Условия равновесия невращающегося тела конспект урока

Обновлено: 29.04.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Директор школы №21

Разработка урока

по физике

10 класс

Дата: 3 .12.21 г

Школа № 21

Г. Ангрен

Учитель: Аджибекирова Нелли Рафаиловна.

Цель урока: Изучить состояние равновесия тел, познакомиться с различными видами равновесия

Образовательная: Выяснить условия, при которых тело находится в равновесии.

Воспитательная : Воспитывать внимание, умения высказывать свою точку зрения и отстаивать её, развивать коммуникативные способности учащихся

Развивающая: Способствовать развитию познавательного интереса к физике.

Требования государственного стандарта

Знания : Знать различные виды равновесия

Умения: уметь анализировать, устанавливать связи между элементами содержания ранее изученного материала.

Навыки: Развитие навыков сравнивать, обобщать, выделять главное, делать выводы.

Тип урока: Урок изучения нового материала.

Оборудование: учебник, раздаточный материал.

I .Организационный момент.

Доброе утро, ребята, приготовьте все, что вам понадобиться сегодня на уроке.

II .Повторение изученного материала Учащимся предлагается пройти мини тест

( Время выполнения 2 минуты)

1 . Тележка движется прямолинейно и равномерно по горизонтальной поверхности. Можно утверждать, что

1) на тележку не действуют никакие силы
2) на тележку действует только сила тяги
3) на тележку действует только сила тяжести
4) силы, действующие на тележку, скомпенсированы

2. Самолёт совершает поворот, двигаясь с постоянной скоростью в воздухе на одной высоте. Справедливо утверждение

1) самолет можно считать инерциальной системой отсчёта, так как он движется равномерно
2) самолёт нельзя считать инерциальной системой отсчёта, так как он движется не прямолинейно
3) самолёт можно считать инерциальной системой отсчёта, так как он движется на одной высоте
4) самолёт нельзя считать инерциальной системой отсчёта, так как на него действует сила тяжести

3. На груз массой 200 г действует сила 5 Н. Ускорение груза равно

1) 0
2) 10 м/с 2
3) 15 м/с 2
4) 25 м/с 2

4. На рисунке показаны направления векторов скорости и ускорения движущегося тела.

Равнодействующая всех приложенных к телу сил направлена вдоль стрелки

5. Брусок лежит на столе и действует на стол силой, рав­ной 7 Н. Верным является утверждение:

1) стол действует на брусок силой 7 Н
2) стол действует на брусок силой, большей 7 Н
3) стол действует на брусок силой, меньшей 7 Н
4) стол не действует на брусок

III .Изучение нового материала.

Учитель:- Приветствие прошу произвести, стоя на одной ноге.

Что вам пришлось сделать, чтобы не упасть?

Тема урока : условия равновесие тел. ( Слайд 1).

Если тело покоится относительно ИСО, то говорят, что оно находится в равновесии

Статика - раздел механики, в котором рассматривается равновесие тел .

Что называется равновесием?

Равновесие – это состояние, при котором сумма всех сил, действующих на тело равна нулю и тело при этом находится в состоянии покоя.

2. Условия равновесия. (слайд 2)

а) Когда тело находится в покое? Из какого закона это следует?

Первое условие равновесия: Тело находится в равновесии, если геометрическая сумма внешних сил, приложенных к телу, равна нулю. ∑F = 0

б) Пусть на доску действуют две равные силы, как показано на рисунке.

Будет ли она находиться в равновесии? (Нет, она будет поворачиваться)

В покое находится только центральная точка, а остальные движутся. Значит, чтобы тело находилось в равновесии, необходимо, чтобы сумма всех сил, действующих на каждый элемент равнялась 0.

Второе условие равновесия: Сумма моментов сил, действующих по часовой стрелке, должна равняться сумме моментов сил, действующих против часовой стрелки.

Момент силы: M = F L

L – плечо силы – кратчайшее расстояние от точки опоры до линии действия силы.

3. Центр тяжести тела и его нахождение. (слайд 4)

Центр тяжести тела – это точка, через которую проходит равнодействующая всех параллельных сил тяжести, действующих на отдельные элементы тела (при любом положении тела в пространстве).

Найти центр тяжести следующих фигур:

4. Виды равновесия.

а) (слайды 5–8)

Вывод: Равновесие устойчиво, если при малом отклонении от положения равновесия есть сила, стремящаяся вернуть его в это положение.

Устойчиво то положение, в котором его потенциальная энергия минимальна. (слайд 9)

Вывод: Для устойчивости тела, находящегося на одной точке или линии опоры необходимо, чтобы центр тяжести находился ниже точки (линии) опоры.

Демонстрация опытов учителем

в) Устойчивость тел, находящихся на плоской поверхности.

1) Поверхность опоры – это не всегда поверхность, которая соприкасается с телом (а та, которая ограниченна линиями, соединяющими ножки стола, треноги)

2) Разбор слайда

Чем различаются табуретки? (Площадью опоры)

1. Какая из них более устойчивая? (С большей площадью)

2. Чем различаются табуретки? (Расположением центра тяжести)

3. Какая из них наиболее устойчива? (У которой центр тяжести ниже)

4. Почему? (Т.к. её можно отклонить на больший угол без опрокидывания)

3) Опыт с призмой отклоняющейся

1. Поставим на доску призму с отвесом и начнём её постепенно поднимать за один край. Что мы видим?

2. Пока линия отвеса пересекает поверхность, ограниченную опорой, равновесие сохраняется. Но как только вертикаль, проходящая через центр тяжести, начнёт выходить за границы поверхности опоры, этажерка опрокидывается.

Разбор слайдов 19–22.

1. Устойчиво то, тело, у которого площадь опоры больше.

2. Из двух тел одинаковой площади устойчиво то,тело, у которого центр тяжести расположен ниже, т.к. его можно отклонить без опрокидывания на большой угол.

Разбор слайдов 23–25.

Какие корабли наиболее устойчивы? Почему? (У которых груз расположен в трюмах, а не на палубе)

Какие автомобили наиболее устойчивы? Почему? (Чтобы увеличить устойчивость машин на поворотах, полотно дороги наклоняют в сторону поворота.)

Выводы: Равновесие может быть устойчивым, неустойчивым, безразличным. Устойчивость тел тем больше, чем больше площадь опоры и ниже центр тяжести.

IV .Закрепление изученного материала

1. Задание ученикам: сидя на стуле, выпрямить спину, ноги поставить под углом 90°. Не наклоняя корпус вперед и не двигая ноги под стул, попробовать встать.

2. Вопрос ученикам: почему не удается встать? (потому что центр тяжести человеческого тела, который располагается в районе пупка, не пересекает площадь опоры, т.е. стоп).

3. Теперь задания группам: 1 вариант - попробуйте встать со стула наклоняясь вперед, 2 вариант - широко расставив ноги. Сделайте соответствующие выводы. Учащиеся делают выводы о том, что для того чтобы встать необходимо, чтобы отвесная линия пересекала площадь опоры человека.

Выводы из урока:

Виды равновесия:

Устойчивое: При малом отклонении тела от положения равновесия возникает сила, стремящаяся возвратить тело в исходное состояние.

Безразличное: При малом отклонении тело остается в равновесии.

Неустойчивое: При малом отклонении тела из положения равновесия возникают силы, стремящиеся увеличить это отклонение.

В положении устойчивого равновесия тело обладает минимальной потенциальной энергией. При выведении тела из этого положения его потенциальная энергия увеличивается.

Равновесие тел на опоре: линия действия силы тяжести проходит через площадь опоры (Пизанская башня). Чем ниже центр тяжести, тем более устойчиво равновесие.

1. Каким специальностям наиболее необходимы знания о равновесии тел?

Проектировщикам и конструкторам различных сооружений (высотных зданий, мостов, телевизионных башен и т.д.),цирковым артистам, водителям и другим специалистам.

(слайды 28–30)

(Центр тяжести у игрушки ванька-встанька расположен очень низко, игрушка находится в устойчивом равновесии и всякий раз при отклонении от вертикали ее центр тяжести поднимается так, что возникающий момент силы тяжести заставляет игрушку возвращаться к положению равновесия.)

5. Каким образом сохраняют равновесие велосипедисты и мотоциклисты? (человек сидящий на нем держит равновесие, Это достигается с помощью подруливания: если велосипед наклоняется, велосипедист отклоняет руль в ту же сторону. В результате велосипед начинает поворачивать и центробежная сила возвращает велосипед в вертикальное положение. )

V. Домашнее задание: Выучить определения и провести опыты на равновесие тел.

Урок начинается с фронтального обсуждения задачи, с целью мотивации и подготовки к объяснению новой темы. Изучение новой темы"Условия равновесия твердого тела. Виды равновесия" происходит в виде эвристической беседы, задавая учащимся вопросы и привлекая их к объяснению опытов.

ВложениеРазмер
usloviya_ravnovesiya.docx 54.97 КБ

Предварительный просмотр:

Конспект урока по физике на тему:

"Условия равновесия твердого тела. Виды равновесия."

Образовательные. Изучить два условия равновесия тел, виды равновесия (устойчивое, неустойчивое, безразличное). Выяснить при каких условиях тела более устойчивы.

Развивающие: Способствовать развитию познавательного интереса к физике, развивать умения проводить сравнения, обобщать, выделять главное, делать выводы.

Воспитательные: воспитывать дисциплинированность, внимание, умения высказывать свою точку зрения и отстаивать ее.

Оборудование: проектор, экран, компьютер, прибор для демонстрации видов равновесия, наклонная плоскость, камень, прибор для демонстрации условий равновесия, имеющих площадь опоры.

2. Фронтальное обсуждение задачи, с целью мотивации и подготовки к объяснению новой темы. (3 мин)

3. Обобщение, постановка учебной задачи, объявление темы урока .(2 мин)

  1. Формирование новых знаний и способов действия.

1. Изучение новой темы "Условия равновесия твердого тела. виды равновесия" в виде эвристической беседы, задавая учащимся вопросы и привлекая их к объяснению опытов. (30 мин.)

  1. Применение знаний, формирование умений и навыков.

1. Решение задачи у доски . (5 мин)

2. Подведение итога урока, задание на дом. (3 мин.)

Учитель: Мы продолжаем с вами говорить о силах. Перед вами тело неправильной формы (камень), подвешенное на нити и прикрепленное к наклонной плоскости. Какие силы действуют на это тело?

Ученики: На тело действуют: сила натяжения нити, сила тяжести, сила , стремящаяся оторвать камень, противоположная силе натяжения нити, сила реакции опоры.

Учитель: Силы нашли, что делаем дальше?

Ученики: Пишем второй закон Ньютона.

Ускорение отсутствует, поэтому сумма всех сил равна нулю.

Учитель: О чем это говорит?

Ученики: Это говорит о том, что тело находится в состоянии покоя.

Учитель: Или же можно сказать, что тело находится в состоянии равновесия. Равновесие тела - это состояние покоя этого тела. Сегодня мы будем говорить о равновесии тел. Запишите тему урока: "Условия равновесия тел. Виды равновесия."

2. Формирование новых знаний и способов действия.

Учитель: Раздел механики, в котором изучается равновесие абсолютно твердых тел, называется статикой. Вокруг нас нет ни одного тела, на которое не действовали бы силы. Под действием этих сил тела деформируются.

При выяснении условий равновесия деформированных тел необходимо учитывать величину и характер деформации, что усложняет выдвинутую задачу. Поэтому для выяснения основных законов равновесия для удобства ввели понятие абсолютно твердого тела.

Абсолютно твердое тело - это тело, у которого деформации, возникающие под действием приложенных к нему сил, пренебрежимо малы. Запишите определения статики, равновесия тел и абсолютно твердого тела с экрана (слайд 2).

И то, что мы с вами выяснили, что тело находится в равновесии, если геометрическая сумма всех сил, приложенных к нему, равна нулю является первым условием равновесия. Запишите 1 условие равновесия:

Твердое тело находится в равновесии, если геометрическая сумма внешних сил, приложенных к нему, равна нулю.

Если сумма сил равна нулю, то равна нулю и сумма проекций этих сил на оси координат. В частности, для проекций внешних сил на ось Х можно записать .

Равенство нулю суммы внешних сил, действующих на твердое тело, необходимо для его равновесия, но недостаточно. Например, к доске в различных точках приложили две равные по модулю и противоположно направленные силы. Сумма этих сил равна нулю. Доска при этом будет находиться в равновесии?

Ученики: Доска будет поворачиваться, например как руль велосипеда или автомобиля.

Учитель: Верно. Точно так же две одинаковые по модулю и противоположно направленные силы поворачивают руль велосипеда или автомобиля. Почему это происходит?

Учитель: Любое тело находиться в равновесии, когда сумма всех сил, действующих на каждый его элемент, равна нулю. Но если сумма внешних сил равна нулю, то сумма всех сил, приложенных к каждому элементу тела, может быть не равна нулю. В этом случае тело не будет находиться в равновесии. Поэтому нам нужно выяснить еще одно условие равновесия тел. Для этого проведем эксперимент. (Вызываются двое учащихся). Один из учащихся прилагает силу ближе к оси вращения двери, другой учащийся - ближе к ручке. Они прилагают силы в разные стороны. Что произошло?

Ученики: Выиграл тот , который прилагал силу ближе к ручке.

Учитель: Где находится линия действия силы, приложенной первым учеником?

Ученики: Ближе к оси вращения двери.

Учитель: Где находится линия действия силы, приложенной вторым учеником?

Ученики: Ближе к дверной ручке.

Учитель: Что мы еще можем заметить?

Ученики: Что расстояния от оси вращения до линий приложения сил разные.

Учитель: Значит от чего еще зависит результат действия силы?

Ученики: Результат действия силы зависит от расстояния от оси вращения до линии действия силы.

Учитель: Чем является расстояние от оси вращения до линии действия силы?

Ученики: Плечом. Плечо - это перпендикуляр, проведенный из оси вращения на линию действия этой силы.

Учитель: Как относятся между собой силы и плечи в данном случае?

Ученики: По правилу равновесия рычага, силы действующие на него обратно пропорциональны плечам этих сил. .

Учитель: Что такое произведение модуля силы, вращающей тело, на ее плечо?

Ученики: Момент силы.

Учитель: Значит момент силы, приложенной первым учащимся равен , а момент силы, приложенной вторым учащимся равен

Теперь мы можем сформулировать второе условие равновесия: Твердое тело находится в равновесии, если алгебраическая сумма моментов внешних сил, действующих на него относительно любой оси, равна нулю.(слайд 3)

Если считать моменты сил, поворачивающих тело против часовой стрелки положительными, то моменты сил, поворачивающих тело по часовой стрелке будут отрицательными. Или наоборот.

Введем понятие центра тяжести. Центр тяжести - это точка приложения равнодействующей силы тяжести (точка, через которую проходит равнодействующая всех параллельных сил тяжести, действующих на отдельные элементы тела). Есть еще понятие центра масс.

Центр масс системы материальных точек называется геометрическая точка, координаты которой определяются по формуле:

Центр тяжести совпадает с центром масс системы, если эта система находится в однородном гравитационном поле.

Посмотрите на экран. Попробуйте найти центр тяжести данных фигур. (слайд 4)

(Продемонстрировать с помощью бруска с углублениями и горками и шарика виды равновесия.)

На слайде 5 вы видите, то же что и видели на опыте. Запишите условия устойчивости равновесия со слайдов 6,7,8:

1. Тела находятся в состоянии устойчивого равновесия, если при малейшем отклонении от положения равновесия возникает сила или момент силы, возвращающие тело в положение равновесия.

2.Тела находятся в состоянии неустойчивого равновесия, если при малейшем отклонении от положения равновесия возникает сила или момент силы, удаляющие тело от положения равновесия.

3. Тела находятся в состоянии безразличного равновесия, если при малейшем отклонении от положения равновесия не возникает ни сила, ни момент силы, изменяющие положение тела.

Теперь посмотрите на слайд 9. Что вы можете сказать об условиях устойчивости во всех трех случаях.

Ученики: В первом случае, если точка опоры выше чем центр тяжести, то равновесие устойчивое.

Во втором случае, если точка опоры совпадает с центром тяжести, то равновесие безразличное.

В третьем случае, если центр тяжести выше чем точка опоры, равновесие неустойчивое.

Учитель: А теперь рассмотрим тела, имеющие площадь опоры. Под площадью опоры понимают площадь соприкосновения тела с опорой. (слайд 10).

Рассмотрим как изменяется положение линии действия силы тяжести по отношению к оси вращения тела при наклоне тела имеющего площадь опоры. (слайд 11)

Обратите внимание, что при повороте тела положение центра тяжести изменяется. А любая система всегда стремится к понижению положения центра тяжести. Так наклоненные тела будут находиться в состоянии устойчивого равновесия, пока линия действия силы тяжести будет проходить через площадь опоры. Посмотрите на слайд 12.

Если при отклонении тела, имеющего площадь опоры, происходит повышение центра тяжести, то равновесие будет устойчивым. При устойчивом равновесии вертикальная прямая, проходящая через центр тяжести, всегда будет проходить через площадь опоры.

Два тела, у которых одинаковы вес и площадь опоры, но разная высота, имеют разный предельный угол наклона . Если этот угол превысить, то тела опрокидываются. (слайд 13)

При более низком положении центра тяжести необходимо затратить большую работу для опрокидывания тела. Следовательно работа по опрокидыванию может служить мерой его устойчивости.(слайд 14)

Так наклоненные сооружения находятся в положении устойчивого равновесия, потому что линия действия силы тяжести проходит через площадь их опоры. Например, Пизанская башня.

Покачивание или наклон тела человека при ходьбе также объясняется стремлением сохранить устойчивое положение. Площадь опоры определяется площадью внутри линии, проведенной вокруг крайних точек касания телом опоры. когда человек стоит. Линия действия силы тяжести проходит через опору. Когда человек поднимает ногу, то, чтобы сохранить равновесие, он наклоняется перенося линию действия силы тяжести в новое положение таким образом, чтобы она вновь проходила через площадь опоры. (слайд 15)

Для устойчивости различных сооружений увеличивают площадь опоры или понижают положение центра тяжести сооружения, изготавливая мощную опору, или и увеличивают площадь опоры и, одновременно, понижают центр тяжести сооружения.

Устойчивость транспорта определяется теми же условиями. Так, из двух видов транспорта автомобиля и автобуса на наклонной дороге более устойчив автомобиль.

При одинаковом наклоне данных видов транспорта у автобуса линия силы тяжести проходит ближе к краю площади опоры.

3. Применение знаний.

Задача: Материальные точки массами m, 2m, 3m и 4m расположены в вершинах прямоугольника со сторонами 0,4м и 0,8 м. Найти центр тяжести системы этих материальных точек.

Найти центр тяжести системы материальных точек - значит найти его координаты в системе координат XOY. Совместим начало координат XOY с вершиной прямоугольника, в котором расположена материальная точка массой m , а оси координат направим вдоль сторон прямоугольника. Координаты центра тяжести системы материальных точек равны:

Здесь -координата на оси ОХ точки массой . Как следует из чертежа, , ведь эта точка расположена в начале координат. Координата тоже равна нулю, координаты точек массами на оси ОХ одинаковы и равны длине стороны прямоугольника . Подставив значения координат получим

Координата на оси OY точки массой равна нулю, =0. Координаты точек массами на этой оси одинаковы и равны длине стороны прямоугольника . Подставив эти значения получим

Учитель: О чем мы говорили с вами на уроке?

Ученики: Об условиях равновесия тел и видах равновесия.

Учитель: Назовите условия равновесия тел.

Ученики: 1 условие равновесия:

Твердое тело находится в равновесии, если геометрическая сумма внешних сил, приложенных к нему, равна нулю.

2 условие равновесия: Твердое тело находится в равновесии, если алгебраическая сумма моментов внешних сил, действующих на него относительно любой оси, равна нулю.

Учитель: Назовите виды равновесия.

Ученики: 1. Тела находятся в состоянии устойчивого равновесия, если при малейшем отклонении от положения равновесия возникает сила или момент силы, возвращающие тело в положение равновесия.

2.Тела находятся в состоянии неустойчивого равновесия, если при малейшем отклонении от положения равновесия возникает сила или момент силы, удаляющие тело от положения равновесия.

3. Тела находятся в состоянии безразличного равновесия, если при малейшем отклонении от положения равновесия не возникает ни сила, ни момент силы, изменяющие положение тела.

Учитель: Молодцы. На этом урок окончен. До свидания.

Ученики: До свидания.

Занятие эллективного курса по теме "Статика".

Образовательные: Закрепить, обобщить и углубить знания по теме в ходе решения задач.

Развивающие: Развитие общеучебных навыков: проведения эксперимента, оформления решения задачи, развитие культуры речи.

Воспитательные: Воспитание коллективизма, умения работать в группе, терпимости к чужому мнению, взаимоуважения; воспитание добросовестного отношения к учебному труду, трудолюбия, аккуратности.

1. Организационный момент.

2. Работа в группах. Решение задач.

4. Подведение итогов, домашнее задание.

Класс делится на группы. Группы решают одну по одной задаче. Затем одна из групп объяснит первую задачу, другая группа - вторую.

Задача 1. Двое рабочих несут бревно длиной и массой . Тот рабочий, который идет впереди, держит бревно на расстоянии от конца бревна, а тот, который идет позади, держит бревно за другой конец. Найти силы давления , испытываемые каждым рабочим со стороны бревна.

По третьему закону Ньютона сила, с которой бревно действует на плечо рабочего, равна по модулю силе, с которой плечо рабочего давит на бревно. Но поскольку нам известна сила тяжести mg , приложенная к бревну, то мы будем рассматривать и остальные силы, приложенные к бревну, а не к рабочим.

Пусть центром вращения бревна является плечо второго рабочего .(первый рисунок). Тогда линия действия силы , с которой плечо второго рабочего действует на бревно, проходит через точку опоры , поэтому плечо этой силы равно нулю, т.е. эта сила вращающий момент относительно точки не создает. Вокруг этой точки могут вращать бревно две силы: сила тяжести, приложенная к центру тяжести бревна, расположенному в его геометрическом центре на расстоянии от любого конца бревна, и сила , действующая на бревно со стороны плеча первого рабочего. Бревно будет в равновесии, если моменты этих сил будут равны друг другу, так как сила mg может вращать бревно против часовой стрелки, а сила - по часовой стрелке. Таким образом .

Плечо силы тяжести равно .Тогда . Момент силы обозначим через . Плечо этой силы равно
- = . Тогда .

Приравняв полученные выражения для моментов сил, получим равенство:

Отсюда, выполнив сокращения, найдем искомую силу: .

Для определения силы положим, что теперь центром вращения бревна является плечо первого рабочего, т.е. точка . Тогда момент силы

будет равен нулю, поскольку линия действия этой силы теперь проходит через центр вращения и поэтому ее плечо равно нулю. Вокруг точки вращать бревно могут две силы: сила тяжести по часовой стрелке, а сила приложенная к правому концу - против. Условием равновесия бревна в этом случае является равенство моментов силы тяжести и силы . Обозначив момент силы тяжести, а - момент силы , запишем: .

Теперь плечо силы тяжести равно

Момент силы тяжести равен .

Плечо силы равно - = момент силы .

Тогда из равенства моментов следует, что

Задача 2. К двум пружинам одинаковой длины с жесткостью каждая, соединенным один раз последовательно, а другой раз параллельно, подвешивают груз массой Найти общее удлинение пружин и их общую жесткость в каждом случае.

Решение: 1) Когда мы растягиваем последовательно соединенные пружины, сила, приложенная к грузу, в случае его равномерного движения по модулю равна силе реакции пружины, т.е. силе упругости, приложенной к нижней пружине, которая с такой же по модулю силой упругости действует на верхнюю пружину.

Удлинение каждой пружины под действием одинаковой силы упругости будет разным, потому что у них разные жесткости. Общее же удлинение пружин будет равно: .

По первому закону Ньютона, записанному в скалярной форме , где по закону Гука модуль силы упругости .

Отсюда . Аналогично применительно ко второй пружине: . Тогда или

По закону Гука , поэтому , ,

2). При параллельном соединении пружинок в случае горизонтального положения стержня, они растягиваются одинаково. Но, поскольку жесткости пружин разные, то при одинаковом удлинении силы упругости и возникающие в них, будут разными. По первому закону Ньютона

, где по закону Гука , поэтому

+ , откуда . Так как , то

Подведение итогов: учащиеся отвечавшие у доски получили положительные оценки, задания остальных учащихся были собраны для проверки.

Абсолютно твердое тело – модельное понятие классической механики, обозначающее совокупность точек, расстояния между текущими положениями которых не изменяются.

Центр тяжести – центром тяжести тела называют точку, через которую при любом положении тела в пространстве проходит равнодействующая сил тяжести, действующих на все частицы тела.

Плечо силы - это длина перпендикуляра, опущенного от оси вращения на линию действия силы.

Момент силы - это физическая величина, равная произведению модуля силы на ее плечо.

Устойчивое равновесие - это равновесие, при котором тело, выведенное из состояния устойчивого равновесия, стремится вернуться в начальное положение.

Неустойчивое равновесие — это равновесие, при котором тело, выведенное из положения равновесия и предоставленное самому себе, будет еще больше отклоняться от положения равновесия.

Безразличное равновесие системы — равновесие, при котором после устранения причин, вызвавших малые отклонения, система остается в покое в этом отклоненном состоянии

Основная и дополнительная литература по теме урока:

Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017.– С. 165 – 169.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. - М.: Дрофа, 2009.

Теоретический материал для самостоятельного изучения

Равновесие – это состояние покоя, т.е. если тело покоится относительно инерциальной системы отсчета, то говорят, что оно находится в равновесии. Вопросы равновесия интересуют строителей, альпинистов, артистов цирка и многих-многих других людей. Любому человеку приходилось сталкиваться с проблемой сохранения равновесия. Почему одни тела, выведенные из состояния равновесия, падают, а другие – нет? Выясним, при каком условии тело будет находиться в состоянии равновесия.

Раздел механики, в котором изучается равновесие абсолютно твердых тел, называется статикой. Статика является частным случаем динамики. В статике твердое тело рассматривается как абсолютно твердое, т.е. недеформируемое тело. Это означает, что деформация так мала, что её можно не учитывать.

Центр тяжести существует у любого тела. Эта точка может находиться и вне тела. Как же подвесить или подпереть тело, чтобы оно находилось в равновесии.

Подобную задачу в свое время решил Архимед. Им же были введены понятие плеча силы и момента силы.

Плечо силы — это длина перпендикуляра, опущенного от оси вращения на линию действия силы.

Момент силы — это физическая величина, равная произведению модуля силы на ее плечо.

После своих исследований Архимед сформулировал условие равновесия рычага и вывел формулу:


Это правило является следствием 2-го закона Ньютона.

Первое условие равновесия

Для равновесия тела необходимо, чтобы сумма всех сил, приложенных к телу была равна нулю.


формула должна быть в векторном виде и стоять знак суммы

Второе условие равновесия

При равновесии твердого тела сумма моментов вcех внешних сил, действующих на него относительно любой оси, равна нулю.


Не менее важен случай, когда тело имеет площадь опоры. Тело, имеющее площадь опоры, находится в равновесии, когда вертикальная прямая, проходящая через центр тяжести тела, не выходит за пределы площади опоры этого тела. Известно, что в городе Пизе в Италии существует наклонная башня. Несмотря на то, что башня наклонена, она не опрокидывается, хотя ее часто называют падающей. Очевидно, что при том наклоне, которого башня достигла к настоящему времени, вертикаль, проведенная из центра тяжести башни, все еще проходит внутри ее площади опоры.

В практике большую роль играет не только выполнение условия равновесия тел, но и качественная характеристика равновесия, называемая устойчивостью.

Различают 3 вида равновесия: устойчивое, неустойчивое, безразличное.

Если при отклонении тела от положения равновесия, возникают силы или моменты сил, стремящиеся вернуть тело в положение равновесия, то такое равновесие называется устойчивым.

Неустойчивое равновесие — это противоположный случай. При отклонении тела от положения равновесия, возникают силы или моменты сил, которые стремятся увеличить это отклонение.

Наконец, если при малом отклонении от положения равновесия тело все равно остается в равновесии, то такое равновесие называется безразличным.

Чаще всего необходимо, чтобы равновесие было устойчивым. Когда равновесие нарушается, то сооружение становится опасным, если его размеры велики.

Примеры и разбор решения заданий

1. Чему равен момент силы тяжести груза массой 40 кг, подвешенного на кронштейне АВС, относительно оси, проходящей через точку В, если АВ=0,5 м и угол α=45 0


Момент силы – это величина равная произведению модуля силы на её плечо.


Сначала найдём плечо силы, для этого нам надо опустить перпендикуляр из точки опоры на линию действия силы. Плечо силы тяжести равно расстоянию АС. Так как угол равен 45°, то мы видим, что АС=АВ

Модуль силы тяжести находим по формуле:


После подстановки числовых значений величин мы получим:

F=40×9,8 =400 Н, М= 400 ×0,5=200 Н м.

2. Приложив вертикальную силу F, груз массой М — 100 кг удерживают на месте с помощью рычага (см. рис.). Рычаг состоит из шарнира без трения и однородного массивного стержня длиной L=8 м. Расстояние от оси шарнира до точки подвеса груза равно b=2 м. Чему равен модуль силы F, если масса рычага равна 40 кг.


По условию задачи рычаг находится в равновесии. Напишем второе условие равновесия для рычага:



.


Познакомившись с понятием равновесия, мы попробуем понять, какие условия являются необходимыми для равновесия. Также мы рассмотрим интересные задачи на данную тему.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Условия равновесия твердых тел"

На прошлом уроке мы уже выяснили, что для равновесия необходимо, чтобы сумма всех внешних и внутренних сил, приложенных к телу, была равна нулю.


Но сумма всех внутренних сил любого тела равна нулю, исходя из третьего закона Ньютона. Поэтому, первое условие равновесия таково: сумма всех внешних сил, действующих на тело, должна быть равна нулю:


Самой очевидной внешней силой является сила тяжести, которая действует на все тела, находящиеся на Земле. Но эту силу, как мы помним, могут уравновешивать другие внешние силы. В этих случаях, возникает равновесие твердых тел.

Однако, даже если сумма всех внешних сил, действующих на тело, равна нулю — этого еще не достаточно, чтобы утверждать, что тело находится в равновесии. Дело в том, что тело может вращаться. Скажем, вы можете приложить к противоположным краям линейки силы, равные по модулю и противоположные по направлению. В этом случае, равнодействующая этих сил будет равна нулю. Несмотря на это, линейка начнет вращаться.


Значит, нужно найти еще одно условие, равновесия тела. Проведем простой опыт: попытайтесь положить линейку на ластик, так, чтоб ни один из краёв линейки не касался стола. Вам удастся сделать это только тогда, когда ластик будет точно посередине линейки. Теперь, давайте разберемся, почему так происходит. На каждый конец линейки действует сила тяжести. Кроме того, на ту часть линейки, которая соприкасается с ластиком, действует реакция опоры. Очевидно, что сила тяжести, действующая на оба конца линейки, не меняется из-за того, что вы двигаете линейку.


Значит, играет роль расстояние от каждого из концов до точки приложения силы реакции опоры.

Рассмотрим случай очень маленького отклонения линейки от положения равновесия. В этом случае, линейка повернётся на очень малый угол α.


Если линейка пришла в движение, значит, увеличилась её кинетическая энергия. А для того, чтобы изменить кинетическую энергию, необходимо совершить работу. Давайте подсчитаем работу сил:




Работа силы, как мы помним, равна произведению модулей силы, перемещения, и косинуса угла между их направлениями:


Формально, в описанной ситуации концы линейки будут двигаться криволинейно. Но мы оговорили в самом начале, что угол поворота очень маленький, поэтому, перемещения концов линейки можно считать прямолинейными. В этом случае:



Очевидно, что ось вращения проходит через середину линейки. Плечо силы — это кратчайшее расстояние от оси вращения до линии действия силы. Произведения силы на её плечо, называется моментом силы.

Исходя из этого, мы можем сформулировать второе условие равновесия тел: сумма моментов внешних сил, действующих на тело относительно оси вращения, должна быть равна нулю:


Условимся считать момент силы положительным, если эта сила стремится повернуть тело против часовой стрелки. И наоборот, момент силы будем считать отрицательным, если эта сила стремится повернуть тело по часовой стрелке.

Итак, для того, чтобы твердое тело находилось в равновесии, сумма внешних сил должна быть равна нулю и сумма моментов внешних сил должна быть равна нулю:


Например, качаясь на качелях, можно найти положение равновесия. Если оба человека обладают одной и той же массой, то самое простое — это сесть обоим на самый край. Если же массы не равны, то человек с наименьшей массой должен сесть на самый край, а второй человек должен подсаживаться все ближе и ближе к оси вращения (то есть к середине качели).

В какой-то момент, расстояние от второго человека до середины качели будет меньше, чем расстояние от первого человека до середины качели, ровно во столько раз, во сколько масса второго человека, больше, чем масса первого человека. Это и будет означать, что сумма моментов внешних сил равна нулю, поэтому, качели окажутся в равновесии.

Вы знаете, что качаясь на таких качелях, нужно постоянно отталкиваться от земли.


Давайте разберемся, что происходит в этот момент. Обозначим на рисунке силы, действующие на каждого человека. Будем считать, что и тот, и другой человек сидит на краю качели, то есть расстояние от каждого из них до середины качели одинаково. Итак, представим, что один край качели, на котором сидит человек, обладающий большей массой, только что опустился. Качели не сдвинутся с места до тех пор, пока человек не оттолкнется от земли. Дело в том, что момент М1 > M2. Действительно, поскольку расстояние d1 = d2, момент силы будет больше при большей силе. Чтобы начать качаться, нужно сделать так, чтобы момент M1 стал меньше M2. То есть, в нашем случае, нужно сделать силу F1 меньше, чем F2.

На первый взгляд, это кажется невозможным, поскольку изменить силу тяжести можно только изменив массу. Но, мы имеем дело не с силой тяжести, а с весом. Вспомните, ведь именно вес определяется как сила, действующая на опору. До тех пор, пока человек не предпринимает никаких действий, сила тяжести уравновешивается реакцией опоры. То есть, в данном случае, вес равен силе тяжести. Рассмотрим теперь, что произойдет, если человек, оттолкнётся от земли. Мышцы ног приложат некоторую силу, направленную вертикально вниз, к поверхности земли. При этом по третьему закону Ньютона, поверхность земли подействует на человека с силой, равной по модулю, но противоположной по направлению. То есть, эта сила будет направлена вертикально вверх. Тогда, по второму закону Ньютона, сила тяжести будет равна сумме силы реакции опоры и силы, с которой человек оттолкнётся от земли. Таким образом, вес человека (равный реакции опоры N1) будет равен разности между силой тяжести и силой F. Теперь, если выражение F1F2 меньше, чем F2, то качели начнут двигаться. Как правило, достаточно приложить сравнительно небольшую силу, поскольку чаще всего, на таких качелях качаются люди с приблизительно одинаковой массой. Однако, очевидно, что человек, обладающий меньшей массой, должен будет прикладывать бо́льшую силу, чтобы нормально качаться. Или же, человек, обладающий большей массой, должен будет пододвинуться поближе к середине качели.

Все выше сказанное, скорее всего, знал каждый из вас. Теперь же, вы можете описать это с точки зрения физики и объяснить, почему так происходит.

Пример решения задачи.

Задача. На двух веревках подвешен груз, так, как показано на рисунке. Если масса груза 20 кг, то каковы силы натяжения веревок?

Нажмите, чтобы узнать подробности

Используемое оборудование: компьютер, мультимедийный проектор, экран, презентация, школьная доска, ….

Цель урока. Ввести понятие центра тяжести тела. Выяснить нахождение центра тяжести различных твердых тел. Выяснить условия равновесия тел. Изучить виды равновесия.

Образовательные:

2.выявить причины устойчивого и неустойчивого равновесия;

3.рассмотреть примеры равновесия в архитектуре, искусстве, спорте и жизни человека;

4.продолжить развитие умений объяснять явления и процессы из повседневной жизни с точки зрения физики на основе полученных знаний.

Развивающие:

1. продолжить развитие любознательности, инициативы и устойчивого интереса учащихся к предмету;

2. высказывая свое мнение, решая проблему совершенствовать речевые умения;

Воспитательные:

1. в ходе урока содействовать воспитанию у обучающихся уверенности в познаваемости окружающего мира;

2. работая в парах постоянного состава, решая задачи и обсуждая вопросы, воспитывать коммуникативную культуру школьников

Планируемые результаты обучения

Метапредметные: овладеть регулятивными универсальными учебными действиями на примерах гипотез о нахождении центра тяжести твердого тела и их экспериментальной проверки..

Овладеть навыками самостоятельного приобретения знаний об условиях равновесия тел, постановки целей, оценки результатов; предвидеть возможные результаты действий при рассмотрении опыта ≪Расположение центра тяжести при устойчивом равновесии≫, ≪Виды равновесия≫; овладеть регулятивными универсальными учебными действиями при решении качественных задач на виды равновесия, развивать монологическую и диалогическую речь, выражать свои мысли; выделять основное содержание прочитанного текста.

Личностные: сформировать познавательный интерес, творческие способности и практические умения, самостоятельность в приобретении знаний о центре тяжести тела, об условии равновесия тел и видах равновесия; развивать ценностное отношение друг к другу, к учителю, к результатам обучения; научиться использовать экспериментальный метод исследования при нахождении центра тяжести тела, при исследовании условий равновесия

тел, принимать решения и обосновывать их, самостоятельно оценивать результаты своих действий, развивать инициативу.

Общие предметные: использовать эмпирический метод познания при изучении и проведении опытов ≪Направление силы тяжести тела≫, ≪Нахождение центра тяжести тела≫; объяснять полученные результаты и делать выводы, применять полученные знания для объяснения действий приборов и явлений; докладывать о результатах исследования, кратко и четко отвечать на вопросы по закреплению материала.

Пользоваться методами научного познания, проводить наблюдения, обнаруживать зависимость между устойчивостью тела и расположением центра тяжести, объяснять полученные результаты и делать выводы; применять знания об

условиях устойчивости тела при решении задач и на практике, кратко и четко отвечать на вопросы по закреплению материала.

Частные предметные: владеть экспериментальным методом исследования места положения центра тяжести тела, использовать знания о центре тяжести в повседневной жизни. Понимать и объяснять явление устойчивости тела, использовать знания о видах равновесия в повседневной жизни, приводить

Читайте также: