, что на тело действуют также и силы трения. В уравнении вынужденных колебаний, в отличие от уравнения свободных, учитываются сразу обе частоты – частота вынуждающей силы и частота свободных колебаний.

Вынужденные колебания груза на пружине, которые устанавливаются со временем, имеют частоту внешнего воздействия. Это определяется следующим законом:

x ( t ) = x m cos ( ω t + θ ) .

Здесь x m обозначает амплитуду вынужденного колебания, а буква θ – его начальную фазу. Значения обоих этих показателей будут зависеть от амплитуды внешней силы и соотношения частот.

Если частоты очень низкие, т.е. ω ≪ ω 0 , то тело, прикрепленное к правому концу пружины, движется точно так же, как и левый конец этой пружины. Тогда получается, что x ( t ) = y ( t ) . Сама пружина при этом практически не деформируется, а модуль внешней силы F → в н , приложенной к ее левому концу, стремится к нулю. Работа при этом не совершается.

Понятие резонанса

Резонанс – это резкое возрастание амплитуды вынужденных колебаний при сближении частоты внешней силы с собственной частотой колебания тела.

С помощью резонансной кривой (резонансной характеристики) можно описать зависимость, существующую между амплитудой внешних колебаний x m и частотой вынуждающей силы ω .

Когда происходит резонанс, амплитуда x m может оказаться значительно больше, чем амплитуда колебаний левого (свободного) конца пружины.. Если мы не будем учитывать силы трения, то получится, что при резонансной частоте амплитуда вынужденных колебаний будет возрастать неограниченно. В реальности она будет зависеть от следующего условия: работа внешней силы в течение всего времени колебаний должна совпадать с потерями механической энергии, происходящими из-за трения. При уменьшении трения (и, соответственно, повышении добротности Q колебательной системы) амплитуда вынужденных колебаний при резонансе возрастет.

Понятие резонанса

Рисунок 2 . 5 . 2 . Моделирование вынужденных колебаний.

Если добротность колебательной системы невысока (менее 10 ), то частота резонанса будет находиться ближе к низким частотам. Это показано на иллюстрации 2 . 5 . 2 .

Явление резонанса имеет большое практическое значение. Именно из-за него зачастую разрушаются здания, мосты и другие сооружения. Это происходит в тот момент, когда их собственные частоты совпадают с частотой внешней силы, например, колебаниями мотора.

Понятие резонанса

Рисунок 2 . 5 . 3 . Изображение затухания различных колебаний при помощи резонансных кривых: 1 - условная система без учета трения (бесконечное возрастание амплитуды вынужденных колебаний), 2 , 3 , 4 – резонансные колебания в реальных условиях, происходящих в системах разной степени добротности ( Q 2 > Q 3 > Q 4 ) . Если частоты низкие, то ( ω ≪ ω 0 ) x m ≈ y m , а если высокие, то ( ω ≫ ω 0 ) x m → 0 .

Вынужденные колебания являются незатухающими. При трении неизбежно теряется часть энергии, однако воздействие внешних периодически действующих сил компенсирует ее.

Что такое автоколебательные системы

Автоколебательные системы – это системы, в которых могут возникать незатухающие колебания безотносительно внешнего воздействия, а лишь за счет способности самостоятельно регулировать подвод энергии от внешнего источника. Процесс колебаний в таких системах называют автоколебаниями.

Внутри этой системы можно выделить три составляющих – саму систему, источник внешней постоянной энергии и обратную связь между ними. Первым элементом выступает любая механическая система, которая может совершать затухающие колебания, например, часовой маятник. В качестве источника можно использовать потенциальную энергию груза в поле тяжести или энергию деформации пружины. Система обратной связи – это, как правило, особый механизм, функцией которого является регулирование поступлений энергии. На иллюстрации показано, как эти компоненты взаимодействуют между собой.

Что такое автоколебательные системы

Рисунок 2 . 5 . 4 . Автоколебательная система со всеми основными составляющими.

Какие можно привести примеры таких систем? Ярким примером является часовой механизм с так называемым анкерным ходом. В нем есть ходовое колесо с косыми зубчиками, прочно сцепленное с зубчатым барабаном, через который перекинута цепочка с грузом. В верхней части маятника закреплен якорек (анкер), состоящий из двух твердых пластинок, дугообразно изогнутых по окружности с центром на основной оси. В механизме ручных часов вместо гири используется пружина, а вместо маятника – маховичок-балансир, соединенный со спиральной пружиной, который совершает круговые колебания вокруг своей оси. В качестве источника внешней энергии выступает заведенная пружина или поднятая гиря. Обратная связь осуществляется с помощью анкера: он позволяет ходовому колесу совершать поворот только на один зубец за полупериод. Когда анкер взаимодействует с ходовым колесом, происходит передача энергии. Когда маятник колеблется, зубец ходового колеса передает анкерной вилке энергию по направлению движения маятника, и именно этим компенсируются силы трения. Таким образом, энергия поднятой гири или заведенной пружины поступает маленькими порциями к маятнику.

Существует также много других автоколебательных систем, которые широко применяются в технике. Автоколебания происходят внутри двигателей внутреннего сгорания, паровых машин, электрических звонков, музыкальных инструментов, голосовых связок и т.д.

Нажмите, чтобы узнать подробности

Цель урока: объяснить, почему большее значение имеют вынужденные колебания, а не свободные; как устанавливаются вынужденные колебания; когда наступает резкое возрастание амплитуды и возникает резонанс.

Тема: Вынужденные колебания. Резонанс.

Цель урока: объяснить, почему большее значение имеют вынужденные колебания, а не свободные; как устанавливаются вынужденные колебания; когда наступает резкое возрастание амплитуды и возникает резонанс.

Образовательная – обеспечить знания учащимися понятия свободных и вынужденных колебаний; объяснить значение вынужденных колебаний; установить происхождение вынужденных колебаний, возникновение резонанса.

Развивающая – формировать понятие о применении и вреде, приносимом резонансом в природе; развивать образное мышление обучающихся; формировать умение работать с книгой.

Воспитывающая – воспитывать сознательное и серьезное отношение к учебному труду; формировать взгляды на развитие природы колебательных процессов и связи с окружающим миром; воспитывать интерес к предмету.

Тип урока: комбинированный.

Методы: словесный, лекция, демонстрационный, объяснительно-иллюстративный

Виды деятельности учащихся: работа с учебником, самостоятельная работа с учебником.

Ход урока.

Орг. момент (приветствие, проверка готовности к уроку, мотивация учебной деятельности, настрой учащихся).

Проверка домашнего задания методом индивидуального опроса.

Что называется механическими колебаниями? (Механическими колебаниями называют движения тела, повторяющиеся точно или приблизительно через одинаковые промежутки времени.)

Назовите основные характеристики механических колебаний (Основными характеристиками механических колебаний являются: амплитуда, частота, период.)

Что называется амплитудой колебаний? (Амплитуда — максимальное отклонение от положения равновесия.)

Что называется частотой колебания? (Частота — число полных колебаний, совершаемых в единицу времени.)

Что называется периодом колебаний? (Период — время одного полного колебания)

Как связаны между собой период и частота колебаний? (Период и частота связаны соотношением: ν = 1/Т)

Как происходит преобразование энергии в колебательных системах без трения?

Как силы сопротивления действуют на колеблющееся тело?

Какие колебания являются затухающими?

Изучение новой темы.


Превращение энергии при механических колебаниях.

Рассмотрим процесс превращения энергии на примере колебаний груза на нити (рис 10).

При отклонении маятника от положения равновесия он поднимается на высоту h относительно нулевого уровня,

следовательно, в точке А маятник обладает потенциальной энергией mgh. При движении к положению равновесия, к точке О, уменьшается высота до нуля, а скорость груза увеличивается, и в точке О вся потенциальная энергия mgh превратится в кинетическую энергию mυ 2 /2. В положении равновесия кинетическая энергия имеет максимальное значение, а потенциальная энергия минимальна. После прохождения положения равновесия происходит превращение кинетической энергии в потенциальную, скорость маятника уменьшается и при максимальном отклонении от положения равновесия становится равной нулю. При колебательном движении всегда происходят периодические превращения его кинетической и потенциальной энергии.

При свободных механических колебаниях неизбежно происходит потеря энергии на преодоление сил сопротивления. Если колебания происходят под действием периодической внешней силы, то такие колебания называют вынужденными.

Например, родители раскачивают ребенка на качелях, поршень движется в цилиндре двигателя автомобиля, колеблются нож электробритвы и игла швейной машины.

Характер вынужденных колебаний зависит от характера действия внешней силы, от ее величины, направления, частоты действия и не зависит от размеров и свойств колеблющегося тела.

Например, фундамент мотора, на котором он закреплен, совершает вынужденные колебания с частотой, определяемой только числом оборотов мотора, и не зависит от размеров фундамента.


При совпадении частоты внешней силы и частоты собственных колебаний тела амплитуда вынужденных колебаний резко возрастает. Такое явление называют механическим резонансом. Графически зависимость амплитуды вынужденных колебаний от частоты действия внешней силы показана на рисунке 11.

При отсутствии трения амплитуда вынужденных колебаний при резонансе должна возрастать со временем неограниченно. В реальных системах амплитуда в установившемся режиме резонанса определяется условием потерь энергии в течение периода и работы внешней силы за то же время. Чем меньше трение, тем больше амплитуда при резонансе.

Резонанс (от латинского слова resonans –дающий отзвук)

Резонансом называется резкое увеличение амплитуды вынужденных колебаний при совпадении частоты свободных колебаний с частотой изменения внешней силы.

Применение резонанса и борьба с ним.

Явление резонанса играет большую роль в ряде природных, научных и производственных процессов. Например, необходимо учитывать явление резонанса при проектировании мостов, зданий и других сооружений, испытывающих вибрацию под нагрузкой, в противном случае при определенных условиях эти сооружения могут быть разрушены.

Явление резонанса может быть причиной разрушения машин, зданий, мостов, если собственные их частоты совпадают с частотой периодически действующей силы.

Закрепление.

Вопросы для закрепления.

Какие колебания называются вынужденными? (Колебания, происходящие под действием внешней периодической силы).

Как происходят вынужденные колебания, под действием каких сил? ( Внешняя периодическая сила, называемая вынуждающей, сообщает колебательной системе дополнительную энергию, которая идет на восполнение энергетических потерь, происходящих из-за трения.)

Чем отличаются вынужденные колебания от свободных? (В отличие от свободных колебаний, когда система получает энергию лишь один раз (при выведении системы из состояния равновесия), в случае вынужденных колебаний система поглощает эту энергию от источника внешней периодической силы непрерывно.)

Чему при этом равна полная энергия колебательной системы? (Эта энергия восполняет потери, расходуемые на преодоление трения, и потому полная энергия колебательной системы no-прежнему остается неизменной.)

Как зависит частота вынужденных колебаний от частоты вынуждающей силы? (Частота вынужденных колебаний равна частоте вынуждающей силы.)

Что мы называем явлением резонанса? (В случае, когда частота вынуждающей силы υ совпадает с собственной частотой колебательной системы υ0, происходит резкое возрастание амплитуды вынужденных колебаний — резонанс. )

Из-за чего возникает явление резонанс? (Резонанс возникает из-за того, что при υ = υ0 внешняя сила, действуя в такт со свободными колебаниями, все время сонаправлена со скоростью колеблющегося тела и совершает положительную работу: энергия колеблющегося тела увеличивается, и амплитуда его колебаний становится большой.)

Какую роль играет явление резонанса?. (Явление резонанса играет большую роль в ряде природных, научных и производственных процессов. )

Приведите примеры явление резонанса. (Например, необходимо учитывать явление резонанса при проектировании мостов, зданий и других сооружений, испытывающих вибрацию под нагрузкой, в противном случае при определенных условиях эти сооружения могут быть разрушены.)


В данном видеоуроке мы с вами вспомним, какие колебания называются вынужденными. Рассмотрим особенности вынужденных колебаний. Поговорим о явлении механического резонанса. А также вспомним об автоколебаниях и автоколебательных системах.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Вынужденные колебания. Резонанс"

Данная тема посвящена вынужденным колебаниям и резонансу.

Ранее говорилось о колебательном движении и гармонических колебаниях. Гармоническими называются колебания, при которых смещение колеблющейся материальной точки происходит по закону синуса или косинуса.

Известно, что реальные колебания не происходят в точности по гармоническому закону. Ни один колебательный процесс в природе и технике не продолжается бесконечно долго, а имеет начало и конец во времени. А колебательный процесс, ограниченный во времени, не является гармоническим.


Однако, как показывают теоретические расчеты, любое периодическое колебание может быть математически представлено как сумма гармонических колебаний кратных частот, причем амплитуды гармоник этого ряда (ряда Фурье) с увеличением номера уменьшаются.


Также ранее рассматривались математический и пружинный маятники, колебания которых принимались за гармонические. Однако на самом деле, колебания маятников лишь близки к гармоническим, но не являются таковыми, так как тоже сопротивление воздуха и необратимые потери энергии на нагревание нити и пружины при их деформации приводят к тому, что амплитуда колебаний с течением времени уменьшается.

Колебания, амплитуда которых с течением времени уменьшается, называются затухающими.


Так как свободные колебания всегда затухают за то или иное время, то они не находят практического применения. Наиболее простой способ возбуждения незатухающих колебаний состоит в том, чтобы действовать на колебательную систему внешней периодической силой, возбуждающей колебания, которые сама система не совершала бы.

Работа этой внешней силы над системой обеспечивает приток энергии к ней извне, который не дает колебаниям затухать, несмотря на действие сил сопротивления.

Такие колебания, то есть колебания, происходящие под действием внешней периодической силы, называются вынужденными колебаниями.

Основное отличие вынужденных колебаний от свободных состоит в том, что при свободных колебаниях система получает энергию только один раз, когда она выводится из положения равновесия, а при вынужденных колебаниях энергия постоянно пополняется за счет работы вынуждающей силы.

Вначале, в процессе установления вынужденных колебаний, они носят сложный характер: происходит наложение свободных затухающих, а также вынужденных колебаний. И только после того, как свободные колебания прекратятся, останутся только вынужденные колебания.


Рассмотрим некоторые особенности вынужденных колебаний.

1) Внешнее воздействие навязывает системе свой закон колебаний: так, если значение внешней силы изменяется по закону синуса (или косинуса), то вынужденные колебания будут являться гармоническими. Обратите внимание на то, что между вынужденными колебаниями и колебаниями внешней силы существует разность фаз.



где j – разность фаз.

2) Частота вынужденных колебаний равна частоте изменения вынуждающей силы.


3) Амплитуда вынужденных колебаний тем больше, чем больше амплитуда вынуждающей силы.

4) Амплитуда вынужденных колебаний зависит от частоты вынуждающего воздействия, она достигает максимального значения при совпадении частоты вынужденных колебаний с собственной частотой, то есть с частотой свободных колебаний системы. При частоте вынуждающей силы, приближающейся к собственной частоте колебаний системы, амплитуда колебаний растет, а при больших частотах — уменьшается.


Явление резкого возрастание амплитуды вынужденных колебаний, когда частота вынуждающей силы близка к частоте собственных колебаний системы, называется механическим резонансом.

Частота, при которой амплитуда вынужденных колебаний максимальна, называется резонансной.

А график зависимости амплитуды вынужденных колебаний от частоты называется резонансной кривой.


Явление резонанса имеет огромное практическое значение, так как используется для усиления различных колебаний в технике.

Например, вынужденные колебания используют при работе виброустройств для уплотнения сыпучего основания под фундаменты и дороги, уплотнения бетона при заливке фундаментов. Также вибраторы применяются дли вибрационного погружения свай и труб, при виброукладке бетона, сортировке сыпучих материалов.


Но механический резонанс может вызывать и разрушение колебательной системы, если амплитуда вынужденных колебаний превысит определенные пределы.

Поэтому, например, двигатель в автомобиле устанавливается на специальных амортизаторах, в которых механическая энергия колебаний гасится и переходит в тепловую.

В зданиях вибрирующие установки (такие, как электродвигатели, дизельные установки) размещают на резиновых или металлических амортизаторах. Иначе резкое возрастание амплитуды колебаний при резонансе может вызвать разрушение конструкций.


5) Амплитуда зависит от силы трения. Она уменьшается с увеличением силы трения, а резонансные кривые становятся более пологими (говорят, что наблюдается острый или тупой резонанс).


Если сила трения очень мала, то амплитуда вынужденных колебаний, как показывают расчеты, прямо пропорциональна квадрату амплитуды внешней периодической силы, и обратно пропорциональна разности квадратов циклических частот свободных и вынужденных колебаний системы.


Из формулы видно, что при стремлении частоты вынужденных колебаний к частоте свободных, амплитуда вынужденных колебаний стремится к бесконечности.

Среди различного рода колебательных движений можно также выделить и автоколебания. Автоколебаниями называются незатухающие колебания в системе, поддерживаемые внутренними источниками энергии при отсутствии воздействия внешней переменной силы.

Впервые термин автоколебания в русскоязычную терминологию был введен советским физиком Александром Александровичем Андроновым в 1928 году.

Примерами автоколебательных систем могут служить электрические звонки, двигатели внутреннего сгорания, часы с гирями и так далее.

Общее между автоколебаниями и свободными колебаниями в том, что их частота и амплитуда определяются свойствами самой колебательной системы.

А отличие автоколебаний от свободных затухающих колебаний в том, что их амплитуда не зависит от времени и от начального кратковременного воздействия, возбуждающего колебательный процесс.

Как правило, автоколебательная система состоит из трех основных частей: колебательной системы V; источника энергии S; и устройства обратной связи B, регулирующего поступление энергии от источника к колебательной системе R.


Простейшей механической автоколебательной системой являются маятниковые часы с гирями. В этих часах колебательная система — это маятник; источник энергии — это потенциальная энергия поднятой гири; а устройство обратной связи — это храповjе колесо и анкер. Потери механической энергии на трение при движении восполняются за счет уменьшения потенциальной энергии, спускающейся при каждом колебании маятника часов гири.


Основные выводы:

Вспомнили, какие колебания называются вынужденными. Рассмотрели особенности вынужденных колебаний. Вспомнили о явлении механического резонанса. А также поговорили об автоколебаниях и автоколебательных системах.

Как получить незатухающие колебания, — те, которые могут длиться неограниченно долго?

Для этого на колебателььную систему должна действовать внешняя периодическая сила.
Такие колебания называются вынужденными.

Работа внешней силы над системой обеспечивает приток энергии к системе извне, который не дает колебаниям затухнуть, несмотря на действие сил трения.

Например, раскачивание ребенка на качелях.
Качели — это маятник, т. е. колебательная система с определенной собственной частотой.
Если начать в правильном ритме подталкивать качели, то можно без большого напряжения раскачать их очень сильно.
При этом произойдет накопление результатов действия отдельных толчков, и амплитуда колебаний качелей станет большой.

В этом случае возникает возможность увеличения амплитуды колебаний системы, способной совершать почти свободные колебания, при совпадении частоты внешней периодической силы с собственной частотой колебательной системы.

Спустя некоторое время колебания качелей приобретут установившийся характер: их амплитуда перестанет изменяться со временем.

При установившихся вынужденных колебаниях частота колебаний всегда равна частоте внешней периодически действующей силы.

Резонанс

Как амплитуда установившихся вынужденных колебаний зависит от частоты внешней силы?
При увеличении частоты внешней силы амплитуда колебаний постепенно возрастает.
Она достигает максимума, когда частота вынужденных колебаний становится равной частоте внешней периодически действующей силы.
При дальнейшем увеличении частоты амплитуда установившихся колебаний уменьшается.

Резкое возрастание амплитуды вынужденных колебаний при совпадении частоты изменения внешней силы, действующей на систему, с частотой ее свободных колебаний называется резонансом.


Почему возникает резонанс?

При резонансе внешняя сила действует в такт со свободными колебаниями.
Ее направление совпадает с направлением скорости мммаятника, поэтому эта сила совершает только положительную работу.
При установившихся колебаниях положительная работа внешней силы равна по модулю отрицательной работе силы сопротивления.

Большое влияние на резонанс оказывает трение в системе.
Чем меньше коэффициент трения, тем больше амплитуда установившихся колебаний.

Изменение амплитуды вынужденных колебаний в зависимости от трения:


Согласно закону сохранения энергии вызвать в системе колебания с большой амплитудой при небольшой внешней силе можно только за продолжительное время.
Если трение велико, то амплитуда колебаний будет небольшой, и для установления колебаний не потребуется много времени.

Воздействие резонанса и борьба с ним

Если колебательная система находится под действием внешней периодической силы, и если частота этих периодических усилий совпадает с частотой свободных колебаний системы, то может наступить резонанс и резкое увеличение амплитуды колебаний.

Любое упругое тело, будь то мост, вал двигателя, корпус корабля, представляет собой колебательную систему и характеризуется собственными частотами колебаний.
В то же время железо, сталь и другие материалы при переменных нагрузках со временем теряют прочность, после чего внезапно разрушаются.
Обычно принимаются специальные меры, чтобы не допустить наступления резонанса или ослабить его действие.

Для этого увеличивают трение или же добиваются, чтобы собственные частоты колебаний не совпадали с частотой внешней силы.
Известны случаи, когда приходилось перестраивать океанские лайнеры, чтобы уменьшить вибрацию.
Или при переходе через мост воинским частям запрещается идти в ногу, т.к. строевой шаг приводит к периодическому воздействию на мост.

Механические колебания. Физика, учебник для 11 класса - Класс!ная физика

Читайте также: