Виды касаний к токоведущим частям электроустановки анализ опасности электрических сетей мчс конспект

Обновлено: 06.07.2024

Токоведущие части электроустановки не должны быть доступными для случайного прикосновения, а доступные прикосновению открытые проводящие части не должны находиться под напряжением, представляющим опасность поражения электротоком как в нормальном режиме работы электроустановки, так и при повреждении изоляции.

Прямое прикосновение – это электрический контакт людей или животных с токоведущими частями, находящимися под напряжением. В целях защиты от поражения электротоком в нормальном режиме следует применять по отдельности или в сочетании следующие меры защиты от прямого прикосновения:

  • основная изоляция токоведущих частей;
  • ограждения и оболочки;
  • установка барьеров;
  • размещение вне зоны досягаемости;
  • применение сверхнизкого (малого) напряжения.

Косвенное прикосновение – это электрический контакт людей или животных с открытыми проводящими частями, оказавшимися под на­пряжением при повреждении изоляции. Защита от поражения электро­током в случае повреждения изоляции осуществляется применением по отдельности или в сочетании следующих мер защиты при косвенном прикосновении:

  • защитное заземление;
  • автоматическое отключение питания;
  • уравнивание потенциалов;
  • выравнивание потенциалов;
  • двойная или усиленная изоляция;
  • сверхнизкое (малое) напряжение;
  • защитное электрическое разделение цепей;
  • изолирующие (непроводящие) помещения, зоны, площадки.

Применение двух и более мер защиты в электроустановке не должно оказывать взаимного влияния, снижающего эффективность каждой из них.

Защиту при косвенном прикосновении выполняют во всех случаях, если напряжение в электроустановке превышает 50 В переменного и 120 В постоянного тока. В помещениях с повышенной опасностью, особо опасных и в наружных установках выполнение защиты при косвенном прикосновении может потребоваться при более низких напряжениях, например, 25 В переменного и 60 В постоянного тока или 12 В переменного и 30 В постоянного тока при наличии требований соответствующих глав ПУЭ.

Защита от прямого прикосновения не требуется, если электро­оборудование находится в зоне системы уравнивания потенциалов и наибольшее рабочее напряжение не превышает 25 В переменного или 60 В постоянного тока в помещениях без повышенной опасности и 6 В переменного или 15 В постоянного тока – во всех случаях.

Для заземления электроустановок применяют естественные и искусственные заземлители.

В качестве естественных заземлителей используют:

  • металлические и железобетонные конструкции зданий и со­оружений, находящихся в соприкосновении с землей;
  • металлические трубы водопровода, проложенные в земле;
  • обсадные трубы буровых скважин;
  • металлические шпунты гидротехнических сооружений, водо­воды, закладные части затворов и пр.;
  • рельсовые пути магистральных неэлектрифицированных железных дорог и подъездные пути при наличии преднамеренного устройства перемычек между рельсами;
  • другие находящиеся в земле металлические конструкции и сооружения;
  • металлические оболочки бронированных кабелей, проложенных в земле.

Не допускается использовать в качестве заземлителей трубопроводы горючих жидкостей, горючих и взрывоопасных газов и смесей, трубопроводов канализации и центрального отопления.

Искусственные заземлители могут быть из черной или оцинкованной стали или медными и не иметь окраски.

Траншеи для горизонтальных заземлителей должны заполняться однородным грунтом, не содержащим щебня а строительного мусора. Не следует располагать заземлители в местах, где земля подсушивается под действием тепла трубопроводов и пр.

На каждое находящееся в эксплуатации заземляющее устройство следует заводить паспорт, который должен содержать:

  • исполнительную схему устройства с привязками к капитальным сооружениям;
  • данные о связи с надземными и подземными коммуникациями и с другими заземляющими устройствами;
  • дату ввода в эксплуатацию;
  • основные параметры заземлителей (материал, профиль, линейные размеры);
  • величину сопротивления растеканию тока заземляющего устройства;
  • удельное сопротивление грунта;
  • данные по напряжению прикосновения (при необходимости);
  • данные по степени коррозии искусственных заземли гелей;
  • данные по сопротивлению металлосвязи оборудования с заземляющим устройством;
  • ведомость осмотров и выявленных дефектов;
  • информацию по устранению замечаний и дефектов.

К паспорту необходимо прилагать результаты визуальных осмотров, осмотров со вскрытием грунта, протоколы измерения параметров заземляющего устройства, данные о характере ремонтов и изменениях, внесенных в конструкцию устройства.

Основная изоляция токоведущих частей должна покрывать токоведущие части и выдерживать все возможные воздействия, которым она может подвергаться в процессе эксплуатации. Когда основная изоляция обеспечивается воздушным промежутком, защита от прямого прикосновения к токоведущим частям или приближения к ним на опасное расстояние осуществляется посредством оболочек, ограждений, барьеров или размещением вне зоны досягаемости.

Барьеры предназначены для защиты от случайного прикосновения к токоведущим частям в электроустановках напряжением до 1 кВ или приближения к ним на опасное расстояние в электроустановках напряжением выше 1 кВ, но не исключает преднамеренного прикосновения и приближения к токоведущим частям при обходе барьера. Для удаления барьеров не требуется применения ключа или инструмента, однако они должны быть закреплены так, чтобы их нельзя было снять непреднамеренно. Барьеры должны быть из изолирующего материала.

Размещение вне зоны досягаемости для защиты от прямого при­косновения к токоведущим частям в электроустановках до 1 кВ или приближения к ним на опасное расстояние в электроустановках напряжением выше 1 кВ может применяться при невозможности выполнения вышеуказанных мер или их недостаточности. При этом расстояние между доступными одновременному прикосновению проводящими частями в электроустановках напряжением до 1 кВ должно быть не менее 2,5 м. Внутри зоны досягаемости не допускается размещение частей, имеющих разные потенциалы и доступных одновременному прикосновению.

Установка барьеров и размещение вне зоны досягаемости допуска­ется только в помещениях, доступ в которые имеет только квалифицированный обслуживающий персонал.

Сверхнизкое (малое) напряжение (далее СНН) – это напряжение, не превышающее 50 В переменного и 120 В постоянного тока, которое применяется в электроустановках до 1 кВ для защиты от поражения электротоком при прямом и косвенном прикосновениях в сочетании с защитным электрическим разделением цепей или в сочетании с автоматическим отключением питания. В качестве источника питания цепей СНН в обоих случаях необходимо использовать безопасный раздели­тельный трансформатор или другой источник СНН, обеспечивающий равноценную степень безопасности.

Токоведущие части цепей СНН отделяются от других цепей с целью обеспечения электрического разделения, которое равноценно разделению между первичной и вторичной обмотками разделительного трансформатора. К тому же проводники цепей СНН прокладываются отдельно от проводников более высоких напряжений и защитных проводников, либо должны быть отделены от них заземленным металлическим экраном (оболочкой) или заключены в неметаллическую оболочку дополнительно к основной изоляции. Вилки и розетки штепсельных соединений в цепях СНН не должны допускать подключение к розеткам и вилкам других напряжений, а штепсельные розетки должны быть без защитного контакта.

При применении СНН в сочетании с электрическим разделением цепей открытые проводящие части нельзя преднамеренно присоединять к заземлителю, защитным проводникам или открытым проводящим частям других цепей и к сторонним проводящим частям. СНН и сочетании с электрическим разделением цепей применяют тогда, когда при помощи СНН нужно обеспечить защиту от поражения электротоком при повреждении изоляции не только в цени СНН, но и при повреждении изоляции в других цепях, к примеру в цепи, питающей источник.

Защитное электрическое разделение цепей – отделение одной электрической цепи от других цепей в электроустановках напряжением до 1 кВ осуществляется с помощью двойной изоляции, основной изоляции и защитного отключения, усиленной изоляции. Защитное электрическое разделение цепей применяют, как правило, для одной цепи.

При выполнении автоматического отключения питания электроустановок напряжением до 1 кВ все открытые проводящие части присоединяются к глухозаземленной нейтрали источника питания системы TN и заземляются в системах IT или ТТ. В электроустановках, где используются автоматическое отключение питания, необходимо выполнять уравнивание потенциалов. Для автоматического отключения питания применяют защитно-коммутационные аппараты, реагирующие на сверхтоки или на дифференциальный ток.

Под уравниванием потенциалов понимается электрическое соединение проводящих частей для достижения равенства их потенциалов, а под защитным уравниванием потенциалов – уравнивание потенциалов, выполняемое в целях электробезопасности. В свою очередь выравнивание потенциалов предусматривает снижение разности потенциалов (шагового напряжения) на поверхности земли или пола при помощи защитных проводников, проложенных в земле, в полу или на их поверхности и присоединенных к заземляющему устройству, или путем применения специальных покрытий земли.

Защита при помощи двойной или усиленной изоляции обеспечивается применением электрооборудования класса II или заключением электрооборудования, имеющего только основную изоляцию токоведущих частей, в изолирующую оболочку. Проводящие части оборудования с двойной изоляцией не должны быть присоединены к защитному проводнику и к системе уравнивания потенциалов.

Изолирующие (непроводящие) помещения, зоны, площадки при­менимы в электроустановках напряжением до 1 кВ, если требования к автоматическому отключению питания невозможно выполнить, а применение других защитных мер нецелесообразно либо невыполнимо. В изолирующих помещениях (зонах) не должен предусматриваться защитный проводник, а также принимаются меры против заноса потен­циала на сторонние проводящие части помещения извне. Пол и стены данных помещений не должны подвергаться воздействию влаги.

Основные причины поражения электрическим током можно свети к следующим:

1) случайное прикосновение или приближение на опасное расстояние к токоведущим частям (с поврежденной изоляцией или емкостью), находящихся под напряжением;

2) появление напряжения на отключенных токоведущих частях, на которых работают люди, вследствие ошибочного включения установки;

3) появление напряжения на металлических конструктивных частях электрооборудования (корпусах, кожухах и т.п. в результате повреждения изоляции или других причин);

4) появление шагового напряжения в результате замыкания провода на землю.

Виды электрических сетей. Правилами устройства электроустановок (ПУЭ) разрешается эксплуатировать два вида трехфазных электрических сетей (рисунок 1.1):

а) трехпроводные с изолированной нейтралью;

б) четырехпроводные с глухозаземленной нейтралью.

Трехпроводные сети с заземленной нейтралью и четырехпроводные с изолированной запрещены, как не обеспечивающие безопасности в аварийных режимах: первые - при замыкании фазы на корпус оборудования, у вторых нулевой провод при замыкании фазы на землю оказывается под напряжением фазы.

Схемы прикосновения человека к сети. Возможны два варианта прикосновения человека к сети: между двумя фазами - двухфазное и между фазой и нулевой точкой - однофазное (рисунок 1.1). По сути речь идет о включении человека в электрическую цепь, так как само по себе прикосновение становится опасным, если человек становится как бы элементом электрической цепи, обладающим определенным сопротивлением и пропускающим через себя ток определенной величины.

а

б
Рисунок 4.1

Двухфазное включение, как правило, более опасно, поскольку к человеку непосредственно прикладывается наибольшее напряжение сети - линейное, а ток зависит только от сопротивления организма и имеет наибольше значение Ih, А.

где Uф- фазное, Uл - линейное напряжение сети, Rh - сопротивление организма человека. В расчетах принимают Rh = 1 кОм.

Рисунок 4.2 - Схемы прикосновения человека к сети: а - однофазное,

Однофазное включение является менее опасным, чем двухфазное, поскольку ток через человека ограничивается сопротивлением обуви и пола, а также сопротивлением изоляции фазных проводов, однако вероятность однофазных прикосновений на порядок выше. Поэтому однофазное включение является основной схемой, вызывающей поражение людей током в сетях любого напряжения. На рисунке 1.2 представлена схема сравнительной опасности поражения человека электрическим током при различных схемах его включения в цепь.

При двухфазном прикосновении ток, проходящий через человека не зависит от режима нейтрали: как в сети с изолированной нейтралью, так и в сети с заземленной нейтралью человек оказывается под линейным (межфазным) напряжением. Иначе обстоит дело при однофазном прикосновении к сети. Рассмотрим случай однофазного прикосновения при различных режимах работы электроустановок.

Поражение электрическим током происходит в результате прикосновения или недопустимого приближения человека к металлическим частям, находящимся или оказавшимся под напряжением.

Прикосновения к неизолированным токоведущим частям, находящимся под напряжением (оголённые провода, клеммы, шины и т.п.), называют прямыми; прикосновения к нетоковедущим частям (проводящим частям), оказавшимся под напряжением (металлические корпуса электрооборудования), называют косвенными.

Различают однополюсные и двухполюсные прикосновения. При однополюсном прикосновении человек, стоящий на земле, одной рукой касается неизолированной токоведущей части или корпуса электроприёмника, оказавшегося под напряжением. Ток протекает по петле: рука – нога. При двухполюсном прикосновении человек, изолированный от земли, двумя руками касается неизолированных проводов разных фаз или фазного и нулевого провода. Изоляция человека от земли может обеспечиваться сопротивлением пола и обуви. Петля тока: рука – рука.

Наиболее опасным является прямое двухполюсное прикосновение.

Однополюсные прикосновения, как прямое, так и косвенное, в установках напряжением до 1000 В с глухозаземленной нейтралью также опасны.

Прямые прикосновения случаются, как правило, по вине человека – самого пострадавшего, либо должностного лица, не обеспечившегобезопасность. Косвенные прикосновения происходят из-за; повреждения изоляции, как правило, не по вине человека и могут рассматриваться как отказ техники.

Анализ опасности электрических сетей практически сводится к определению значения тока, протекающего через тело человека в различных условиях, в которых может оказаться человек при эксплуатации электриче­ских сетей и электроустановок. Поражение человека электрическим током может наступить при двухфазном и однофазном прикосновении к токоведущим частям, а также при прикосновении к заземленным нетоковедущим частям, оказавшимся под напряжением, и при вклю­чении на напряжение шага. Двухфазное (двухполюсное) прикосновение является наиболее опасным, так как че­ловек оказывается под полным рабочим или междуфаз­ным (линейным) напряжением:


При двухфазном прикосновении к токоведущим час­тям значение поражающего тока зависит лишь от напря­жения сети и сопротивления тела человека. Наибольшее распространение имеет однополюсное (однофазное) при­косновение к токоведущим частям, где значение тока, проходящего через человека, в трехфазной сети зависит прежде всего от режима нейтрали источника питания. Нейтраль источника питания может быть изолированная и заземленная. Изолированнойсчитается система, когда нейтраль трансформатора или генератора не присоедине­на к заземляющему устройству или присоединена через аппараты, компенсирующие емкостный ток сети (трансформаторы напряжения и другие аппараты, имеющие боль­шое сопротивление).Заземленной нейтральюназывается нейтраль трансформатора или генератора, присоединен­ная к заземляющему устройству непосредственно или через малое сопротивление (трансформатор тока и т. п.).

Рассмотрим наиболее распространенные трехфазные сети с изолированной и заземленной нейтралью:

1.Сети с изолированной нейтралью.Характерны тем, что ток замыкания на землю и ток через человека, каса­ющегося фазы в таких сетях, зависят от сопротивлений изоляции и емкости фаз относительно земли. Изоляция токоведущих частей (проводов, обмоток, шин и т. п.) вы­полняется из реальных диэлектриков. Вследствие ста­рения изоляции, увлажнения и других неблагоприятных условий удельное электрическое сопротивление ее снижается. Поэтому на каждом участке длины провода изо­ляция имеет конечное активное сопротивление. На рис.28приведена схема однофазного прикосновения в трехпроводных трехфазных сетях с изолированной нейтра­лью. Принимаем, что емкость фаз относительно земли симметрична (с1 =с2 = с3 ==с;b1=b2 =bз =b),а также симметричны сопротивления изоляции (r1=r2=r3= rизиg1= g2 = g3 =g) то есть


или через полные проводимости


Заменив проводимости сопротивлениями Gch =1/Rch иY=1/Z,получим выражение


В высоковольтных воздушных сетях большой протя­женности и кабельных сетях активные сопротивления изоляции фазных проводов невелики по отношению к емкостным сопротивлениям, а поэтому можно запи­сать (без учета rиз)


где хс=1/Семкостное сопротивление, Ом;=2f

угловая частота переменного тока, рад/с; С—емкость фаз относительно земли, Ф (фарад).


Рис.28. Олнофазное прикосновение в трехфазных сетях (50 Гц)

а при нормальном режиме работы в сетях с изолированной нейтралью; бто же, при аварийном режимме; в,гто же, в сетях с заземленной нейтралью.

В сетях напряжением до 1000В малой протяженно­сти емкость невелика и емкостной проводимостью можно пренебречь(Y=gиZ ==rиз), то есть сопротивление фазы относительно земли равно активному сопротивле­нию изоляции, а ток через человека определяется из вы­ражения


которое показывает важное значение изоляции как фак­тора безопасности: чем выше сопротивление изоляции rиз, тем меньше ток, проходящий через человека. При прикосновении человекакфазе в сети с малой емкостью и большим сопротивлением изоляции, если полное сопро­тивление фаз относительно земли значительно больше сопротивления цепи человека (Z >>Rch), выражение при­нимает вид


В этом случае ток через человека ограничивается со­противлением фаз относительно земли и почти не зави­сит от сопротивления цепи человека.

2.Трехфазные сети с заземленной нейтралью.Такиесетиимеют широкое применение. Ток через человека при однофазном прикосновении (рис. 28)можно определитьизвыражения


где можно пренебречь сопротивлением заземления нейт­рали, так как оно не превышает 10Ом (а сопротивление цепи человекаRchне ниже 1000Ом), то есть


Таким образом, в сети с заземленной нейтралью ток, протекающий через человека, не зависит ни от сопротив­ления изоляции, ни от емкости сети относительно земли. Здесь необходимо существенно повышать, безопасность сопротивления обуви Rоб, грунта (пола)Rни другие до­полнительные сопротивления в цепи человека.

Исходя из изложенного выше анализа, можно сделать вывод, что менее опасными являются трехфазные сети с изолированной нейтралью, с хорошей изоляцией про­полов, минимальными емкостями относительно земли при отсутствии замыкания фаз на землю. Такие сети правилами допускается применять в особо опасных усло­виях окружающей среды —в шахтах, карьерах, на тор­форазработках при наличии постоянного контроля изоляции.

Читайте также: