Единство измерений и единообразие средств измерений конспект

Обновлено: 08.07.2024

С течением мировой истории человеку приходилось измерять различные вещи, взвешивать продукты, отсчитывать время. Для этой цели понадобилось создать целую систему различных измерений, необходимую для вычисления объема, веса, длины, времени и т. п. Данные подобных измерений помогают освоить количественную характеристику окружающего мира. Крайне важна роль подобных измерений при развитии цивилизации. Сегодня никакая отрасль народного хозяйства не могла бы правильно и продуктивно функционировать без применения своей системы измерений. Ведь именно с помощью этих измерений происходит формирование и управление различными технологическими процессами, а также контролирование качества выпускаемой продукции. Подобные измерения нужны для самых различных потребностей в процессе развития научно—технического прогресса: и для учета материальных ресурсов и планирования, и для нужд внутренней и внешней торговли, и для проверки качества выпускаемой продукции, и для повышения уровня защиты труда любого работающего человека. Несмотря на многообразие природных явлений и продуктов материального мира, для их измерения существует такая же многообразная система измерений, основанных на очень существенном моменте – сравнении полученной величины с другой, ей подобной, которая однажды была принята за единицу. При таком подходе физическая величина расценивается как некоторое число принятых для нее единиц, или, говоря иначе, таким образом получается ее значение. Существует наука, систематизирующая и изучающая подобные единицы измерения, – метрология. Как правило, под метрологией подразумевается наука об измерениях, о существующих средствах и методах, помогающих соблюсти принцип их единства, а также о способах достижения требуемой точности.

1) методы и средства для учета продукции по следующим показателям: длине, массе, объему, расходу и мощности;

2) измерения физических величин и технических параметров, а также свойств и состава веществ;

3) измерения для контроля и регулирования технологических процессов.

Выделяют несколько основных направлений метрологии:

1) общая теория измерений;

2) системы единиц физических величин;

3) методы и средства измерений;

4) методы определения точности измерений;

5) основы обеспечения единства измерений, а также основы единообразия средств измерения;

6) эталоны и образцовые средства измерений;

7) методы передачи размеров единиц от образцов средств измерения и от эталонов рабочим средствам измерения. Важным понятием в науке метрологии является единство измерений, под которым подразумевают такие измерения при которых итоговые данные получаются в узаконенных единицах, в то время как погрешности данных измерений получены с заданной вероятностью. Необходимость существования единства измерений вызвана возможностью сопоставления результатов различных измерений, которые были проведены в различных районах, в различные временные отрезки, а также с применением разнообразных методов и средств измерения.

Следует различать также объекты метрологии:

1) единицы измерения величин;

2) средства измерений;

3) методики, используемые для выполнения измерений и т. д.

Метрология включает в себя: во—первых, общие правила, нормы и требования, во—вторых, вопросы, нуждающиеся в государственном регламентировании и контроле. И здесь речь идет о:

1) физических величинах, их единицах, а также об их измерениях;

2) принципах и методах измерений и о средствах измерительной техники;

3) погрешностях средств измерений, методах и средствах обработки результатов измерений с целью исключения погрешностей;

4) обеспечении единства измерений, эталонах, образцах;

5) государственной метрологической службе;

6) методике поверочных схем;

7) рабочих средствах измерений.

В связи с этим задачами метрологии становятся: усовершенствование эталонов, разработка новых методов точных измерений, обеспечение единства и необходимой точности измерений.

2. Термины

Очень важным фактором правильного понимания дисциплины и науки метрология служат использующиеся в ней термины и понятия. Надо сказать, что, их правильная формулировка и толкование имеют первостепенное значение, так как восприятие каждого человека индивидуально и многие, даже общепринятые термины, понятия и определения он трактует по—своему, используя свой жизненный опыт и следуя своим инстинктам, своему жизненному кредо. А для метрологии очень важно толковать термины однозначно для всех, поскольку такой подход дает возможность оптимально и целиком понимать какое—либо жизненное явление. Для этого был создан специальный стандарт на терминологию, утвержденный на государственном уровне. Поскольку Россия на сегодняшний момент воспринимает себя частью мировой экономической системы, постоянно идет работа над унификацией терминов и понятий, создается международный стандарт. Это, безусловно, помогает облегчить процесс взаимовыгодного сотрудничества с высокоразвитыми зарубежными странами и партнерами. Итак, в метро логии используются следующие величины и их определения:

1) физическая величина, представляющая собой общее свойство в отношении качества большого количества физических объектов, но индивидуальное для каждого в смысле количественного выражения;

2) единица физической величины, что подразумевает под собой физическую величину, которой по условию присвоено числовое значение, равное единице;

3) измерение физических величин, под которым имеется в виду количественная и качественная оценка физического объекта с помощью средств измерения;

4) средство измерения, представляющее собой техническое средство, имеющее нормированные метрологические характеристики. К ним относятся измерительный прибор, мера, измерительная система, измерительный преобразователь, совокупность измерительных систем;

5) измерительный прибор представляет собой средство измерений, вырабатывающее информационный сигнал в такой форме, которая была бы понятна для непосредственного восприятия наблюдателем;

6) мера – также средство измерений, воспроизводящее физическую величину заданного размера. Например, если прибор аттестован как средство измерений, его шкала с оцифрованными отметками является мерой;

7) измерительная система, воспринимаемая как совокупность средств измерений, которые соединяются друг с другом посредством каналов передачи информации для выполнения одной или нескольких функций;

8) измерительный преобразователь – также средство измерений, которое производит информационный измерительный сигнал в форме, удобной для хранения, просмотра и трансляции по каналам связи, но не доступной для непосредственного восприятия;

9) принцип измерений как совокупность физических явлений, на которых базируются измерения;

10) метод измерений как совокупность приемов и принципов использования технических средств измерений;

11) методика измерений как совокупность методов и правил, разработанных метрологическими научно—исследовательскими организациями, утвержденных в законодательном порядке;

12) погрешность измерений, представляющую собой незначительное различие между истинными значениями физической величины и значениями, полученными в результате измерения;

13) основная единица измерения, понимаемая как единица измерения, имеющая эталон, который официально утвержден;

14) производная единица как единица измерения, связанная с основными единицами на основе математических моделей через энергетические соотношения, не имеющая эталона;

16) образцовое средство, под которым понимается средство измерений, предназначенное только для трансляции габаритов единиц рабочим средствам измерений;

18) точность измерений, трактуемая как числовое значение физической величины, обратное погрешности, определяет классификацию образцовых средств измерений. По показателю точности измерений средства измерения можно разделить на: наивысшие, высокие, средние, низкие.

3. Классификация измерений

Классификация средств измерений может проводиться по следующим критериям.

1. По характеристике точности измерения делятся на равноточные и неравноточные.

Равноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерений (СИ), обладающих одинаковой точностью, в идентичных исходных условиях.

Неравноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерения, обладающих разной точностью, и (или) в различных исходных условиях.

2. По количеству измерений измерения делятся на однократные и многократные.

Однократное измерение – это измерение одной величины, сделанное один раз. Однократные измерения на практике имеют большую погрешность, в связи с этим рекомендуется для уменьшения погрешности выполнять минимум три раза измерения такого типа, а в качестве результата брать их среднее арифметическое.

Многократные измерения – это измерение одной или нескольких величин, выполненное четыре и более раз. Многократное измерение представляет собой ряд однократных измерений. Минимальное число измерений, при котором измерение может считаться многократным, – четыре. Результатом многократного измерения является среднее арифметическое результатов всех проведенных измерений. При многократных измерениях снижается погрешность.

3. По типу изменения величины измерения делятся на статические и динамические.

Статические измерения – это измерения постоянной, неизменной физической величины. Примером такой постоянной во времени физической величины может послужить длина земельного участка.

Динамические измерения – это измерения изменяющейся, непостоянной физической величины.

4. По предназначению измерения делятся на технические и метрологические.

Технические измерения – это измерения, выполняемые техническими средствами измерений.

Метрологические измерения – это измерения, выполняемые с использованием эталонов.

5. По способу представления результата измерения делятся на абсолютные и относительные.

Абсолютные измерения – это измерения, которые выполняются посредством прямого, непосредственного измерения основной величины и (или) применения физической константы.

Относительные измерения – это измерения, при которых вычисляется отношение однородных величин, причем числитель является сравниваемой величиной, а знаменатель – базой сравнения (единицей). Результат измерения будет зависеть от того, какая величина принимается за базу сравнения.

6. По методам получения результатов измерения делятся на прямые, косвенные, совокупные и совместные.

Прямые измерения – это измерения, выполняемые при помощи мер, т. е. измеряемая величина сопоставляется непосредственно с ее мерой. Примером прямых измерений является измерение величины угла (мера – транспортир).

Косвенные измерения – это измерения, при которых значение измеряемой величины вычисляется при помощи значений, полученных посредством прямых измерений, и некоторой известной зависимости между данными значениями и измеряемой величиной.

Совокупные измерения – это измерения, результатом которых является решение некоторой системы уравнений, которая составлена из уравнений, полученных вследствие измерения возможных сочетаний измеряемых величин.

Совместные измерения – это измерения, в ходе которых измеряется минимум две неоднородные физические величины с целью установления существующей между ними зависимости.

4. Единицы измерения

В 1960 г. на XI Генеральной конференции по мерам и весам была утверждена Международная система единиц (СИ).

В основе Международной системы единиц лежат семь единиц, охватывающих следующие области науки: механику, электричество, теплоту, оптику, молекулярную физику, термодинамику и химию:

1) единица длины (механика) – метр;

2) единица массы (механика) – килограмм;

3) единица времени (механика) – секунда;

4) единица силы электрического тока (электричество) – ампер;

5) единица термодинамической температуры (теплота) – кельвин;

6) единица силы света (оптика) – кандела;

7) единица количества вещества (молекулярная физика, термодинамика и химия) – моль.

В Международной системе единиц есть дополнительные единицы:

1) единица измерения плоского угла – радиан;

2) единица измерения телесного угла – стерадиан. Таким образом, посредством принятия Международной системы единиц были упорядочены и приведены к одному виду единицы измерения физических величин во всех областях науки и техники, так как все остальные единицы выражаются через семь основных и две дополнительных единицы СИ. Например, количество электричества выражается через секунды и амперы.

5. Основные характеристики измерений

Выделяют следующие основные характеристики измерений:

1) метод, которым проводятся измерения;

2) принцип измерений;

3) погрешность измерений;

4) точность измерений;

5) правильность измерений;

6) достоверность измерений.

Метод измерений – это способ или комплекс способов, посредством которых производится измерение данной величины, т. е. сравнение измеряемой величины с ее мерой согласно принятому принципу измерения.

Существует несколько критериев классификации методов измерений.

1. По способам получения искомого значения измеряемой величины выделяют:

1) прямой метод (осуществляется при помощи прямых, непосредственных измерений);

2) косвенный метод.

2. По приемам измерения выделяют:

1) контактный метод измерения;

2) бесконтактный метод измерения. Контактный метод измерения основан на непосредственном контакте какой—либо части измерительного прибора с измеряемым объектом.

При бесконтактном методе измерения измерительный прибор не контактирует непосредственно с измеряемым объектом.

3. По приемам сравнения величины с ее мерой выделяют:

1) метод непосредственной оценки;

2) метод сравнения с ее единицей.

Метод непосредственной оценки основан на применении измерительного прибора, показывающего значение измеряемой величины.

Метод сравнения с мерой основан на сравнении объекта измерения с его мерой.

Принцип измерений – это некое физическое явление или их комплекс, на которых базируется измерение. Например, измерение температуры основано на явлении расширения жидкости при ее нагревании (ртуть в термометре).

Погрешность измерения – это разность между результатом измерения величины и настоящим (действительным) значением этой величины. Погрешность, как правило, возникает из—за недостаточной точности средств и методов измерения или из—за невозможности обеспечить идентичные условия при многократных наблюдениях.

Точность измерений – это характеристика, выражающая степень соответствия результатов измерения настоящему значению измеряемой величины.

Количественно точность измерений равна величине относительной погрешности в минус первой степени, взятой по модулю.

Правильность измерения – это качественная характеристика измерения, которая определяется тем, насколько близка к нулю величина постоянной или фиксировано изменяющейся при многократных измерениях погрешности (систематическая погрешность). Данная характеристика зависит, как правило, от точности средств измерений.

Основная характеристика измерений – это достоверность измерений.

Достоверность измерений – это характеристика, определяющая степень доверия к полученным результатам измерений. По данной характеристике измерения делятся на достоверные и недостоверные. Достоверность измерений зависит того, известна ли вероятность отклонения результатов измерения от настоящего значения измеряемой величины. Если же достоверность измерений не определена, то результаты таких измерений, как правило, не используются. Достоверность измерений ограничена сверху погрешностью измерений.

Эталоны единиц физических величин. Для обеспечения единства измерений необходима тождественность единиц, в которых проградуированы все средства измерений. Тождественность обеспечивается путем точного воспроизведения и хранения установленных единиц физических величин и передачи их размеров применяемым средствам измерений. Воспроизведение, хранение и передача размеров единиц физических величин осуществляется с помощью эталонов и рабочих эталонов. Высшим звеном в цепи передачи размеров единиц физических величин являются эталоны.

Эталон единицы физической величины - это средство измерений (или комплекс средств измерений), предназначенное для воспроизведения и (или) хранения единицы и передачи её размера нижестоящим по поверочной схеме средствам измерений, утвержденное в качестве эталона в установленном порядке.

Основное назначение эталонов - обеспечение материально-технической базы воспроизведения и хранения единиц физических величин.

Основные единицы физических величин СИ воспроизводятся централизованно с помощью государственных эталонов. Государственные эталоны хранятся в метрологических институтах ФА ≪Ростехрегулирование≫. По разрешению ФА ≪Ростехрегулирование≫ допускается их хранение и применение в органах ведомственных метрологических служб. Кроме национальных эталонов единиц ФВ существуют международные эталоны, хранимые в Международном бюро мер и весов. Под эгидой Международного бюро мер и весов проводится систематическое международное сличение национальных эталонов крупнейших метрологических лабораторий с международными эталонами и между собой.

Например, эталон метра и килограмма сличают раз в 25 лет, эталоны электрического напряжения, сопротивления и световые - раз в 3 года.

Большинство эталонов представляет собой сложные и весьма дорогостоящие физические установки, которые должны обслуживаться и использоваться учеными высочайшей квалификации, обеспечивающими их эксплуатацию, совершенствование и хранение.

Рабочий эталон это эталон, предназначенный для передачи размера единицы рабочим средствам измерения.

Требования к эталонам:

- неизменность - способность удерживать неизменный размер в течение длительного интервала времени;

- воспроизводимость – воспроизведение с наименьшей погрешностью для данного уровня развития измерительной техники;

- сличаемость - способность не претерпевать изменений и не вносить каких-либо искажений при проведении сличений.

Субъекты метрологии рф

Органы по метрологии. Государственная политика и нормативно-правовое регулирование в сфере обеспечения единства измерений осуществляется федеральным органом по техническому регулированию - Минпромэнерго России. Указанный федеральный орган принимает в области метрологии, следующие нормативные правовые акты:

- правила создания, утверждения, хранения и применения эталонов единиц величин;

- метрологические правила и нормы;

- порядок разработки и аттестации методик выполнения измерений;

- порядок представления средств измерений на поверку и испытания, а также установления интервалов между поверками;

- порядок аккредитации на право выполнения калибровочных работ и выдачи сертификата о калибровке;

- порядок проведения государственного метрологического контроля.

- руководство деятельностью Государственной метрологической службы и государственных справочных метрологических служб;

- определение общих метрологических требований к средствам, методам и результатам измерений;

- ведение государственного реестра утвержденных типов средств измерений;

- государственный метрологический надзор.

Функция государственного метрологического надзора выполняется ФА ≪Ростехрегулирование≫ непосредственно и через семь межрегиональных территориальных управлений. Функции государственного метрологического контроля продолжают выполнять ≪на местах≫ федеральные государственные учреждения - центры стандартизации, метрологии и сертификации (ФГУ ЦСМ). В России функционирует более 90 ЦСМ.

Службы по метрологии. Обеспечение единства измерений в стране осуществляется следующими субъектами метрологии:

- Государственной метрологической службой (ГМС);

- справочными метрологическими службами (СМС);

- метрологическими службами федеральных органов исполнительной власти;

- метрологическими службами организаций (МСО).

- подразделения центрального аппарата ФА ≪Ростехрегулирование≫, осуществляющие функции планирования, управления и контроля деятельности по обеспечению единства измерений (ОЕИ) на межотраслевом уровне;

- государственные научные метрологические центры;

- органы ГМС в субъектах РФ (на территориях республик в составе РФ, автономной области, автономных округов, краев, областей, округов и городов) - ЦСМ.

Государственные научные метрологические центры представлены институтами:

- ВНИИ метрологической службы (ВНИИМС, г. Москва);

- ВНИИ метрологии им. Д.И. Менделеева (ВНИИМ, г. Санкт-Петербург);

- НПО ≪ВНИИ физико-технических и радиотехнических измерений≫ (ВНИИФТРИ, пос. Менделеево Московской обл.);

- Уральский НИИ метрологии (УНИИМ, г. Екатеринбург) и др.

Указанные научные центры не только занимаются разработкой научно- методических основ совершенствования российской системы измерений, но и являются держателями государственных эталонов.

В России функционирует более 90 ЦСМ (соответственно их метрологических подразделений), которые выполняют функции региональных органов ГМС на территориях субъектов РФ, городов Москвы и Санкт-Петербурга.

ФА ≪Ростехрегулирование≫ осуществляет методическое руководство тремя государственными справочными службами:

- Государственной службой времени, частоты и определения параметров вращения Земли (ГСВЧ);

- Государственной службой стандартных образцов состава и свойств веществ и материалов (ГССО);

- Государственной службой стандартных справочных данных о физических константах и свойствах веществ и материалов (ГСССД).

Метрологические службы федеральных органов исполнительной власти и юридических лиц могут создаваться в министерствах (ведомствах), организациях, на предприятиях и в учреждениях, являющихся юридическими лицами, для выполнения работ по обеспечению единства и требуемой точности измерений, осуществления метрологического контроля и надзора.

Если на достаточно крупных предприятиях (в законодательно утвержденных сферах) организуются полноценные МС, то на небольших предприятиях рекомендуется назначать лиц, ответственных за обеспечение единства измерений. Для ответственных лиц утверждается должностная инструкция, в которой устанавливаются их функции, права, обязанности и ответственность.

Основные задачи метрологических служб:

- калибровка средств измерений;

- надзор за состоянием и применением средств измерений, за аттестованными методиками выполнения измерений, эталонами единиц величин, применяемыми для калибровки средств измерений, за соблюдением метрологических правил и норм, нормативных документов по обеспечению единства измерений;

- выдача обязательных предписаний, направленных на предотвращение, прекращение или устранение нарушений метрологических правил и норм;

- проверка своевременности представления средств измерений на испытания в целях утверждения типа средств измерений, а также на поверку и калибровку;

- анализ состояния измерений, испытания и контроля на предприятии, в организации.

Метрологические службы предприятий должны уделять особое внимание состоянию измерений, соблюдению метрологических правил и норм в сферах деятельности предприятия, предусмотренных ФЗ ≪Об обеспечении единства измерений≫ (ст. 13): при испытаниях и контроле качества продукции в целях определения соответствия обязательным требованиям государственных стандартов, при выполнении предприятием работ по обязательной сертификации продукции и услуг и др.

ГМС России в своей деятельности учитывает документы международных региональных организаций по метрологии.

Необходимо, чтобы измерения, где бы они не выполнялись, обеспечивали получение согласуемых между собой результатов, т. е. чтобы результаты измерений одинаковых величин, полученные в разных местах и с помощью различных измерительных средств, были бы сопоставимы на уро­вне требуемой точности. Для этого необходимо обеспечить еди­нство измерений и единообразие средств измерений.

Единство измерений – это состояние измерений, характеризующееся тем, что их результаты выражаются в узаконенных единицах, размеры которых в установленных пределах равны размерам единиц, воспроизводимых первичными эталонами, а погрешности результатов измерений известны и с заданной вероятностью не выходят за установленные пределы [6].

Прежде всего, для сопоставления результатов измерений требуется выразить их в одинаковых единицах. Это осуществляется в насто­ящее время на базе широкого внедрения единой Международной системы единиц (СИ). Эта система, будучи универсальной, обеспечивает единообразие применяемых единиц для всех областей науки и техники.

При измерении какой-либо величины необходимо, чтобы её единица была воспроизведена в овеществленном виде. Для единства измерений требуется высо­кая точность воспроизведения единиц, которая может быть достигнута лишь с помощью эталонов – мер наивысшей точно­сти.

Эталон единицы физической величины–средство измерений (или комп-лекс средств измерений), предназначенное для воспроизведения и (или) хранения единицы и передачи ее размера нижестоящим по поверочной схеме средст-вам измерений и утвержденное в качестве эталона в установленном порядке.

Эталоны делят на первичные, вторичные и специальные.

Первичный эталон–эталон, обеспечивающий воспроизведение единицы с наивысшей в стране (по сравнению с другими эталонами той же единицы) точностью.

Первичный эталон, признанный решением уполномоченного на то государственного органа в качестве исходного на территории государства, называется государственным первичным эталоном.

Примерами государственных первичных эталонов являются эталоны метра, килограмма, секунды, ампера, кельвина, канделы, ньютона, паскаля, вольта, беккереля [2].

Кроме государственных эталонов существуют национальные и международные эталоны.

Национальный эталон– эталон, признанный официальным решением служить в качестве исходного для страны.

Термины государственный эталон и национальный эталон отражают одно и то же понятие.

Термин национальный эталон применяют в случаях проведения сличения эталонов, принадлежащих отдельным государствам, с международным эталоном или при проведении так называемых круговых сличений эталонов ряда стран.

Международный эталон –эталон, принятый по международному соглашению в качестве международной основы для согласования с ним размеров единиц, воспроизводимых и хранимых национальными эталонами [2].

Примером международного эталона может служить международный прототип килограмма, хранимый в МБМВ, утвержден 1-й Генеральной конференцией по мерам и весам.

Вторичный эталон– эталон, получающий размер единицы непосредственно от первичного эталона данной единицы.

Специальный эталон обеспечивает воспроизведение единицы в особых условиях и заменяет для этих условий первичный эталон.

Для поддержания единства измерений, проводимых в раз­ных местах и в разное время, необходимо обеспечить переда­чу размера единиц от эталонов рабочим средствам измерений с наименьшей потерей точности. Эта передача осуществляется поверкой рабочих средств измерений с помощью образцовых средств измерений.

Поверка средств измерений– установление органом государственной метрологической службы (или другим официально уполномоченным органом, организацией) пригодности средства измерений к применению на основании экспериментально определяемых метрологических характеристик и подтверждения их соответствия установленным обязательным требованиям.

Поверка средств измерений может осуществляться с помощью как рабочих эталонов (образцовых средств измерений), так и стандартных образцов [6].

Рабочий эталон–эталон, предназначенный для передачи размера единицы рабочим средствам измерений.

Стандартный образец – это образец вещества (материала) с установленными в результате метрологической аттестации значениями одной или более величин, характеризующими свойство или состав этого вещества (материала).

Различают стандартные образцы (СО) свойства и стандартные образцы состава.

Например, стандартный образец свойства: СО относительной диэлектрической проницаемости, СО высокочистой бензойной кислоты. Примером стандартного образца состава является СО состава углеродистой стали.

Для обеспечения единства измерений необходимо обеспечить единство способов выражения показателей точности измерений и формы представления результатов измерений, обеспечивавших возмож­ность их сравнительной оценки и совместного использования.

Об Энциклопедии измерений

В современном мире электронная техника развивается семимильными шагами. Каждый день появляется что-то новое, и это не только небольшие улучшения уже существующих моделей, но и результаты применения инновационных технологий, позволяющих в разы улучшить характеристики.

Не отстает от электронной техники и приборостроительная отрасль – ведь чтобы разработать и выпустить на рынок новые устройства, их необходимо тщательно протестировать, как на этапе проектирования и разработки, так и на этапе производства. Появляются новая измерительная техника и новые методы измерения, а, следовательно – новые термины и понятия.

Для тех, кто часто сталкивается с непонятными сокращениями, аббревиатурами и терминами и хотел бы глубже понимать их значения, и предназначена эта рубрика.

Единство измерений — состояние измерений, при котором их результаты выражены в узаконенных единицах, а погрешности известны с заданной вероят­ностью и не выходят за установленные пределы.

Первым условием обеспечения единства измерений является представление результатов измерений в узаконенных единицах, которые были бы одними и теми же всюду, где проводятся измерения и используются их результаты. Так, в различных странах, где принята Международная система единиц, результаты из­мерений температуры среды (тел) выражаются в Кельвинах, градусах Цельсия, Фаренгейта, Реомюра, Ренкина.

О значимости единства измерений

Если в разных странах говорят на различ­ных языках, то это приводит, в основном, к затруднениям в общении людей. Но если в разных странах применяются различные толкования единиц физических величин, то это часто приводит к непреодолимым затруднениям в экономичес­ком сотрудничестве. Можно привести много примеров, в том числе и из недавне­го прошлого. Например, в начале Второй мировой войны во время военных дей­ствий между США и Японией произошли следующие события. Американские самолеты морским путем доставлялись в разобранном виде в Австралию, где происходила их сборка. Присоединительные детали (болты, гайки и др.) изготов­лялись на австралийских предприятиях. И неожиданно в процессе полетов (в ос­новном над океаническими просторами) американские самолеты горели, взрыва­лись при отсутствии какого-либо военного противодействия. Анализ катастроф привел к неожиданному результату: американский и австралийский дюймы и соответствующие измерительные приборы имели различие в долях миллиметра. Этого было достаточно, чтобы в бензопроводах происходили утечки горючего с очевидными последствиями.

В астрономии применяются: астрономическая единица длины (а. е) — среднее расстояние от Земли до Солнца (1 а. е. = 1,496* 10 11 м = 149,6 млн. км); световой год — расстояние, которое свет проходит за один год (1 св. год — 9,4605 *10 15 м); парсек — расстояние, с которого полудиаметр земной орбиты виден под углом в одну угловую минуту (1 пк — 3,086 *10 16 м).

Таким образом, несмотря на принятую всеми Международную систему еди­ниц как обязательную или рекомендуемую, существует большое количество внесистемных единиц физических величин.

Наличие несоответствий, одобренных международными соглашениями, объяс­няется прежде всего огромными затратами, которые необходимо вложить в изме­нение технологии изготовления средств измерений (указателей), а также соответ­ствующей, обычно весьма многочисленной, документации. Но иногда нельзя не учитывать и привычность использования некоторыми организациями той или иной страны укоренившихся столетиями единиц измерений величин. Например, еще в XIX в. в России температуру измеряли в градусах по Реомюру и только в 1917 г. перешли к измерению в градусах Цельсия, а в США, Великобритании, Канаде до сих пор применяются термометры со шкалой в градусах Фаренгейта. У Джека Лондона в одном из рассказов говорится о суровых морозах, достигав­ших 5 градусов. Но 5 градусов мороза по Фаренгейту соответствуют примерно минус 15 градусам по Цельсию.

За рубежом до сих пор применяются (постепенно выходящие из общего употребления) различные единицы измерений.

Основными единицами британской имперской системы являются: фут — единица длины, фунт — единица массы, секунда — единица времени. В качестве единицы температуры применяют градус Фаренгейта (часто одновременно со шкалой в градусах Фаренгейта дается шкала в градусах Цельсия), все чаще приме­няется шкала в градусах Цельсия. Иногда температура измеряется в градусах Ренкина. Британская тепловая единица (Btu) — единица количества теплоты приме­няется для оценки тепловой энергии в фазовых превращениях, химических реак­циях, процессах сгорания топлива и др. Определяется как количество теплоты, необходимое для нагревания одного фунта воды от 32 до 33° по шкале Фаренгейта. При этом 1 Btu = 1055,06 джоуля.

Кроме того, для измерения объема (вместимости) нефти в США применя­ется в качестве единицы баррель: 1 баррель = 158,988*10 -3 м 3 . Для удобства перевода указанных единиц в привычные нам единицы объема напомним, что 1 литр = 1*10 -3 м 3 .

К одной из основных единиц длины, применявшихся ранее в Великобрита­нии и США, относится ярд (yd), узаконенный в 1101 г. английским королем Генрихом I. С 1907 г. в Великобритании было установлено: 1 yd = 0,914399204 м. Американский 1 yd = 0,914402 м. В настоящее время в англоязычных странах установлена единица 1 yd = 0,9144 м (точно).

Читайте также: