Система питания бензинового двигателя с впрыском топлива конспект

Обновлено: 05.07.2024

4.1 Назначение системы питания карбюраторного двигателя. Общее устройство и работа системы питания.

4.3 Режимы работы двигателя и составы горючей смеси на этих режимах.

4.4 Системы впрыска бензина. Их преимущества по сравнению с карбюраторными системами питания.

4.5 Общее устройство и работа систем распределенного впрыска топлива.

Содержание лекции

4.1 Назначение системы питания карбюраторного двигателя. Общее устройство и работа системы питания

Система питания карбюраторного двигателя предназначена для приготовления в определенной пропорции из топлива и воздуха горючей смеси, подачи ее в цилиндры двигателя и отвода из них отработавших газов.

В систему питания двигателя автомобиля входят топливный бак, топливопроводы от бака к фильтру-отстойнику и к топливному насосу, карбюратор, воздушный фильтр, приемные трубы, глушитель, выпускная труба глушителя. В систему питания входят также фильтр тонкой очистки топлива, установленный между топливным насосом и карбюратором, впускной трубопровод, на котором укреплен карбюратор, и выпускной трубопровод.

Во время работы двигателя топливо из бака после предварительной очистки в фильтре-отстойнике насосом подается к карбюратору. При такте впуска в цилиндре двигателя создается разрежение, передающееся в карбюратор и в установленный на нем воздушный фильтр. Очищенный воздух проходит в смесительную камеру, где из жиклеров подается топливо. Испаряющееся топливо перемешивается с воздухом, образуя горючую смесь. Из карбюратора по впускному трубопроводу горючая смесь поступает в цилиндры двигателя. Газы, образовавшиеся после быстрого сгорания рабочей смеси в цилиндре, расширяются, давят на поршень, и он опускается вниз, совершая рабочий ход. После рабочего хода отработавшие газы через открытый выпускной клапан вытесняются поршнем в выпускной трубопровод. Затем они поступают в приемные трубы глушителя, выпускную трубу и в атмосферу. Топливо наливают в бак через горловину, закрываемую крышкой. Количество топлива, находящегося в баке, контролируют при помощи датчика и указателя уровня топлива. Принципиальная схема системы питания карбюраторного двигателя показана на рис. 4.1.

Рис. 4.1. Принципиальная схема системы питания карбюраторного автомобильного двигателя

1 – воздухоочиститель; 2 – глушитель шума впуска; 3 – карбюратор; 4 – впускной трубопровод;

5 – фильтр тонкой очистки топлива; 6 – топливный насос; 7 – топливопровод;

8 – топливный фильтр отстойник; 9 – топливный бак; 10 – глушитель шума выпуска

Смесь топлива с воздухом называется горючей смесью. Горючая смесь, попадая в цилиндр, смешивается с остаточными газами, которые не были удалены при такте выпуска. Образовавшаяся смесь называется рабочей.

Состав горючей смеси характеризуется определенным соотношением масс топлива и воздуха. Для полного сгорания 1 кг бензина теоретически необходимо 14,9 кг воздуха (обычно принимают 15 кг). Однако количество воздуха, действительно расходуемого на приготовление горючей смеси, может быть больше или меньше теоретически необходимого. Поэтому состав горючей смеси принято характеризовать коэффициентом избытка воздуха, обозначаемым буквой α. Коэффициент представляет собой отношение действительного количества воздуха Lд, участвующего в процессе сгорания бензина, к теоретически необходимому количеству воздуха Lт, т.е. α =Lд / Lт .

Если в сгорании 1 кг бензина действительно участвует 15 кг воздуха, т. е. столько, сколько теоретически необходимо, то α = 15/15 = 1, и такую смесь называют нормальной. Горючую смесь, для которой α 1 называют бедной, так как в ней содержится воздуха больше теоретически необходимого количества.

4.3 Режимы работы двигателя и составы горючей смеси на этих режимах

Основными режимами при работе автомобильного двигателя являются пуск двигателя, холостой ход и малые нагрузки, средние нагрузки, полные нагрузки, резкие переходы с малых нагрузок на большие. При пуске двигателя необходима очень богатая смесь (α = 0,2…0,6), так как частота вращения коленчатою вала мала, топливо плохо испаряется, а часть его конденсируется на холодных стенках цилиндра.

Работа двигателя в режимах холостого хода и малой нагрузке возможна при α = 0,7…0,8. Горючая смесь, поступающая в цилиндры двигателя, загрязняется остаточными газами, поэтому обогащение смеси улучшает ее воспламеняемость и способствует устойчивой работе двигателя.

Автомобильный двигатель большую часть времени работает при режиме средних нагрузок, т.е. с не полностью открытой дроссельной заслонкой. Для этого режима необходима обедненная смесь с коэффициентом избытка воздуха α = 1,05…1,15 (экономическая смесь), обеспечивающая экономичную работу двигателя.

4.4 Системы впрыска бензина. Их преимущества по сравнению с карбюраторными системами питания

Первые системы впрыска были механическими, а не электронными, и некоторые из них (например, высокоэффективная система BOSCH) были чрезвычайно остроумными и хорошо работали. Впервые же система механического впрыска топлива была разработана компанией Daimler Benz, а первый серийный автомобиль с впрыском бензина был выпущен еще в 1954 г. Основными преимуществами системы впрыска по сравнению с карбюраторными системами являются следующие:

— отсутствие дополнительного сопротивления потоку воздуха на впуске, имеющему место в карбюраторе, что обеспечивает повышение наполнения цилиндров и литровой мощности двигателя;

— более точное распределение топлива по отдельным цилиндрам;

— значительно более высокая степень оптимизации состава горючей смеси на всех режимах работы двигателя с учетом его состояния, что приводит к улучшению топливной экономичности и снижению токсичности отработавших газов.

В настоящее время наибольшее распространение получили системы распределенного (многоточечного) электронного впрыска. На изучении этих систем питания необходимо остановиться более подробно.

4.5 Общее устройство и работа систем распределенного впрыска топлива

В системе центрального впрыска подача смеси и ее распределение по цилиндрам осуществляются внутри впускного коллектора.

Нажмите, чтобы узнать подробности

В систему питания двигателя с впрыском топлива входят топ­ливный бак, топливный насос, топливный фильтр, воздушный фильтр, форсунки, регулятор давления топлива, топливопровод двигателя, впускной и выпускной трубопроводы, топливопрово­ды, приемные трубы глушителя, резонаторы и глушитель

Лекция 16. Система питания бензинового двигателя с впрыском топлива. Впускной и выпускной газопроводы

В систему питания двигателя с впрыском топлива входят топ­ливный бак, топливный насос, топливный фильтр, воздушный фильтр, форсунки, регулятор давления топлива, топливопровод двигателя, впускной и выпускной трубопроводы, топливопрово­ды, приемные трубы глушителя, резонаторы и глушитель.

На рис. 9.1 представлена схема части системы питания двига­теля с впрыском топлива, обеспечивающей подачу топлива и воздуха к цилиндрам и приготовление горючей смеси, необходимой для всех режимов работы двигателя.

Топливо из бака б через топливный фильтр и топливопрово­ды подается насосом 7 в топливопровод 2 двигателя, который установлен на впускном трубопроводе 4 я в котором закреплены форсунки 3.

Во впускной трубопровод из воздушного фильтра поступает чистый воздух, количество которого регулируется воздушной дрос­сельной заслонкой 1. Регулятор 5 при работающем двигателе под­держивает давление топлива в топливопроводе 2 двигателя и форсунках З в пределах 0,28. 0,33 МПа. При такте впуска в поток почдуха, движущийся с большой скоростью во впускном трубо­проводе 4, под давлением из форсунок 3 впрыскивается мелкораспыленное топливо. Топливо смешивается с воздухом, и образу­ющаяся горючая смесь из впускного трубопровода поступает в ци­линдры двигателя в соответствии с порядком работы двигателя.


Рис. 9.1. Схема системы питания с впрыском топлива:

1 — воздушная дроссельная заслонка; 2 — топливопропод двигателя; 3 — фор­сунки; 4 — впускной трубопровод; 5 — регулятор давления топлива; 6 — топ­ливный бак; 7— топливный насос; 8 — топливный фильтр

Отработавшие газы отводятся из цилиндров двигателя через выпускной трубопровод, резонаторы и глушитель в окружающую среду.

Рассмотрим устройство и работу приборов системы питания двигателя с впрыском топлива.

Топливный насос (рис. 9.2) представляет собой центробежный роликовый насос с приводом от электродвигателя, который смон­тирован совместно с насосом в одном герметичном корпусе.

Центробежный роликовый насос состоит из статора 3, внут­ренняя поверхность которого незначительно смещена относительно оси якоря 8 электродвигателя; цилиндрического сепаратора 16, соединенного с якорем электродвигателя; и роликов 17, располо­женных в сепараторе. Сепаратор с роликами находится между ос­нованием 2 и крышкой 5 насоса.

При работе насоса топливо поступает через штуцер 1 и канал 18к вращающемуся сепаратору 16, переносится роликами и через выходные каналы 6 подается в полость электродвигателя и далее через клапан 11и штуцер 12 в топливопровод, подводящий топ­ливо к топливному фильтру.

Топливо, поступившее в насос, проходя через электродвига­тель, охлаждает его. Обратный клапан 11 исключает слив топлива из топливопровода и образование воздушных пробок после вы­ключения топливного насоса. Предохранительный клапан 4 ограничивает давление топлива, создаваемое насосом, при возраста­нии его выше допустимого — 0,45. 0,6 МПа. Топливный насос включается при включении зажигания. Производительность насо­са составляет 130 л/ч.

12 — штуцеры; 2 — основание; 3 — статор; 4, 11 — 18 — каналы; 7,9 — корпуса; 8 — якорь; 10 — кол.гмуфта; 15 — вал; 16 — сепаратор; 17— ролик, клапаны; 5 — крышка; 6,

каналы; 7,9— корпуса; 8 — якорь; 10 — коллектор; 13 — щетка; 14


Рис. 9.3. Топливопровод двигателя:

1 — впускной трубопровод; 2 — форсунка; 3 — штуцер; 4 — топливопровод; 5 —

Топливопровод двигателя (рис. 9.3) служит для подвода топли­ва к форсункам. Он является общим для четырех форсунок. В один конец топливопровода 4 ввернут штуцер 3 для подвода топлива от насоса, а на другом конце закреплен регулятор 5 давления топли­ва, связанный с ресивером и топливным баком. В топливопроводе двигателя одним концом закреплены форсунки 2, которые дру­гим концом закреплены во впускном трубопроводе 1. Концы фор­сунок уплотнены резиновыми кольцами круглого сечения. Топли­вопровод 4 крепится двумя болтами к впускному трубопроводу.

Регулятор давления топлива (рис. 9.4) поддерживает давление в топливопроводе и форсунках работающего двигателя в пределах 0,28. 0,33 МПа, что необходимо для приготовления горючей смеси требуемого качества на всех режимах работы двигателя. Регулятор давления состоит из корпуса 1 и крышки 3, между которыми закреплена диафрагма 4 с клапаном 2. Внутренняя полость регу­лятора делится диафрагмой на две полости: вакуумную и топ­ливную.

Вакуумная полость находится в крышке 3 регулятора и связана с ресивером, а топливная полость — в корпусе 1 регулятора и связана с топливным баком.

При закрытии воздушной дроссельной заслонки 1 (см. рис. 9.1) вакуум в ресивере увеличивается, клапан регулятора открывается при меньшем давлении топлива и перепускает избыточное топли­во по сливному топливопроводу в топливный бак 6. При этом дав­ление топлива в топливопроводе 2 двигателя понижается. При открытии воздушной дроссель­ной заслонки вакуум в ресиве­ре уменьшается, клапан регу­лятора открывается уже при большем давлении топлива. В результате давление топлива в топливопроводе двигателя по­вышается.



Рис. 9.4. Регулятор давления топлива:

а — клапан закрыт; б — клапан открыт; 1 — корпус; 2 — клапан; 3 —крышка; 4 — диафрагма

Форсунка (рис. 9.5) пред­ставляет собой электромагнит­ный клапан. Форсунка предназначена для впрыска дозированного количества топлива, необходимого для приготовления горючей смеси при различных режимах работы двигателя. Дозиро­вание количества топлива зависит от длительности электрическо­го импульса, поступающего в обмотку катушки электромагнита форсунки. Впрыск топлива форсункой, синхронизирован с положением поршня в цилиндре двигателя.

Форсунка состоит из корпуса 3, крышки 6, обмотки катушки 4 электромагнита, сердечника 8 электромагнита, иглы 2 запорного клапана, корпуса 9 распылителя, насадки 1 распылителя и филь­тра 5. При работе двигателя топливо под давлением поступает в форсунку через фильтр 5 и проходит к запорному клапану, кото­рый находится в закрытом положении под действием пружины 7.

При поступлении электрического импульса в обмотку катуш­ки 4 электромагнита возникает магнитное поле, которое притя­гивает сердечник и вместе с ним иглу 2запорного клапана. При этом отверстие в корпусе 9 распылителя открывается, и топливо под давлением впрыскивается в распыленном виде.

После прекращения поступления электрического импульса в обмотку катушки электромагнита магнитное после исчезает, и под действием пружины 7 сердечник 8 электромагнита и игла 2 за­порного клапана возвращаются в исходное положение. Отверстие в корпусе 9 распылителя закрывается, и впрыск топлива из фор­сунки прекращается.

Техника безопасности при уходе за системой питания должна обязательно соблюдаться. Так, при использовании этилированно­го бензина необходимо быть особенно осторожным при обраще­нии с ним, так как этот бензин очень ядовит.


Рис. 9.5. Форсунка:

1 — насадка; 2 — игла; 3, 9 — корпуса; 4 —обмотка катушки; 5 — фильтр; 6 — крышка; 7 — пружина; 8 — сердечник

При заправке топливного бака, осмот­ре и очистке системы питания нужно не допускать попадания бензина на кожу. Если этилированный бензин попал на кожу, ее надо обмыть чистым кероси­ном, а руки вымыть с мылом в теплой воде и вытереть насухо.

Нельзя применять этилированный бензин для мытья деталей и рук, а так­же засасывать бензин через шланг ртом при переливании и продувать ртом топ­ливопроводы.

Нельзя допускать работу двигателя в закрытом помещении, которое не обо­рудовано специальной вентиляцией. Это может вызнать отравление людей, на­ходящихся в помещении, отработавши­ми газами.

При всех работах по уходу за системой питания необходимо обязательно соблюдать правила противопожарной безопасности.

Система питания топливом бензинового двигателя ⭐ предназначена для размещения и очистки топлива, а также приготовления горючей смеси определенного состава и подачи ее в цилиндры в необходимом количестве в соответствии с режимом работы двигателя (за исключением двигателей с непосредственным впрыском, система питания которых обеспечивает поступление бензина в камеру сгорания в необходимом количестве и под достаточным давлением).

Бензин, как и дизельное топливо, является продуктом перегонки нефти и состоит из различных углеводородов. Число атомов углерода, входящих в молекулы бензина, составляет 5 — 12. В отличие от дизелей в бензиновых двигателях топливо не должно интенсивно окисляться в процессе сжатия, так как это может привести к детонации (взрыву), что отрицательно скажется на работоспособности, экономичности и мощности двигателя. Детонационная стойкость бензина оценивается октановым числом. Чем больше оно, тем выше детонационная стойкость топлива и допустимая степень сжатия. У современных бензинов октановое число составляет 72—98. Кроме антидетонационной стойкости бензин должен также обладать низкой коррозионной активностью, малой токсичностью и стабильностью.

Поиск (исходя из экологических соображений) альтернатив бензину как основному топливу для ДВС привел к созданию этанолового топлива, состоящего в основном из этилового спирта, который может быть получен из биомассы растительного происхождения. Различают чистый этанол (международное обозначение — Е100), содержащий исключительно этиловый спирт; и смесь этанола с бензином (чаще всего 85 % этанола с 15 % бензина; обозначение — Е85). По своим свойствам этаноловое топливо приближается к высокооктановому бензину и даже превосходит его по октановому числу (более 100) и теплотворной способности. Поэтому данный вид топлива может с успехом применяться вместо бензина. Единственный недостаток чистого этанола — его высокая коррозионная активность, требующая дополнительной защиты от коррозии топливной аппаратуры.

К агрегатам и узлам системы питания топливом бензинового двигателя предъявляются высокие требования, основные из которых:

  • герметичность
  • точность дозирования топлива
  • надежность
  • удобство в обслуживании

В настоящее время существуют два основных способа приготовления горючей смеси. Первый из них связан с использованием специального устройства — карбюратора, в котором воздух смешивается с бензином в определенной пропорции. В основу второго способа положен принудительный впрыск бензина во впускной коллектор двигателя через специальные форсунки (инжекторы). Такие двигатели часто называют инжекторными.

Независимо от способа приготовления горючей смеси ее основным показателем является соотношение между массой топлива и воздуха. Смесь при ее воспламенении должна сгорать очень быстро и полностью. Этого можно достичь лишь при хорошем смешении в определенной пропорции воздуха и паров бензина. Качество горючей смеси характеризуется коэффициентом избытка воздуха а, который представляет собой отношение действительной массы воздуха, приходящейся на 1 кг топлива в данной смеси, к теоретически необходимой, обеспечивающей полное сгорание 1 кг топлива. Если на 1 кг топлива приходится 14,8 кг воздуха, то такая смесь называется нормальной (а = 1). Если воздуха несколько больше (до 17,0 кг), смесь обедненная, и а = 1,10… 1,15. Когда воздуха больше 18 кг и а > 1,2, смесь называют бедной. Уменьшение доли воздуха в смеси (или увеличение доли топлива) называют ее обогащением. При а = 0,85… 0,90 смесь обогащенная, а при а Карбюраторные системы питания

Рассмотрим сначала карбюраторные системы питания, которые еще недавно были широко распространены. Они более просты и дешевы по сравнению с инжекторными, не требуют высококвалифицированного обслуживания в процессе эксплуатации и в ряде случаев более надежны.

Система питания топливом карбюраторного двигателя включает в себя топливный бак 1, фильтры грубой 2 и тонкой 4 очистки топлива, топливоподкачивающий насос 3, карбюратор 5, впускной трубопровод 7 и топливопроводы. При работе двигателя топливо из бака 1 с помощью насоса 3 подается через фильтры 2 и 4 к карбюратору. Там оно в определенной пропорции смешивается с воздухом, поступающим из атмосферы через воздухоочиститель 6. Образовавшаяся в карбюраторе горючая смесь по впускному коллектору 7 попадает в цилиндры двигателя.

Фильтры карбюраторных двигателей аналогичны фильтрам, применяемым в системах питания дизелей. На грузовых автомобилях устанавливаются пластинчато-щелевые и сетчатые фильтры. Для тонкой очистки используют картон и пористые керамические элементы. Кроме специальных фильтров в отдельных агрегатах системы имеются дополнительные фильтрующие сетки.

Топливоподкачивающий насос служит для принудительной подачи бензина из бака в поплавковую камеру карбюратора. На карбюраторных двигателях обычно применяют насос диафрагменного типа с приводом от эксцентрика распределительного вала.

В зависимости от режима работы двигателя карбюратор позволяет готовить смесь нормального состава (а = 1), а также обедненную и обогащенную смеси. При малых и средних нагрузках, когда не требуется развивать максимальную мощность, следует готовить в карбюраторе и подавать в цилиндры обедненную смесь. При больших нагрузках (продолжительность их действия, как правило, невелика) необходимо готовить обогащенную смесь.

Схема системы питания топливом карбюраторного двигателя

Рис. Схема системы питания топливом карбюраторного двигателя:
1 — топливный бак; 2 — фильтр трубой очистки топлива; 3 — топливоподкачивающий насос; 4 — фильтр тонкой очистки; 5 — карбюратор; 6 — воздухоочиститель; 7 — впускной коллектор

В общем случае в состав карбюратора входят главное дозирующее и пусковое устройства, системы холостого хода и принудительного холостого хода, экономайзер, ускорительный насос, балансировочное устройство и ограничитель максимальной частоты вращения коленчатого вала (у грузовых автомобилей). Карбюратор может содержать также эконостат и высотный корректор.

Главное дозирующее устройство функционирует на всех основных режимах работы двигателя при наличии разрежения в диффузоре смесительной камеры. Основными составными частями устройства являются смесительная камера с диффузором, дроссельная заслонка, поплавковая камера, топливный жиклер и трубки распылителя.

Пусковое устройство предназначено для обеспечения пуска холодного двигателя, когда частота вращения проворачиваемого стартером коленчатого вала невелика и разрежение в диффузоре мало. В этом случае для надежного пуска необходимо подать в цилиндры сильно обогащенную смесь. Наиболее распространенным пусковым устройством является воздушная заслонка, устанавливаемая в приемном патрубке карбюратора.

Система холостого хода служит для обеспечения работы двигателя без нагрузки с малой частотой вращения коленчатого вала.

Система принудительного холостого хода позволяет экономить топливо во время движения в режиме торможения двигателем, т. е. тогда, когда водитель при включенной передаче отпускает педаль акселератора, связанную с дроссельной заслонкой карбюратора.

Экономайзер предназначен для автоматического обогащения смеси при работе двигателя с полной нагрузкой. В некоторых типах карбюраторов кроме экономайзера для обогащения смеси используют эконостат. Это устройство подает дополнительное количество топлива из поплавковой камеры в смесительную только при значительном разрежении в верхней части диффузора, что возможно лишь при полном открытии дроссельной заслонки.

Ускорительный насос обеспечивает принудительный впрыск в смесительную камеру дополнительных порций топлива при резком открытии дроссельной заслонки. Это улучшает приемистость двигателя и соответственно ТС. Если бы ускорительного насоса в карбюраторе не было, то при резком открытии заслонки, когда расход воздуха быстро растет, из-за инерционности топлива смесь в первый момент сильно обеднялась бы.

Балансировочное устройство служит для обеспечения стабильности работы карбюратора. Оно представляет собой трубку, соединяющую приемный патрубок карбюратора с воздушной полостью герметизированной (не сообщающейся с атмосферой) поплавковой камеры.

Ограничитель максимальной частоты вращения коленчатого вала двигателя устанавливается на карбюраторах грузовых автомобилей. Наиболее широко распространен ограничитель пневмоцентробежного типа.

Инжекторные топливные системы

Инжекторные топливные системы в настоящее время применяются гораздо чаще карбюраторных, особенно на бензиновых двигателях легковых автомобилей. Впрыск бензина во впускной коллектор инжекторного двигателя осуществляется с помощью специальных электромагнитных форсунок (инжекторов), установленных в головку блока цилиндров и управляемых по сигналу от электронного блока. При этом исключается необходимость в карбюраторе, так как горючая смесь образуется непосредственно во впускном коллекторе.

Различают одно- и многоточечные системы впрыска. В первом случае для подачи топлива используется только одна форсунка (с ее помощью готовится рабочая смесь для всех цилиндров двигателя). Во втором случае число форсунок соответствует числу цилиндров двигателя. Форсунки устанавливают в непосредственной близости от впускных клапанов. Топливо впрыскивают в мелко распыленной виде на наружные поверхности головок клапанов. Атмосферный воздух, увлекаемый в цилиндры вследствие разрежения в них во время впуска, смывает частицы топлива с головок клапанов и способствует их испарению. Таким образом, непосредственно у каждого цилиндра готовится топливовоздушная смесь.

В двигателе с многоточечным впрыском при подаче электропитания к электрическому топливному насосу 7 через замок 6 зажигания бензин из топливного бака 8 через фильтр 5 подается в топливную рампу 1 (рампу инжекторов), общую для всех электромагнитных форсунок. Давление в этой рампе регулируется с помощью регулятора 3, который в зависимости от разрежения во впускном патрубке 4 двигателя направляет часть топлива из рампы обратно в бак. Понятно, что все форсунки находятся под одним и тем же давлением, равным давлению топлива в рампе.

Когда требуется подать (впрыснуть) топливо, в обмотку электромагнита форсунки 2 от электронного блока системы впрыска в течение строго определенного промежутка времени подается электрический ток. Сердечник электромагнита, связанный с иглой форсунки, при этом втягивается, открывая путь топливу во впускной коллектор. Продолжительность подачи электрического тока, т. е. продолжительность впрыска топлива, регулируется электронным блоком. Программа электронного блока на каждом режиме работы двигателя обеспечивает оптимальную подачу топлива в цилиндры.

Схема системы питания топливом бензинового двигателя с многоточечным впрыском

Рис. Схема системы питания топливом бензинового двигателя с многоточечным впрыском:
1 — топливная рампа; 2 — форсунки; 3 — регулятор давления; 4 — впускной патрубок двигателя; 5 — фильтр; 6 — замок зажигания; 7 — топливный насос; 8 — топливный бак

Для того чтобы идентифицировать режим работы двигателя и в соответствии с ним рассчитать продолжительность впрыска, в электронный блок подаются сигналы от различных датчиков. Они измеряют и преобразуют в электрические импульсы значения следующих параметров работы двигателя:

  • угол поворота дроссельной заслонки
  • степень разрежения во впускном коллекторе
  • частота вращения коленчатого вала
  • температура всасываемого воздуха и охлаждающей жидкости
  • концентрация кислорода в отработавших газах
  • атмосферное давление
  • напряжение аккумуляторной батареи
  • и др.

Двигатели с впрыском бензина во впускной коллектор имеют ряд неоспоримых преимуществ перед карбюраторными двигателями:

  • топливо распределяется по цилиндрам более равномерно, что повышает экономичность двигателя и уменьшает его вибрацию, вследствие отсутствия карбюратора снижается сопротивление впускной системы и улучшается наполнение цилиндров
  • появляется возможность несколько повысить степень сжатия рабочей смеси, так как ее состав в цилиндрах более однородный
  • достигается оптимальная коррекция состава смеси при переходе с одного режима на другой
  • обеспечивается лучшая приемистость двигателя
  • в отработавших газах содержится меньше вредных веществ

Вместе с тем системы питания с впрыском бензина во впускной коллектор имеют ряд недостатков. Они сложны и поэтому относительно дорогостоящи. Обслуживание таких систем требует специальных диагностических приборов и приспособлений.

Наиболее перспективной системой питания топливом бензиновых двигателей в настоящее время считается довольно сложная система с непосредственным впрыском бензина в камеру сгорания, позволяющая двигателю длительное время работать на сильно обедненной смеси, что повышает его экономичность и экологические показатели. В то же время из-за существования ряда проблем системы непосредственного впрыска пока не получили широкого распространения.


Системы впрыска бензиновых двигателей

Двигатели с системами впрыска топлива, или инжекторные двигатели, почти вытеснили с рынка карбюраторные моторы. На сегодняшний день существует несколько типов систем впрыска, отличающихся устройством и принципом работы. О том, как устроены и работают различные типы и виды систем впрыска топлива, читайте в этой статье.

Устройство, принцип работы и типы систем впрыска топлива

Существует два принципиально разных типа систем впрыска топлива:

- Центральный впрыск (или моновпрыск);
- Распределенный впрыск (или многоточечный впрыск).

Эти системы отличаются количеством форсунок и режимами их работы, однако принцип работы у них одинаков. В инжекторном двигателе вместо карбюратора установлена одна или несколько топливных форсунок, которые распыляют бензин во впускной коллектор или непосредственно в цилиндры (воздух для образования топливно-воздушной смеси подается в коллектор с помощью дроссельного узла). Такое решение позволяет достичь однородности и высокого качества горючей смеси, а главное — несложной установки режима работы двигателя в зависимости от нагрузки и других условий.

Управление системой осуществляется специальным электронным блоком (микроконтроллером), который собирает информацию с нескольких датчиков и мгновенно изменяет режим работы двигателя. В ранних системах эту функцию выполняли механические устройства, однако сегодня двигатель полностью находится под контролем электроники.

Системы впрыска топлива отличаются по количеству, месту установки и режиму работы форсунок.

Центральный впрыск (моновпрыск)

1 — цилиндры двигателя;
2 — впускной трубопровод;
3 — дроссельная заслонка;
4 — подача топлива;
5 — электрический провод, по которому к форсунке поступает управляющий сигнал;
6 — поток воздуха;
7 — электромагнитная форсунка;
8 — факел топлива;
9 — горючая смесь

Это решение было исторически первым и самым простым, поэтому в свое время получило довольно широкое распространение. Принципиально система очень проста: в ней используется одна форсунка, которая постоянно распыляет бензин в один на все цилиндры впускной коллектор. В коллектор же подается и воздух, поэтому здесь образуется топливно-воздушная смесь, которая через впускные клапаны поступает в цилиндры.

Преимущества моновпрыска очевидны: эта система очень проста, для изменения режима работы двигателя нужно управлять только одной форсункой, да и сам двигатель претерпевает незначительные изменения, ведь форсунка ставится на место карбюратора.

Однако моновпрыск имеет и недостатки, в первую очередь — эта система не может обеспечить все возрастающие требования по экологической безопасности. Кроме того, поломка одной форсунки фактически выводит двигатель из строя. Поэтому сегодня двигатели с центральным впрыском практически не выпускаются.

Распределенный впрыск

1 — цилиндры двигателя;
2 — факел топлива;
3 — электрический провод;
4 — подача топлива;
5 — впускной трубопровод;
6 — дроссельная заслонка;
7 — поток воздуха;
8 — топливная рампа;
9 — электромагнитная форсунка

В системах с распределенным впрыском используются форсунки по числу цилиндров, то есть у каждого цилиндра — своя форсунка, расположенная во впускном коллекторе. Все форсунки объединены топливной рампой, через которую в них подается топливо.

Существует несколько разновидностей систем с распределенным впрыском, которые отличаются режимом работы форсунок:

- Одновременный впрыск;
- Попарно-параллельный впрыск;
- Фазированный спрыск.

Попарно-параллельный впрыск. Это усовершенствованный вариант одновременного впрыска, он отличается тем, что форсунки открываются по очереди парами. Обычно работа форсунок настроена таким образом, чтобы одна из них открывалась перед тактом впуска своего цилиндра, а вторая — перед тактом выпуска. На сегодняшний день этот тип системы впрыска практически не используется, однако на современных двигателях предусмотрена аварийная работа двигателя именно в этом режиме. Обычно такое решение используется при выходе из строя датчиков фаз (датчиков положения распредвала), при котором невозможен фазированный впрыск.

Фазированный впрыск. Это наиболее современный и обеспечивающий наилучшие характеристики тип системы впрыска. При фазированном впрыске число форсунок равно числу цилиндров, и все они открываются и закрываются в зависимости от такта. Обычно форсунка открывается непосредственно перед тактом впуска — так достигаются лучший режим работы двигателя и экономичность.

Также к распределенному впрыску относят системы с непосредственным впрыском, однако последний имеет кардинальные конструктивные отличия, поэтому его можно выделить в отдельный тип.

Непосредственный впрыск

Системы с непосредственным впрыском наиболее сложные и дорогие, однако только они могут обеспечить наилучшие показатели по мощности и экономичности. Также непосредственный впрыск дает возможность быстро изменять режим работы двигателя, максимально точно регулировать подачу топлива в каждый цилиндр и т.д.

Такое решение довольно сложно в техническом плане, так как в головке цилиндра, где и так уже расположены клапаны и свеча, необходимо разместить еще и форсунку. Поэтому непосредственный впрыск можно использовать только в достаточно мощных, а поэтому больших по габаритам двигателях. Кроме того, такую систему невозможно установить на серийный двигатель — его приходится модернизировать, что связано с большими затратами. Поэтому непосредственный впрыск сегодня используется только на дорогих автомобилях.

Системы с непосредственным впрыском требовательны к качеству топлива и нуждаются в более частом техническом обслуживании, однако они дают существенную экономию топлива и обеспечивают более надежную и качественную работу двигателя. Сейчас наблюдается тенденция снижения цены машин с такими двигателями, поэтому в будущем они могут серьезно потеснить автомобили с инжекторными двигателями других систем.

Другие статьи

На прицепах и полуприцепах иностранного производство широко применяются компоненты ходовой части от немецкого концерна BPW. Для монтажа колес на ходовой используется специализированный крепеж — шпильки BPW. Все об этом крепеже, его существующих типах, параметрах и применяемости читайте в материале.

Для монтажа автомобильных стекол в кузовные элементы используются специальные детали, обеспечивающие уплотнение, фиксацию и демпфирование — уплотнители. Все об уплотнителях стекол, их типах, конструктивных особенностях и характеристиках, а также о подборе и замене этих элементов — читайте в статье.

В практике авторемонта и при выполнении слесарно-монтажных работ возникает необходимость работы с резьбовым крепежом, имеющим неудобное положение или наклон. В этих ситуациях на помощь приходят карданные переходники для ключей — об этих приспособлениях, их конструкции и применении читайте в статье.

Южнокорейские автомобили SSANGYONG оснащаются тормозной системой с гидравлическим приводом, в которой применяются тормозные шланги. Все о тормозных шлангах SSANGYONG, их типах, особенностях конструкции и применяемости, а также о вопросах выбора и замены этих деталей — читайте в представленной статье.

Читайте также: