Конспект урока колебательный контур получение электромагнитных колебаний

Обновлено: 07.07.2024

Давайте вспомним, что мы знаем о механических колебаниях.

Назовите системы, в которых возникают механические колебания (Математический маятник, пружинный маятник)

Когда возникают механические колебания? (Когда тело выводят из положения равновесия и отпускают)

Какими бывают механические колебания? (Свободными или вынужденными, затухающими или незатухающими)

Какими свойствами должна обладать система для того, чтобы в ней могли возникнуть свободные колебания? (В колебательной системе должна возникать возвращающая сила и происходить превращение энергии из одного вида в другой, трение в системе должно быть достаточно мало)

Какие колебания называют вынужденными? (Колебания, происходящие при постоянном действии на тело вынуждающей силы)

Назовите причину затухания механических колебаний (Сила трения о воздух)

В электрических цепях, так же как и в механических системах, таких как груз на пружине или математический маятник, могут возникать свободные колебания. Сегодня мы приступаем к изучению таких систем. Тема сегодняшнего урока: “Колебательный контур. Возникновение электромагнитных колебаний в колебательном контуре. Частота собственных колебаний контура. Превращение энергии в колебательном контуре”.

Изложение нового материала

Сегодня мы рассмотрим, почему в колебательном контуре происходят колебания и как возникают электромагнитные колебания. Что же такое электромагнитные колебания?

Электромагнитные колебания – периодические изменения электромагнитных величин (электрического заряда, силы тока и напряжения)

Простейшая система, в которой могут возникать свободные электромагнитные колебания, – колебательный контур. Он состоит из конденсатора и катушки, которая присоединена к его обкладкам.

Колебательный контур – система, состоящая из конденсатора и катушки, присоединённой к его обкладкам.


В такой колебательной системе возникают свободные электромагнитные колебания – колебания силы тока, заряда и напряжения.

Чтобы в контуре начались колебания, ему нужно сообщить энергию, т.е. зарядить конденсатор.

Посмотрите на схему, на которой показано, как можно зарядить конденсатор.


Когда ключ переводится в положение 1, то конденсатор заряжается от источника тока; если же в положение 2 – конденсатор начинает разряжаться и в контуре возникают колебания силы тока, заряда и напряжения. Почему?

Рассмотрим процессы, происходящие в колебательном контуре в различные моменты времени.

Вам известно, что период – это время, за которое совершается одно полное колебание. Будем рассматривать процессы, происходящие в колебательном контуре через каждую четверть периода.

q = +qm

Напряжение между обкладками

u = Um

и ещё не началась разрядка конденсатора, сила тока в цепи

Маленькими буквами q, i, u мгновенные значения величин.

В этом случае вся энергия системы представляет энергию электрического поля конденсатора:


Wэ = .

Т.к. тока в цепи нет, то энергия магнитного поля

Wм = 0.

Эта ситуация аналогична ситуации с механическими колебаниями груза на нити, а именно тому положению, когда груз отклонили вправо, то есть сообщили системе энергию. Вся энергия системы представляет в этом случае потенциальную энергию груза, поднятым над нулевым уровнем.



2. t =

Конденсатор разряжается, т.е. заряд обкладок

и напряжение между обкладками

Т.к. конденсатор разряжен, то энергия электрического поля

Wэ = 0,

а энергия магнитного поля максимальна:


Wм = .

Эта ситуация аналогична ситуации, когда груз на нити из крайнего правого положения проходит положение равновесия. В этом состоянии его скорость максимальна, а значит, потенциальная энергия превращается в кинетическую.



t =


Конденсатор разрядился, и сила тока должна уменьшиться до нуля, но, опять же, благодаря наличию в контуре катушки индуктивности, при уменьшении тока в цепи переменное магнитное поле создаёт ток самоиндукции, который теперь уже направлен так же, как и ток в контуре (он его поддерживает), но ещё некоторое время ток в контуре продолжает протекать.. Его направление такое же, как в предыдущей ситуации, и конденсатор начинает заряжаться, причём верхняя пластина заряжается отрицательным зарядом, а нижняя – положительным.

Заряд верхней пластины q = - qm,

напряжение u = Um,

сила тока i = 0.


Wэ = ; Wм = 0 (т.к. сила тока равна 0).

Эта ситуация аналогична ситуации, когда груз на нити находится в крайнем левом положении при его движении из состояния равновесия. Кинетическая энергия снова превращается в потенциальную.



t =


После зарядки конденсатор начинает разряжаться. Ток направлен от положительной пластины к отрицательной через колебательный контур. Благодаря катушке с индуктивностью L, конденсатор разряжается не мгновенно, а за некоторый промежуток времени. Переменное магнитное поле создаёт ток самоиндукции, препятствующий нарастанию тока в контуре. Поэтому ток в контуре нарастает тоже не мгновенно, а некоторое время. В течение этой четверти периода конденсатор разряжается. q = 0; u = 0; i = Im (ток достигает максимума, но его направление противоположно направлению тока в контуре, как и в ситуации 2).


Wэ = 0, Wм = .

Эта ситуация аналогична ситуации, корда груз на нити из крайнего левого положення проходит состояние равновесия. Потенциальная энергия превращается в кинетическую



Когда конденсатор разряжен, ток не может мгновенно уменьшиться до 0, т.к. при уменьшении тока в контуре возникает ток самоиндукции, который его ещё поддерживает некоторое время, т.е. снова конденсатор начинает заряжаться, причём верхняя пластина – положительно, а нижняя – отрицательно. При этом верхняя пластина достигает заряда q = +qm; u = Um ; i = 0


Wэ = ; Wм = 0

Ситуация аналогична той, когда груз на нити находится в крайнем правом положении (см. ситуацию 1)

Ситуации 1 и 5 абсолютно идентичны, то есть все рассмотренные нами процессы произошли за один период. Дальше снова начинается разрядка конденсатора, потом зарядка противоположным знаком и т.д., т.е. за время, равное одному периоду, произошли колебания в колебательном контуре. Рассмотрим, как происходили колебания заряда верхней обкладки конденсатора через каждую четверть периода:

+qm; 0; -qm; 0; +qm

колебания напряжения между обкладками конденсатора:

Um; 0; Um; 0; Um

колебания силы тока: 0; Im; 0; Im; 0

Обратите также внимание на то, что постоянно происходит превращение энергии электрического поля в энергию магнитного поля и обратно.

Wэ: ; 0; ; 0;

Wм: 0; ; 0; ; 0

в колебательном контуре происходят колебания заряда, силы тока и напряжения. Причиной является наличие в контуре катушки индуктивности. Процесс зарядки и разрядки конденсатора не происходит мгновенно, а через некоторый промежуток времени. Каждую четверть периода происходит превращение энергии электрического поля в энергию магнитного поля, и обратно.

А от чего же зависит период колебаний в колебательном контуре?

Период колебаний в контуре зависит от ёмкости конденсатора и индуктивности катушки:

Период колебаний – время одного полного колебания

Частота электромагнитных колебаний – число колебаний за единицу времени (1 с)

Циклическая частота колебаний – число колебаний за 2 секунд

Связь циклической частоты с периодом и частотой колебаний:

Таким образом,колебания в реальном колебательном контуре затухают из-за потерь энергии на нагревание провода. Посмотрите график зависимости заряда на обкладке конденсатора от времени.


Когда по проводнику течёт ток, он нагревает проводник, на что затрачивается часть энергии, и колебания постепенно затухают (уменьшается амплитуда колебаний).

Мы рассматривали сегодня колебания в колебательном контуре, которые не затухали. Эти колебания могут происходить только в том случае, когда колебательный контур идеальный (как математическая модель), либо в случае, когда колебательный контур находится в сверхпроводящем состоянии, т.е. сопротивление контура R = 0.

Когда сопротивление контура R = 0, то колебания в контуре не затухают.

Подведение итогов урока

Электромагнитные колебания – периодические изменения электромагнитных величин (электрического заряда, силы тока и напряжения).

Колебательный контур – система, состоящая из конденсатора и катушки, присоединённой к его обкладкам.

Если R = 0, то в колебательном контуре возникают незатухающие колебания заряда, силы тока и напряжения, причём у тока меняется не только значение, но и направление.

В колебательном контуре происходит превращение энергии (электрической в магнитную и обратно). При отсутствии сопротивления полная энергия электромагнитного поля остаётся постоянной и равна сумме энергий электрического и магнитного полей.

Период колебаний зависит от индуктивности катушки и ёмкости конденсатора.


На примере радиовещания, вводятся в рассмотрение электромагнитные колебания. Дается определение колебательного контура и свободным электромагнитным колебаниям.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Колебательный контур. Получение электромагнитных колебаний"

О, сколько нам открытий чудных

Готовят просвещенья дух

И опыт, сын ошибок трудных

И гений, парадоксов – друг

И случай – бог изобретатель.

А. С. Пушкина

В данной теме речь пойдет о колебательном контуре и получении электромагнитных колебаний.

Прежде чем приступить к изучению новой темы, повторим основные понятия, которые помогут разобраться в данной теме.

Явление самоиндукции заключается в возникновении индукционного тока в проводнике при изменении силы тока в нем.

Индуктивность контура — это физическая величина, введенная для оценивания способности проводника противодействовать изменению силы тока в нем.

Конденсатор — это устройство, предназначенное для накопления заряда и энергии электрического поля.

Радиовещание (т.е. передача звуковой информации на большие расстояния) осуществляется посредством электромагнитных волн, излучаемых антенной радиопередающего устройства. Известно, что источником электромагнитных волн являются ускоренно движущиеся заряженные частицы. Значит, для того, чтобы антенна излучала электромагнитные волны, в ней нужно возбуждать колебания свободных электронов. Такие колебания называются электромагнитными, поскольку они порождают электромагнитным полем, распространяющееся в пространстве в виде электромагнитной волны.

Таким образом, электромагнитные колебания — это периодические изменения со временем электрических и магнитных величин (заряда, силы тока, напряжения, напряженности, магнитной индукции и др.) в электрической цепи.

Как известно, для создания мощной электромагнитной волны, которую можно было бы зарегистрировать приборами на больших расстояниях от излучающей антенны, необходимо, чтобы частота волны не меньше 0,1 МГц. Колебания таких больших частот невозможно получить от генератора переменного электрического тока, поэтому они подаются на антенну от генератора высокочастотных электромагнитных колебаний, имеющегося в каждом радиопередающем устройстве.



Одной из основных частей генератора является колебательный контур — это колебательная система, состоящая из включенных последовательно катушки индуктивностью L, конденсатора емкостью C и резистора сопротивлением R.


Если из такой системы удалить активное сопротивление, то полученный контур будет называться идеальным (или, контуром Томсона).

Рассмотрим свободные электромагнитные колебания, т.е. колебания, происходящие в идеальном колебательном контуре за счет расходования сообщенной этому контуру энергии, которая в дальнейшем не пополняется.

Получим их и удостоверимся в существовании с помощью установки, состоящей из источника тока, конденсатора и катушки.

Катушка и конденсатор, соединенные друг с другом через переключатель, составляют колебательный контур. На некоторое время с помощью переключателя зарядим конденсатор, замкнув его на источник тока.


Теперь наш заряженный конденсатор подсоединим обратно с катушкой. Что же происходит дальше.

Так как цепь замкнута (в данном случае через катушку индуктивности), то электроны начнут перемещаться по проводнику от отрицательно заряженной обкладки конденсатора к положительной. Перемещаясь, электроны уравновесят напряжение на обкладках конденсатора и сделают его равным нулю, но в тот момент, когда напряжение на пластинах конденсатора будет нулевым, ток в катушке индуктивности, а, следовательно, и энергия магнитного поля вокруг ее витков, будут максимальными.



Затем электрический ток в колебательном контуре вновь течет от минуса к плюсу. Описанное выше повторяется. Когда минус второй раз стал плюсом, а плюс - минусом, говорят, что в колебательном контуре было совершено одно полное колебание. Вот так и происходят электромагнитные колебания в контуре.

Теперь обратимся к истории открытия этих колебаний. Дело все в том, что они были открыты почти случайно.

После того как изобрели лейденскую банку (первый конденсатор) и научились сообщать ей большой заряд с помощью электростатической машины, начали изучать электрический разряд банки. Замыкая обкладки лейденской банки с помощью катушки, обнаружили, что стальные спицы внутри катушки намагничиваются.


В этом ничего удивительного не было: электрический ток и должен намагничивать стальной сердечник катушки.

Странным же было то, что нельзя было предсказать, какой конец сердечника катушки окажется северным полюсом, а какой южным.

Повторяя опыт примерно в одинаковых условиях, получали в одних случаях один результат, а в других другой.

Далеко не сразу поняли, что при разрядке конденсатора через катушку в электрической цепи возникают колебания.

За время разрядки конденсатор успевает много раз перезарядиться, и ток меняет направление много раз, в результате чего сердечник может намагничиваться различным образом.

Известно, что колебания, происходящие только благодаря начальному запасу энергии называются свободными. Период свободных колебаний равен собственному периоду колебательной системы, в данном случае периоду контура. Формула для определения периода свободных электромагнитных колебаний была получена английским физиком Уильямом Томсоном в 1853 г. Она называется формулой Томсона и выглядит так:


Данная формула показывает, что период колебательного контура определяется параметрами составляющих его элементов: индуктивностью катушки и емкостью конденсатора. Из формулы Томсона следует, например, что при уменьшении емкости или индуктивности период колебаний должен уменьшиться, а их частота — увеличиться и, наоборот, при увеличении емкости или индуктивности период колебаний увеличивается, а их частота уменьшается.

Но надо отметить еще одну важную особенность. Изначально между обкладками конденсатора запасено определенное количество энергии. Эта энергия неизбежно будет расходоваться на совершаемую работу, а именно, на передвижение электронов по проводнику, а это означает, что колебания в контуре рано или поздно прекратятся. Но избежать прекращения колебательного процесса в контуре довольно не сложно, для этого необходимо всего лишь подключить контур к источнику тока, который будет вбрасывать внутрь цепи новые порции энергии, не давая энергии израсходоваться полностью. В генераторе это осуществляется автоматически.


Основные выводы:

– Колебательный контур — это колебательная система, состоящая из включенных последовательно катушки, конденсатора и активного сопротивления.

– Свободные электромагнитные колебания — это колебания, происходящие в идеальном колебательном контуре за счет расходования сообщенной этому контуру энергии, которая в дальнейшем не пополняется.

– Период свободных электромагнитных колебаний можно рассчитать с помощью формулы Томсона.


– Из этой формулы следует, что период колебательного контура определяется параметрами составляющих его элементов: индуктивности катушки и емкости конденсатора.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Выберите документ из архива для просмотра:

Выбранный для просмотра документ конспект.docx

ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ

Цель урока : изучить понятие электромагнитные колебания и изучить формулу Томсона

Воспитательная: воспитать культуру физического труда; внимательность при объяснении нового материала.

Образовательная: Дать понятие математическому и пружинному маятнику , изучить понятие электромагнитные колебания и изучить формулу Томсона

Развивающая: способствовать развитию мыслительной деятельности.

Требования к знаниям и умениям:

Учащиеся узнают понятия :

-что называется свободным и вынужденным колебанием

- что называется колебательным контуром, определение электромагнитных колебаний

Учащиеся смогут научиться :

- вычислять 1, Т, т, к, и на основании формул для периода матем. и пружинного маятников;

- решать качественные задачи, объяснять явления на основе изученного;

- применять формулу Томсона при решении задач

Тип урока: комбинированный урок

Программное обеспечение : учебник, доска, справочный материал и предлагаемый учителем дополнительный материал.

I Орг. момент

II Проверка домашнего задания

IV Изучение нового материала:

1.Электромагнитные колебания

2. Формула Томсона

3. Решение задач

V Рефлексия

VI Подведение итогов

VII Домашнее задание

Ход урока:

I Орг. момент

II Проверка домашнего задания:

- В каком положении кинетическая энергия тела в колебательном движении наибольшая? Почему?

- В каком положении потенциальная энергия пружинного маятника наибольшая? Почему?

- Чему равна полная энергия колебательного тела в любой точке траектории?

- Какие примеры затухающего колебания вы можете привести?

IV Изучение нового материала:

ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ

1. Радиовещание осуществляется посредством электромагнитных волн. Источником э/м/в служат ускоренно движущиеся заряженные частицы. Такие колебания называют электромагнитными. Для создания мощной электромагнитной волны служат генераторы высокочастотных электромагнитных колебаний. Открытие электромагнитных колебаний было неожиданным. После того как изобрели простейший конденсатор и научились сообщать ему большой заряд с помощью электростатической машины, ученые начали наблюдать его электрический заряд. С простейшим конденсатором — лейденской банкой — вы ознакомились в 8 классе.

Замыкая обкладки лейденской банки с помощью проволочной катушки, обнаружили, что стальные спицы внутри катушки намагничиваются. В этом ничего странного не было, так как электрический ток и должен намагничивать стальной сердечник катушки. Удивительным было то, что нельзя было предсказать, какой конец намагниченного сердечника катушки окажется северным полюсом, а какой — южным. Опыты, проведенные в одних и тех же условиях, давали различные результаты.

Ученые не сразу поняли, что при разрядке конденсатора через катушку возникают колебания. За время разряда конденсатор успевает несколько раз перезарядиться, и электрический ток тоже меняет направление. Из-за этого сердечник может намагничиваться по-разному, и его полюсы поочередно меняются.

Итак, при разрядке конденсатора периодически (или почти периодически) изменяются заряд, ток, напряжение, электрические и магнитные поля. Периодическое изменение этих величия называют электромагнитными колебаниями. Получить электромагнитные колебания почти так же просто, как и заставить тело колебаться, подвесив его на пружине. Но наблюдать электромагнитные колебания уже не так просто. Ведь мы непосредственно не видим ни переразрядки конденсатора, ни тока в катушке. К тому же колебания обычно происходят с очень большой частотой.

Для наблюдения и исследования электромагнитных колебаний самым подходящим прибором является электронный осциллограф.

Электромагнитные колебания возникают в электрической цепи, состоящей из батареи конденсаторов и катушки индуктивности (рис. 89, 6). Цепь, состоящая из последовательно соединенных конденсатора и катушки и позволяющая получать электромагнитные колебания, называется колебательным контуром. Такая установка состоит из источника тока (1), батареи конденсаторов (2), катушки индуктивности (3), электронного осциллографа (4) и переключателя (5). Емкость батареи (С) можно менять, перемещая рукоятку и включая разные конденсаторы. Можно менять и индуктивность (Ь) катушки, включая большее или меньшее число витков обмотки или внося в катушку стальной сердечник. Принципиальная схема такой установки дана на рис. 89, а.

При повороте переключателя влево (рис. 89, а, положение б) конденсатор подключается к источнику тока и на его обкладках начинает накапливаться электрический заряд, т.е. конденсатор начинает заряжаться. А если ручку перебросить вправо (положение 7), то источник тока отключается, а к зажимам конденсатора присоединяется обмотка катушки. При этом конденсатор начинает разряжаться через катушку, и по обмотке идет электрический ток.

hello_html_188efd39.jpg

Такие поочередно изменяющиеся в колебательном контуре процессы можно увидеть на экране осциллографа. В идеальных условиях, когда электрическое сопротивление равно или близко к нулю, на экране можно увидеть свободные электромагнитные колебания (рис. 89, . А в случае, когда электрическое сопротивление контура будет большим, то на экране осциллографа появляется осциллограмма затухающего колебания (рис. 90).

При увеличении электрической емкости конденсатора в установке можно увидеть растягивание осциллограммы в горизонтальном направления. Следовательно, с увеличением емкости колебательного контура период электромагнитного колебания возрастает (частота соответственно уменьшается). Когда емкость уменьшается, период колебания тоже уменьшается, а частота, естественно, возрастает.

Такой же результат получается при изменении индуктивности катушки в контуре. Физические величины — индуктивность и емкость — вам известны из курса физики для 8 классов. При увеличении индуктивности период колебания возрастает, и, наоборот — при уменьшении индуктивности период сокращается. Этот результат аналогичен изменению периода колебания пружинного маятника при изменении массы груза и жесткости пружины.

Таким образом, период свободного электромагнитного колебания в колебательном контуре вычисляется через индуктивность контура (L) и емкость (С) по формуле:

В честь него это выражение называется формулой Томсона.

Для того чтобы получить период (Т) в секундах (с), индуктивность (L) должна быть выражена в генри (Гн), а емкость (С) — в фарадах (Ф).

Явления в колебательном контуре аналогичны явлениям в пружинном маятнике. Действительно, для того чтобы возникли колебания в пружинном маятнике, пружину надо деформировать (сжать), сообщив ей потенциальную энергию (рис. 91, а). Аналогично, чтобы в колебательном контуре возникли колебания, следует зарядить конденсатор и таким образом сосредоточить в нем энергию электрического поля (рис. 91, 6).

hello_html_53cd83f0.jpg

Через четверть периода деформация пружины исчезает, а груз с максимальной скоростью проходит положение равновесия. При этом потенциальная энергия пружины превращается в кинетическую энергию груза (рис. 91, в). Точно так же через четверть периода конденсатор разряжается, и через обмотку катушки течет электрический ток максимальной силы. Энергия электрического поля конденсатора превратилась в энергию магнитного поля катушки (рис. 91, е).

Далее груз, продолжая свое движение, растягивает пружину, и к концу полупериода кинетическая энергия груза вновь превращается в потенциальную энергию пружины (рис. 91, д). Аналогично электрические заряды за счет энергии магнитного поля начинают накапливаться на обкладках конденсатора, и к концу полупериода энергия магнитного поля катушки превращается в энергию электрического поля конденсатора (рис. 91, е). Этот процесс вновь повторяется, и к концу периода система возвращается в первоначальное состояние (рис. 91, ж, з, и, к).

Таким образом, можно сделать вывод: в цепи, состоящей из конденсатора и катушки индуктивности, при очередной разрядке конденсатора возникают электромагнитные колебания.

Решение задач:

№ 3. Для демонстрации медленных электромагнитных колебаний собирается колебательный контур с конденсатором, емкость которого равна 2,5 мкФ. Какова должна быть индуктивность катушки при периоде колебания 0,2 с?

C=2,5 мкФ

T=0,2 c

2,5 10 -6 Ф

№ 2. Колебательный контур состоит из конденсатора емкостью 250 пФ и катушки индуктивностью 10 мГн. Определите период и частоту свободных колебаний.

№ 3. Необходимо собрать колебательный контур частотой 3 мГц, используя катушку индуктивностью 1,3 мГн. Какова должна быть емкость конденсатора?

V Рефлексия

- Что такое математический маятник?

- От чего зависит период колебаний математического маятника?

- От чего зависит период колебаний тела под действием силы упругости?

- Каким образом с помощью маятников приборов находят залежи полезных ископаемых?

- Какие колебания называются свободными?

- Почему колебания затухают?

- Как влияет сила трения на амплитуду колебаний?

- Почему затухающие колебания нельзя назвать гармоническими?

- Чем определяется собственная частота колебательной системы?

- Что такое вынужденные колебания?

- С какой частотой происходят вынужденные колебания?

- Как зависит амплитуда вынужденных колебаний от частоты?

- Какое явление называется резонансом?

- Какие примеры применения резонанса вы можете привести?

- Что представляет собой колебательный контур? Начертите его схему.

- Что необходимо сделать, чтобы в колебательном контуре возникли свободные колебания?

- Почему свободные электромагнитные колебания затухают?

- Как влияет изменение емкости конденсатора на период свободного колебания в контуре?

- Как влияет изменение индуктивности катушки на период свободного колебания в контуре?

- Какой формулой выражается период свободных колебаний в колебательном контуре? В каких единицах измеряются величины, входящие в нее?

Первым, кто экспериментально получил электромагнитную волну, был немецкий ученый Генрих Герц. Так же он смог передать ее на небольшое расстояние и принять. В 1886 году Герц заметил крошечные искры, проскакивающие в зазоре медного кольца, когда рядом разряжалась индукционная катушка. Это свидетельствовало о присутствии электромагнитных волн. Герц принялся изучать это явление. Он сконструировал аппарат, который состоял из передатчика и устройства, которое бы создало колебание необходимой частоты и приемника. Для того чтобы понять, в чем заключалась идея Герца в создании передатчика, необходимо вспомнить теоритические выводы Максвелла об электромагнитных волнах: электромагнитные волны создаются ускоренно движущимися зарядами. Создать такие заряды можно только в колебательном контуре. Колебательный контур – это цепь, которая состоит, в идеале, из последовательно соединенной катушки и конденсатора. В таком контуре возникают электромагнитные колебания, то есть периодические изменения со временем электрического и магнитного поля и, соответственно, величин, их характеризующих.
Рассмотрим, как происходят эти колебания. Отсчет времени начинается с того момента, как в цепь подключили заряженный конденсатор. Напряжение на обкладках конденсатора максимально, линии напряженности электрического поля направлены сверху вниз. В следующий промежуток времени, конденсатор начинает разряжаться (то есть электрическое поле ослабевает) и в цепи начинает течь ток. Одновременно с этим в катушке возникнет магнитное поле, препятствующее возрастанию тока в цепи. Здесь мы наблюдаем превращение электрического поля в магнитное. Когда конденсатор полностью разряжен, энергия контура заключена в магнитном поле. Так как конденсатор разрядился, ток начинает в контуре убывать, и в катушке в результате явления самоиндукции возникает индукционный ток, который направлен так же, как и убывающий ток (согласно правилу Ленца). В результате этого конденсатор начинает перезаряжаться, теперь нижняя обкладка конденсатора заряжена положительно, а верхняя отрицательно. Магнитное поле опять превращается в электрическое. С уменьшением магнитного поля до нулевого значения конденсатор полностью заряжается. Энергия контура заключена в электрическом поле. Полностью заряженный конденсатор начинает разряжаться, но так как полярность обкладок конденсатора изменилась, ток потечет в противоположном направлении. Процесс повторится, но в зеркальном отражении. Таким образом, создаются свободные электромагнитные колебания, то есть колебания, которые возникли благодаря первоначальному запасу энергии (по аналогии с механическими колебаниями). Электромагнитное поле в контуре создано. Однако такой контур очень слабо излучает эту энергию в окружающую среду. Если раскрывать обкладки конденсатора все больше и больше, то все электромагнитные волны будут излучаться в пространстве более свободно.
В своем опыте Герц использовал катушку Румкорфа. Она состоит из первичной обмотки толстой проволоки и вторичной, большого количества витков тонкой проволоки. Эта катушка позволяет получить на концах вторичной обмотки огромное напряжение, благодаря чему сферы заряжаются противоположными зарядами. Через некоторое время в промежутке между сферами проскакивает искра. В этот момент в открытом контуре получаем высокочастотные колебания, которые будут распространяться в виде волны в окружающее пространство. Электромагнитная волна невидима. Поэтому для ее регистрации или приема Герц использовал кольцо с разрывом. Экспериментируя с размером кольца и расстоянием до контура, Герц получил искровой разряд. Искры были результатом электромагнитных колебаний, которые распространялись в пространстве как волны и заряжали приемник.

Читайте также: