Интегральные исчисления конспект кратко

Обновлено: 06.07.2024

ИНТЕГРА́ЛЬНОЕ ИСЧИСЛЕ́НИЕ, раз­дел ма­те­ма­тич. ана­ли­за, в ко­то­ром изу­ча­ют­ся ин­те­гра­лы, их свой­ст­ва, ме­то­ды вы­чис­ле­ния и различные при­ло­же­ния. И. и. тес­но свя­за­но с диф­фе­рен­ци­аль­ным ис­чис­ле­ни­ем и со­став­ля­ет вме­сте с ним ос­новную часть ма­те­ма­тического ана­ли­за (или ана­ли­за бес­ко­неч­но ма­лых). Центр. по­ня­тия­ми И. и. яв­ля­ют­ся по­ня­тия оп­ре­де­лён­но­го и не­оп­ре­де­лён­но­го ин­те­гра­лов функ­ций од­ной дей­ст­ви­тель­ной пе­ре­мен­ной.

раздел математики, в котором изучаются свойства и способы вычисления интегралов и их приложения. И. и. тесно связано с дифференциальным исчислением (См. Дифференциальное исчисление) и составляет вместе с ним одну из основных частей математического анализа (или анализа бесконечно малых). Центральными понятиями И. и. являются понятия определённого интеграла и неопределённого интеграла функций одного действительного переменного.

К классу функций, интегралы от которых всегда выражаются в элементарных функциях, принадлежит множество всех рациональных функций

где P(x) и Q(x) — многочлены. Многие функции, не являющиеся рациональными, также интегрируются в конечном виде, например функции, рационально зависящие от

В конечном виде интегрируются и многие трансцендентные функции, например рациональные функции синуса и косинуса. Функции, которые изображаются неопределёнными интегралами, не берущимися в конечном виде, представляют собой новые трансцендентные функции. Многие из них хорошо изучены (см., например, Интегральный логарифм, Интегральный синус и интегральный косинус, Интегральная показательная функция).

Понятие интеграла распространяется на функции многих действительных переменных (см. Кратный интеграл, Криволинейный интеграл, Поверхностный интеграл), а также на функции комплексного переменного (см. Аналитические функции) и вектор-функции (см. Векторное исчисление).

При этом в работах Ньютона основную роль играло понятие неопределённого интеграла (флюенты, см. Флюксий исчисление), тогда как Лейбниц исходил из понятия определённого интеграла. Дальнейшее развитие И. и. в 18 в. связано с именами И. Бернулли и особенно Л. Эйлера. В начале 19 в. И. и. вместе с дифференциальным исчислением было перестроено О. Коши на основе теории пределов. В развитии И. и. в 19 в. приняли участие русские математики М. В. Остроградский, В. Я. Буняковский, П. Л. Чебышев. В конце 19 — начале 20 вв. развитие теории множеств и теории функций действительного переменного привело к углублению и обобщению основных понятий И. и. (Б. Риман, А. Лебег и др.).

Лит.: История. Ван дер Варден Б. Л., Пробуждающаяся наука, пер. с голл., М., 1959; Вилейтнер Г., История математики от Декарта до середины 19 столетия, пер. с нем., 2 изд., М., 1966; Строек Д. Я., Краткий очерк истории математики, пер. с нем., 2 изд., М., 1969; Cantor М.. Vorleslingen über Geschichte der Mathematik, 2 Aufl., Bd 3—4, Lpz. — B., 1901—24.

Учебники и учебные пособия по И. и. Хинчин Д. Я., Краткий курс математического анализа, 3 изд., 1957; Смирнов В. И., Курс высшей математики, 22 изд., т. 1, М., 1967; Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 7 изд., т. 2, М., 1969; Ильин В., Позняк Э. Г., Основы математического анализа, 3 изд., ч. 1, М., 1971; Курант Р., Курс дифференциального и интегрального исчисления, пер. с нем. и англ., 4 изд., т. 1, М., 1967; Двайт Г.-Б., Таблицы интегралов и другие математические формулы, пер. с англ., М., 1964.

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Интегралы для чайников: как решать, правила вычисления, объяснение

Решение интегралов – задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл. Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы?

Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать простейшие и другие интегралы и почему без этого никак нельзя обойтись в математике.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц, но суть вещей не изменилась.

Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о пределах и производных, необходимые и для понимания интегралов, уже есть у нас в блоге.

Неопределенный интеграл

Пусть у нас есть какая-то функция f(x).

Неопределенным интегралом функции f(x) называется такая функция F(x), производная которой равна функции f(x).


Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как вычислять производные, читайте в нашей статье.


Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.

Простой пример:


Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.

Полная таблица интегралов для студентов


Определенный интеграл

Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.

В качестве примера представим себе график какой-нибудь функции.

Как найти площадь фигуры, ограниченной графиком функции? С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:


Точки а и b называются пределами интегрирования.


Бари Алибасов и группа

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Правила вычисления интегралов для чайников

Свойства неопределенного интеграла

Как решить неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.

  • Производная от интеграла равна подынтегральной функции:


  • Константу можно выносить из-под знака интеграла:


  • Интеграл от суммы равен сумме интегралов. Верно также для разности:


Свойства определенного интеграла


  • Знак интеграла изменяется, если поменять местами пределы интегрирования:


Как считать определенный интеграл? С помощью формулы Ньютона-Лейбница.

Мы уже выяснили, что определенный интеграл – это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:


Примеры решения интегралов

Ниже рассмотрим неопределенный интеграл и примеры с решением. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.


Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Математический анализ как раздел математики возник в результате объединения двух различных и первоначально не связанных направлений математических исследований – дифференциального и интегрального исчислений.

Первоначально интуитивное представление о математическом объекте, который мы сейчас называем определенным интегралом, встречалось в работах ученых Древней Греции. Так, Архимед для вычисления объемов и площадей поверхности тел пользовался разбиением фигур на элементы с последующим суммированием этих элементов, предвосхищая тем самым понятия интегральных сумм.

Аналогичными задачами, развивая метод Архимеда, занимались И.Кеплер, Б.Паскаль, П.Ферма и другие ученые. Ферма также занимался задачами, которые мы сейчас относим к дифференциальному исчислению, - проведением касательных к кривым, нахождением наибольшего и наименьшего значений функций и т.д., причем для решения этих задач он, по существу, пользовался понятием приращения функции. Связь между этими различными классами задач была осознана учеными после исследований И.Ньютона и Г.Лейбница. Лейбницем и были введены используемые в настоящее время обозначения интеграла и дифференциала.

Строгое обоснование большинства понятий математического анализа было дано Коши в середине XIX столетия на основе теории пределов.

Дальнейшее развитие математического анализа привело к выделению таких самостоятельных разделов математики, как теория обыкновенных дифференциальных уравнений, теория дифференциальных уравнений в частных производных, теория интегральных уравнений, теория функций комплексной переменной, теория функций действительной переменной, функционального анализа и т.д.

Понятие первообразной и неопределенного интеграла.

Свойства. Формулы интегрирования.

Функцию, восстанавливаемую по заданной ее производной или дифференциалу, называют первообразной.

Дифференцируемая функция называется первообразной для функции на заданном промежутке, если для всех х из этого промежутка справедливо равенство .

Из этого определения вытекает, что всякая функция по отношению к своей производной является первообразной.

Так, функция есть первообразная функции на интервале , поскольку для всех имеет место равенство .

Решение: Используя правило дифференцирования, можно догадаться, что на интервале первообразной является . Действительно, для всех .

Решение: Степень получается при дифференцировании . Так как , то, чтобы при дифференцировании получить перед коэффициент 1, нужно взять с коэффициентом 1/7. Следовательно, .

Дифференцирование функции – однозначная операция , т.е. если функция имеет производную, то только одну. Это утверждение непосредственно следует из определений предела и производной: если функция имеет предел, то только один. Обратная операция – отыскание первообразной – не однозначна.

Так, функции , где С – любое постоянное действительное число, являются первообразными функции , поскольку все эти функции имеют одну и ту же производную .

Теорема. Если является первообразной функции на некотором промежутке, то множество всех первообразных этой функции имеет вид , где С – любое действительное число.

Доказательство: Пусть . Тогда .

Покажем теперь, что все первообразные функции отличаются лишь постоянным слагаемым.

Пусть Ф(х) – другая первообразная функции на рассматриваемом промежутке, т.е. .

Тогда при всех х из рассматриваемого промежутка. Следовательно, , что и требовалось установить.

Таким образом, любые две первообразные данной функции отличаются друг от друга на постоянное слагаемое, а выражение исчерпывает множество всех первообразных заданной функции . Итак, задача нахождения первообразной неоднозначна. Она имеет бесконечное множество решений.

Геометрически выражение представляет собой семейство кривых, получаемых из любой из них параллельным переносом вдоль оси Оу.

Как уже было отмечено, первообразную можно находить не только по данной ее производной, но и по ее дифференциалу. В дальнейшее мы будем этим пользоваться.

Определение. Совокупность всех первообразных функции на рассматриваемом промежутке называется неопределенным интегралом и обозначается символом , где - подынтегральная функция, - подынтегральное выражение, х – переменная интегрирования.

Таким образом, если - какая-нибудь первообразная функции на некотором промежутке, то , где С – любое действительное число.

Так, пользуясь определением неопределенного интеграла, можно записать: .

Значит, чтобы найти неопределенный интеграл от заданной функции, нужно найти какую-нибудь одну из ее первообразных и прибавить к ней произвольную постоянную С.

Чтобы проверить, правильно ли найден неопределенный интеграл, необходимо продифференцировать полученную функцию, если при этом получается подынтегральное выражение, то интеграл найден верно.

Например, . Сделаем проверку: или . Следовательно, интеграл найден верно.

Основные свойства неопределенного интеграла

Из рассмотренных ранее примеров видно, что можно находить интегралы, подбирая первообразные. Однако это не всегда просто. При интегрировании помогает знание некоторых свойств интеграла, формул интегрирования, а также специальных приемов.

Рассмотрим сначала основные свойства неопределенного интеграла.

  1. Производная неопределенного интеграла равна подынтегральной функции, т.е.

Это свойство непосредственно вытекает из определения неопределенного интеграла, поскольку , а .

На этом свойстве основано доказательство следующих свойств.

  1. Постоянный множитель подынтегрального выражения можно вынести за знак интеграла, т.е.

где m – постоянная величина, не равная нулю.

Это свойство доказывается дифференцированием обеих частей приведенного равенства. При этом учитывается свойство 1: производная неопределенного интеграла равна подынтегральной функции.

Например, , где а – постоянная, не равная нулю.

  1. Интеграл от алгебраической суммы функций равен алгебраической сумме интегралов от этих функций, т.е.

Для доказательства найдем производные обеих частей равенства и покажем, что они равны между собой. Сначала найдем производную левой части:

мы воспользовались свойством 1 неопределенного интеграла.

Теперь найдем производную правой части равенства:

Здесь был использован тот факт, что производная алгебраической суммы функций равна алгебраической сумме этих функций, а также свойство 1 неопределенного интеграла.

Итак, производные обеих частей равенства равны между собой, что и доказывает свойство 3.

  1. Дифференциал неопределенного интеграла равен подынтегральному выражению, т.е.

Это свойство следует из определения неопределенного интеграла. Действительно, , а . Свойство 4 означает, что знак дифференциала аннулирует знак интеграла.

  1. Неопределенный интеграл от дифференциала (производной) некоторой функции равен сумме этой функции и произвольной постоянной С, т.е.

Действительно, . Возьмем интеграл от обеих частей равенства и получим . Но, по определению, , т.е. .

На основании этого свойства выводятся формулы интегрирования.

Из определения интеграла следует, что для того, чтобы проинтегрировать функцию, нужно найти ее первообразную. Для ряда функций это легко сделать, используя соответствующие формулу интегрирования.

Например, мы знаем, что ; отсюда следует, что .

Итак, формулы интегрирования получаются обращением соответствующих формул дифференцирования. Выпишем в таблицу основные интегралы.

Интегралы, приведенные в этой таблице, называются табличными интегралами.

Для вывода этих формул, как уже отмечалось, используется свойство 5 неопределенного интеграла, а именно дифференцирование правой части равенства. Производная правой части равенства дает подынтегральную функцию, а дифференциал – подынтегральное выражение.

Формула 1 справедлива при любом n, кроме n=-1, так как в этом случае знаменатель обращается в нуль и выражение теряет смысл. Для доказательства найдем производную правой части равенства:

Мы получили подынтегральную функцию; следовательно, формула верна.

Случаю n=-1 соответствует формула 2:

Чтобы найти , заметим, что функция непрерывна в промежутках и , причем в каждом из них она имеет первообразную.

В промежутке этой первообразной, очевидно, является функция , так как , т.е. при .

В промежутке первообразной по отношению к является , т.е. при . Действительно, существует при и .

Итак, оба промежутка непрерывности подынтегральной функции объединяются записью .

Справедливость всех остальных табличных интегралов легко проверить, если продифференцировать их правые части.

Отметим, что формула 3 является частным случаем формулы 4 при .

Вычисление интегралов способом приведения их к табличным с помощью преобразования подынтегрального выражения и применения свойств 2 и 3 неопределенного интеграла называется непосредственным интегрированием . При этом полезно запомнить, что (формула 1 при ).

Метод подстановки в неопределенный интеграл

Если заданный интеграл с помощью алгебраических преобразований трудно или невозможно свести к одному или нескольким табличным интегралам, то для его отыскания применяют особые способы, одним из которых является способ подстановки (замены переменной).

Заметим, что все способы интегрирования имеют целью свести данный интеграл к табличному с помощью тех или иных искусственных приемов.

Способ подстановки заключается в следующем: заменяют новой переменной такую часть подынтегральной функции, при дифференцировании которой получается оставшаяся часть подынтегрального выражения (не считая постоянного множителя, на который всегда можно умножить и разделить подынтегральное выражение).

Например, в интеграле удобно произвести замену , так как оставшаяся часть подынтегрального выражения равна . Тогда перепишем данный интеграл в виде . Полученный интеграл является табличным; он находится по формуле 1: .

Далее, производя обратную замену , получим ответ: .

Решение этого примера можно кратко оформить так:

Напомним, что если при интегрировании одной и той же функции разными способами получили различные результаты, то необходимо показать, что они отличаются на постоянную величину.

Так, рассмотренный выше пример можно решить иначе, если применить формулу .

Результат по виду отличается от найденного ранее; однако, преобразуя первый результат, имеем .

Отсюда видно, что разность функций равна , т.е. постоянному числу.

Естественно, возникает вопрос: как правильно выбрать подстановку? Это достигается практикой в интегрировании. Все же можно установить ряд общих правил и некоторых приемов для частных случаев интегрирования.

Читайте также: