Значение работ менделя для развития генетики кратко

Обновлено: 05.07.2024

Первые идеи древнегреческих ученых о механизме наследственности. Знакомство с фундаментальной работой Г. Менделя, посвященной наследованию признаков у растений. Доминантные и рецессивные признаки в законе единообразия. Применение теории вероятностей.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 16.01.2011
Размер файла 22,8 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2.Законы Менделя. Доминантные и рецессивные признаки

3.Интерпретация результатов с помощью теории вероятностей

Введение

Генетика - область биологии, изучающая наследственность и изменчивость. Человек всегда стремился управлять живой природой: структурно-функциональной организацией живых существ, их индивидуальным развитием, адаптацией к окружающей среде, регуляцией численности и т. д. Генетика ближе всего подошла к решению этих задач, вскрыв многие закономерности наследственности и изменчивости живых организмов и поставив их на службу человеческому обществу. Этим объясняется ключевое положение генетики среди других биологических дисциплин.

Человеком давно отмечены три явления, относящиеся к наследственности: во-первых, сходство признаков потомков и родителей; во-вторых, отличия некоторых (иногда многих) признаков потомков от соответствующих родительских признаков; в-третьих, возникновение в потомстве признаков, которые были лишь у далеких предков. Преемственность признаков между поколениями обеспечивается процессом оплодотворения. С незапамятных времен человек стихийно использовал свойства наследственности в практических целях - для выведения сортов культурных растений и пород домашних животных.

Первые идеи о механизме наследственности высказали еще древнегреческие ученые Демокрит, Гиппократ, Платон, Аристотель. Автор первой научной теории эволюции Ж.-Б. Ламарк воспользовался идеями древнегреческих ученых для объяснения постулированного им на рубеже XVIII-XIX вв. принципа передачи приобретенных в течение жизни индивидуума новых признаков потомству. Ч. Дарвин выдвинул теорию пангенезиса, объяснявшую наследование приобретенных признаков. Законы наследственности, открытые Г. Менделем, заложили основы становления генетики как самостоятельной науки

1.Работы Менделя

Естественное желание ученого при исследовании какого-либо явления - обнаружить закономерность. Мендель решил пронаблюдать интересующее его явление - наследственность - у гороха.

Надо сказать, что горох был выбран Менделем не случайно. Вид Pisum sativum L. очень удобен для изучения наследственности. Во-первых, его легко выращивать и весь жизненный цикл проходит быстро. Во-вторых, он склонен к самоопылению, а без самоопыления опыты Менделя были бы невозможны.

В качестве анализируемого признака, на который нужно обращать внимание при наблюдениях чтобы выявить закономерность, Мендель выбрал окраску семян. У гороха они могут быть могут быть либо зеленые, либо желтые. Такие проявления признака хорошо различимы и четко делят все семена на две группы.

Мендель вырастил две линии гороха, в одной из которых появлялись только зеленые семена, а в другой - только желтые. Причем на протяжении многих поколений в этих линиях картина наследования не изменялась. В таких случаях (когда в ряде поколений отсутствует изменчивость) говорят, что использована чистая линия.

2.Законы Менделя. Доминантные и рецессивные признаки

Доминантные и рецессивные признаки

У гибридов первого поколения, появившихся в результате скрещивания растений с желтыми и зелеными семенами, все семена имели желтую окраску. Противоположный признак (зеленые семена) как бы исчез. В этом проявляется установленное Менделем правило единообразия гибридов первого поколения (закон единообразия). Явление преобладания признака получило название доминирования, а преобладающий признак назван доминантным. Противоположный, внешне исчезающий признак (зеленая окраска), называют рецессивным.

В потомстве от первого поколения гибридов наблюдается расщепление: появляются растения с признаками обоих родителей. Желтых семян оказывается примерно в 3 раза больше, чем зеленых. Были получены следующие количественные соотношения: желтых - 6022, зеленых - 2001. Таким образом соотношение семян гороха с доминантными и рецессивными признаками близко к отношению 3:1.

Это соотношение носит название закона расщепления, или второго закона Менделя: «Гибриды певого поколения при дальнейшем размножении расщепляются; в их потомстве снова появляются особи с рецессивными признаками, составляющими примерно четвертую часть от всего числа потомков «

3. Интерпретация результатов с помощью теории вероятностей

На качественном уровне получается, что потомки действительно бывают какие угодно и никакой закономерности нет. А на количественном? И о чем в данном случае может вообще говорить количественная оценка результатов опыта?

К счастью для науки, Грегор Мендель был не просто любознательным чешским монахом. В юности его очень интересовала физика, он получил хорошее физическое образование. Мендель изучал также и математику, в том числе и начала теории вероятностей, разработанной Блезом Паскалем в середине XVII в.

Как же интерпретировал свои результаты Мендель? Он вполне логично предположил, что существует некая реальная субстанция (он назвал ее наследственным фактором), определяющая цвет семян. Допустим, наличие наследственного фактора А определяет желтый цвет семян, а наличие наследственного фактора а - зеленый. Тогда, естественно, растения с желтыми семенами содержат и передают по наследству фактор А, а с зелеными - фактор а. Но почему же тогда среди потомков растений с желтыми семенами встречаются растения с зелеными?

Мендель предположил, что каждое растение несет по паре наследственных факторов, отвечающих за данный признак. Причем при наличии фактора А фактор а уже не проявляется (желтая окраска доминирует над зеленой).

Мендель предположил, что при размножении наследственные факторы материнского и отцовского организмов комбинируются между собой как попало, но таким образом, что в дочерний организм попадает один фактор от отца, а другой от матери. Почему же именно на этом предположении Мендель построил свою теорию?

Здесь на помощь приходит теория вероятностей. Если наследственные факторы комбинируются между собой как попало, т.е. независимо, то одинакова ли вероятность попадания в дочерний организм каждого фактора от матери или от отца?

Соответственно, по теореме умножения, вероятность формирования в дочернем организме конкретной комбинации факторов равна: 1/2 х1/2 = 1/4.

Очевидно, возможны комбинации АА, Аа, аА, аа. С какой же частотой они проявляются? Это зависит от того, в каком соотношении факторы А и а представлены у родителей. Рассмотрим с этих позиций ход опыта.

Сначала Мендель взял две линии гороха. В одной из них зеленые семена не появлялись ни при каких обстоятельствах. Значит фактор а в ней отсутствовал, и все растения несли комбинацию АА (в случаях, когда организм несет два одинаковых аллеля, он называется гомозиготным). Точно так же все растения второй линии несли комбинацию аа.

Что же происходит при скрещивании? От одного из родителей с вероятностью 1 приходит фактор А, а от другого с вероятностью 1 - фактор а. Далее они с вероятностью 1х1=1 дают комбинацию Аа (организм, несущий разные аллели одного гена, называется гетерозиготным). Это отлично объясняет закон единообразия гибридов первого поколения. Все они имеют желтые семена.

При самоопылении от каждого из родителей первого поколения с вероятностью 1/2 (предположительно) приходит либо фактор А, либо фактор а. Это означает, что все комбинации будут равновероятны. Какова же должна быть в данном случае доля потомков с зелеными семенами? Очевидно, одна четверть. Но это и есть результат опыта Менделя: расщепление по фенотипу 3:1. Следовательно, предположение о равновероятных исходах при самоопылении было верным.

наследственность мендель растение доминантный

Во времена Менделя еще не знали никаких генов и хромосом. Даже идея о клеточном строении всего живого не была еще общепризнанной. Мендель в принципе не мог знать биологической природы наследования. Поэтому основной характеристикой его исследований стал точный количественный учет полученных результатов.

Во времена Менделя еще не знали никаких генов и хромосом. Данные, накопленные в процессе многочисленных исследований явлений наследственности и изменчивости, на сегодняшний день являются неопровержимыми доказательствами приложимости математических законов к большинству генетических закономерностей.

Список литературы

1.Алиханян С.И., Акифьев А.П., Чернин Л.С. Общая генетика: Учеб. - М.: Высш. шк., 1995.

2.Биологический энциклопедический словарь - М.: Советская энциклопедия, 1989

3.Гайсинович А.Е. Зарождение и развитие генетики. - М.: Высш. шк., 1988.

4. Медицинская генетика: Учебник под. ред. Н.П.Бочкова. - М.: Мастерство, 2002

5. Рузавин Г.И. Концепции современного естествознания: Курс лекций. - М.: Проект, 2002

Подобные документы

Истоки генетики. Первые идеи о механизме наследственности. Естественный отбор. Изучение теории пангенезиса Ч. Дарвина. Законы единообразия гибридов первого поколения и независимого комбинирования признаков. Значение работ Менделя для развития генетики.

реферат [34,7 K], добавлен 26.11.2014

Законы наследования признаков. Фундаментальные свойства живых организмов. Наследственность и изменчивость. Классический пример моногибридного скрещивания. Доминантные и рецессивные признаки. Опыты Менделя и Моргана. Хромосомная теория наследственности.

презентация [2,9 M], добавлен 20.03.2012

Генетика и эволюция, классические законы Г. Менделя. Закон единообразия гибридов первого поколения. Закон расщепления. Закон независимого комбинирования (наследования) признаков. Признание открытий Менделя, значение работ Менделя для развития генетики.

реферат [22,1 K], добавлен 29.03.2003

Классические законы Менделя. Первый, второй, третий закон. Условия существования законов. Признание законов. Значение работы Менделя для развития генетики. Опыты Менделя послужили основой для развития современной генетики – науки.

реферат [21,3 K], добавлен 17.12.2004

Основные законы наследственности. Основные закономерности наследования признаков по Г. Менделю. Законы единообразия гибридов первого поколения, расщепления на фенотипические классы гибридов второго поколения и независимого комбинирования генов.

курсовая работа [227,9 K], добавлен 25.02.2015

Характеристика клетки - элементарной генетической и структурно-функциональной единицы многоклеточных организмов. Особенности первого закона Менделя - закона единообразия гибридов первого поколения. Основы генетики пола. Типы онтогенеза: прямой и непрямой.

контрольная работа [69,6 K], добавлен 08.02.2011

Ген как последовательность ДНК, несущая информацию об определенном белке. Идентификация генов по кластеру (группе) мутаций. Элементарный фактор наследственности: доминантные и рецессивные признаки. Независимость генов, роль хромосом в наследственности.

Генетика – область биологии, изучающая наследственность и изменчивость. Человек всегда стремился управлять живой природой: структурно-функциональной организацией живых существ, их индивидуальным развитием, адаптацией к окружающей среде, регуляцией численности и т. д. Генетика ближе всего подошла к решению этих задач, вскрыв многие закономерности наследственности и изменчивости живых организмов и поставив их на службу человеческому обществу. Этим объясняется ключевое положение генетики среди других биологических дисциплин.

Человеком давно отмечены три явления, относящиеся к наследственности: во-первых, сходство признаков потомков и родителей; во-вторых, отличия некоторых (иногда многих) признаков потомков от соответствующих родительских признаков; в-третьих, возникновение в потомстве признаков, которые были лишь у далеких предков. Преемственность признаков между поколениями обеспечивается процессом оплодотворения. С незапамятных времен человек стихийно использовал свойства наследственности в практических целях – для выведения сортов культурных растений и пород домашних животных.

Первые идеи о механизме наследственности высказали еще древнегреческие ученые Демокрит, Гиппократ, Платон, Аристотель. Автор первой научной теории эволюции Ж.-Б. Ламарк воспользовался идеями древнегреческих ученых для объяснения постулированного им на рубеже XVIII-XIX вв. принципа передачи приобретенных в течение жизни индивидуума новых признаков потомству. Ч. Дарвин выдвинул теорию пангенезиса, объяснявшую наследование приобретенных признаков. Законы наследственности, открытые Г. Менделем, заложили основы становления генетики как самостоятельной науки.

КАК ВСЁ НАЧИНАЛОСЬ

В начале ХIХ века, в 1822 году, в Австрийской Моравии, в деревушке Ханцендорф, в крестьянской семье родился мальчик. Он был вторым ребёнком в семье. При рождении его назвали Иоганном, фамилия отца бала Мендель.

Жилось нелегко, ребенка не баловали. С детства Иоганн привык к крестьянскому труду и полюбил его, в особенности садоводство и пчеловодство. Как пригодились ему навыки, приобретённые в детстве.

Выдающиеся способности обнаружились у мальчика рано. Менделю было 11 лет, когда его перевели из деревенской школы в четырехклассное училище ближайшего городка. Он и там сразу проявил себя и уже через год оказался в гимназии, в городе Опаве.

Платить за учебу и содержать сына родителям было трудно. А тут ещё обрушилось на семью несчастье: отец тяжело пострадал – ему на грудь упало бревно. В 1840 Иоганн окончил гимназию и параллельно – школу кандидатов в учителя.

Несмотря на трудности, Мендель продолжает учебу. Теперь уже в философских классах в городе Оломеуц. Тут учат не только философии, но и математике, физике – предметам, без которых Мендель, биолог в душе, не мыслил дальнейшей жизни. Биология и математика! В наши дни это сочетание неразрывно, но в 19 веке казалось нелепым. Именно Мендель был первым, кто продолжил в биологии широкую колею для математических методов.

Он продолжает учиться, но жизнь тяжела, и вот настают дни, когда по собственному признанию Менделя, “дальше переносить подобное напряжение не под силу”. И тогда в его жизни наступает переломный момент: Мендель становится монахом. Он отнюдь не скрывает причин, толкнувших его на этот шаг. В автобиографии пишет: “Оказался вынужденным занять положение, освобождающее от забот о пропитании”. Не правда ли, откровенно? И при этом ни слова о религии, боге. Неодолимая тяга к науке, стремление к знаниям, а вовсе не приверженность к религиозной доктрине привели Менделя в монастырь. Ему исполнился 21 год. Постригавшиеся в монахи в знак отрешения от мира принимали новое имя. Иоганн стал Грегором.

Был период, когда его сделали священником. Совсем недолгий период. Утешать страждущих, снаряжать в последний путь умирающих. Не очень – то это нравилось Менделю. И он делает все, чтобы освободиться от неприятных обязанностей.

Иное дело учительство. Мендель преподавал в городской школе, не имея диплома учителя, и преподавал хорошо. Его бывшие ученики с теплотой вспоминают о нем – сердечном, благожелательном, умном, увлеченном своим предметом.

Интересно, что Мендель дважды сдавал экзамен на звание учителя и … дважды проваливался! А ведь он был образованнейшим человеком. Нечего говорить о биологии, классиком которой Мендель вскоре стал, он был высокоодаренный математик, очень любил физику и отлично знал её.

Провалы на экзаменах не мешали его преподавательской деятельности. В городском училище Брно Менделя-учителя очень ценили. И он преподавал, не имея диплома.

В жизни Менделя были годы, когда он превращался в затворника. Но не перед иконами склонял он колена, а… перед грядками с горохом. С утра и до самого вечера трудился он в маленьком монастырском садике(35 метров длины и 7 метров ширины). Здесь с 1854 по 1863 год провел Мендель свои классические опыты, результаты которых не устарели по сей день. Своим научными успехами Г.Мендель обязан также и необычайно удачным выбором объекта исследований. Всего в четырёх поколениях гороха он обследовал 20 тысяч потомков.

Около 10 лет шли опыты по скрещиванию гороха. Каждую весну Мендель высаживал растения на своем участке. Доклад “Опыты над растительными гибридами”, который был прочитан брюнским естествоиспытателям в 1865 году, оказался неожиданностью даже для друзей.

КЛАССИЧЕСКИЕ ЗАКОНЫ Г. МЕНДЕЛЯ

Основные законы наследуемости были описаны чешским монахом Грегором Менделем более века назад, когда он преподавал физику и естественную историю в средней школе г. Брюнна (г. Брно).

Мендель занимался селекционированием гороха, и именно гороху, научной удаче и строгости опытов Менделя мы обязаны открытием основных законов наследуемости: закона единообразия гибридов первого поколения, закона расщепления и закона независимого комбинирования.

Мендель экспериментировал с 22 разновидностями гороха, отличавшимися друг от друга по 7 признакам (цвет, текстура семян и т.д.). Свою работу Мендель вел восемь лет, изучил 20 000 растений гороха. Все формы гороха, которые он исследовал, были представителями чистых линий; результаты скрещивания таких растений между собой всегда были одинаковы. Результаты работы Мендель привел в статье 1865 г., которая стала краеугольным камнем генетики. Трудно сказать, что заслуживает большего восхищения в нем и его работе – строгость проведения экспериментов, четкость изложения результатов, совершенное знание экспериментального материала или знание работ его предшественников.

ПЕРВЫЙ ЗАКОН ЕДИНОБРАЗИЯ ГИБРИДОВ ПЕРВОГО ПОКОЛЕНИЯ

Данный закон утверждает, что скрещивание особей, различающихся по данному признаку (гомозиготных по разным аллелям), дает генетически однородное потомство (поколение F1), все особи которого гетерозиготны. Все гибриды F1 могут иметь при этом либо фенотип одного из родителей (полное доминирование), как в опытах Менделя, либо, как было обнаружено позднее, промежуточный фенотип (неполное доминирование). В дальнейшем выяснилось, что гибриды первого поколения F1, могут проявить признаки обоих родителей (кодоминирование). Этот закон основан на том, что при скрещивании двух гомозиготных по разным аллелям форм (АА и aа) все их потомки одинаковы по генотипу (гетерозиготны – Аа), а значит, и по фенотипу.

ВТОРОЙ ЗАКОН РАСЩЕПЛЕНИЯ

Этот закон называют законом (независимого) расщепления. Суть его состоит в следующем. Когда у организма, гетерозиготного по исследуемому признаку, формируются половые клетки – гаметы, то одна их половина несет один аллель данного гена, а вторая – другой. Поэтому при скрещивании таких гибридов F1 между собой среди гибридов второго поколения F2 в определенных соотношениях появляются особи с фенотипами, как исходных родительских форм, так и F1.

Однако это соотношение может меняться в зависимости от типа наследования. Так, в случае полного доминирования выделяются 75% особей с доминантным и 25% с рецессивным признаком, т.е. два фенотипа в отношении 3:1. При неполном доминировании и кодоминировании 50% гибридов второго поколения (F2) имеют фенотип гибридов первого поколения и по 25% – фенотипы исходных родительских форм, т. е. наблюдается расщепление 1:2:1 .

ТРЕТИЙ ЗАКОН НЕЗАВИСИМОГО КОМБИНИРОВАНИЯ (НАСЛЕДОВАНИЯ) ПРИЗНАКОВ

Парадоксально, но в современной науке огромное внимание уделяется не столько самому третьему закону Менделя в его исходной формулировке, сколько исключениям из него. Закон независимого комбинирования не соблюдается в том случае, если гены, контролирующие изучаемые признаки, сцеплены, т.е. располагаются по соседству друг с другом на одной и той же хромосоме и передаются по наследству как связанная пара элементов, а не как отдельные элементы. Научная интуиция Менделя подсказала ему, какие признаки должны быть выбраны для его дигибридных экспериментов, – он выбрал несцепленные признаки. Если бы он случайно выбрал признаки, контролируемые сцепленными генами, то его результаты были бы иными, поскольку сцепленные признаки наследуются не независимо друг от друга.

С чем же связана важность исключений из закона Менделя о независимом комбинировании? Дело в том, что именно эти исключения позволяют определять хромосомные координаты генов (так называемый локус).

В случаях когда наследуемость определенной пары генов не подчиняется третьему закону Менделя, вероятнее всего эти гены наследуются вместе и, следовательно, располагаются на хромосоме в непосредственной близости друг от друга. Зависимое наследование генов называется сцеплением, а статистический метод, используемый для анализа такого наследования, называется методом сцепления. Однако при определенных условиях закономерности наследования сцепленных генов нарушаются. Основная причина этих нарушений – явление кроссинговера, приводящего к перекомбинации (рекомбинации) генов. Биологическая основа рекомбинации заключается в том, что в процессе образования гамет гомологичные хромосомы, прежде чем разъединиться, обмениваются своими участками.

Кроссинговер – процесс вероятностный, а вероятность того, произойдет или не произойдет разрыв хромосомы на данном конкретном участке, определяется рядом факторов, в частности физическим расстоянием между двумя локусами одной и той же хромосомы. Кроссинговер может произойти и между соседними локусами, однако его вероятность значительно меньше вероятности разрыва (приводящего к обмену участками) между локусами с большим расстоянием между ними.

Данная закономерность используется при составлении генетических карт хромосом (картировании). Расстояние между двумя локусами оценивается путем подсчета количества рекомбинаций на 100 гамет. Это расстояние считается единицей измерения длины гена и называется сентиморганом в честь генетика Т. Моргана, впервые описавшего группы сцепленных генов у плодовой мушки дрозофилы – любимого объекта генетиков. Если два локуса находятся на значительном расстоянии друг от друга, то разрыв между ними будет происходить так же часто, как при расположении этих локусов на разных хромосомах.

Используя закономерности реорганизации генетического материала в процессе рекомбинации, ученые разработали статистический метод анализа, называемый анализом сцепления.

УСЛОВИЯ СУЩЕСТВОВАНИЯ ЗАКОНОВ

Законы Менделя в их классической форме действуют при наличии определенных условий. К ним относятся:

1) гомозиготность исходных скрещиваемых форм;

2) образование гамет гибридов всех возможных типов в равных соотношениях (обеспечивается правильным течением мейоза; одинаковой жизнеспособностью гамет всех типов; равной вероятностью встречи любых гамет при оплодотворении);

3) одинаковая жизнеспособность зигот всех типов.

Нарушение этих условий может приводить либо к отсутствию расщепления во втором поколении, либо к расщеплению в первом поколении; либо к искажению соотношения различных генотипов и фенотипов. Законы Менделя имеют универсальный характер для всех диплоидных организмов, размножающихся половым способом. В целом они справедливы для аутосомных генов с полной пенетрантностью (100%-ой частотой проявления анализируемого признака; 100%-ая пенетрантность подразумевает, что признак выражен у всех носителей аллеля, детерминирующего развитие этого признака) и постоянной экспрессивностью (т.е. постоянной степенью выраженности признака); постоянная экспрессивность подразумевает, что фенотипическая выраженность признака одинакова или примерно одинакова у всех носителей аллеля, детерминирующего развитие этого признака.

ПРИЗНАНИЕ ЗАКОНОВ МЕНДЕЛЯ

Вокруг парадоксальной судьбы открытия и переоткрытия законов Менделя создан красивый миф о том, что его работа оставалась совсем неизвестной и на нее лишь случайно и независимо, спустя 35 лет, натолкнулись три переоткрывателя. На самом деле, работа Менделя цитировалась около 15 раз в сводке о растительных гибридах 1881 г., о ней знали ботаники. Более того, как выяснилось недавно при анализе рабочих тетрадей К. Корренса, он еще в 1896 г. читал статью Менделя и даже сделал ее реферат, но не понял в то время ее глубинного смысла и забыл.

ЗНАЧЕНИЕ РАБОТ МЕНДЕЛЯ ДЛЯ РАЗВИТИЯ ГЕНЕТИКИ

Совсем иные следствия вытекали из семилетней работы Менделя, по праву составляющей фундамент генетики. Во-первых, он создал научные принципы описания и исследования гибридов и их потомства (какие формы брать в скрещивание, как вести анализ в первом и втором поколении). Мендель разработал и применил алгебраическую систему символов и обозначений признаков, что представляло собой важное концептуальное нововведение. Во-вторых, Мендель сформулировал два основных принципа, или закона наследования признаков в ряду поколений, позволяющие делать предсказания. Наконец, Мендель в неявной форме высказал идею дискретности и бинарности наследственных задатков: каждый признак контролируется материнской и отцовской парой задатков (или генов, как их потом стали называть), которые через родительские половые клетки передаются гибридам и никуда не исчезают. Задатки признаков не влияют друг на друга, но расходятся при образовании половых клеток и затем свободно комбинируются у потомков (законы расщепления и комбинирования признаков). Парность задатков, парность хромосом, двойная спираль ДНК – вот логическое следствие и магистральный путь развития генетики ХХ века на основе идей Менделя.

Работами Т.Г. Моргана и его школы в США (А. Стертевант, Г. Меллер, К. Бриджес), выполненными в 1910-1925 гг., была создана хромосомная теория наследственности, согласно которой гены являются дискретными элементами нитевидных структур клеточного ядра – хромосом. Были составлены первые генетические карты хромосом плодовой мушки, ставшей к тому времени основным объектом генетики. Хромосомная теория наследственности прочно опиралась не только на генетические данные, но и на наблюдения о поведении хромосом в митозе и мейозе, о роли ядра в наследственности. Успехи генетики в значительной мере определяются тем, что она опирается на собственный метод – гибридологический анализ, основы которого заложил Мендель.

ЗАКЛЮЧЕНИЕ

Менделевская теория наследственности, т.е. совокупность представ-лений о наследственных детерминантах и характере их передачи от родителей к потомкам, по своему смыслу прямо противоположна доменделевским теориям, в частности теории пангенезиса, предложенной Дарвином. В соответствии с этой теорией признаки родителей прямо, т.е. от всех частей организма, передаются потомству. Поэтому характер признака потомка должен прямо зависеть от свойств родителя. Это полностью противоречит выводам, сделанным Менделем: детерминанты наследственности, т.е. гены, присутствуют в организме относительно независимо от него самого. Характер признаков (фенотип) определяется их случайным сочетанием. Они не модифицируются какими-либо частями организма и находятся в отношениях доминантности-рецессивности. Таким образом, менделевская теория наследственности противостоит идее наследования приобретенных в течение индивидуального развития признаков.

Опыты Менделя послужили основой для развития современной генетики – науки, изучающей два основных свойства организма – наследственность и изменчивость. Ему удалось выявить закономерности наследования благодаря принципиально новым методическим подходам:

1) Мендель удачно выбрал объект исследования;

2) он проводил анализ наследования отдельных признаков в потомстве скрещиваемых растений, отличающихся по одной, двум и трем парам контрастных альтернативных признаков. В каждом поколении велся учет отдельно по каждой паре этих признаков;

3) он не просто зафиксировал полученные результаты, но и провел их математическую обработку.

Перечисленные простые приемы исследования составили принципиально новый, гибридологический метод изучения наследования, ставший основой дальнейших исследований в генетике.

Совсем иные следствия вытекали из семилетней работы Менделя, по праву составляющей фундамент генетики. Во-первых, он создал научные принципы описания и исследования гибридов и их потомства (какие формы брать в скрещивание, как вести анализ в первом и втором поколении). Мендель разработал и применил алгебраическую систему символов и обозначений признаков, что представляло собой важное концептуальное нововведение. Во-вторых, Мендель сформулировал два основных принципа, или закона наследования признаков в ряду поколений, позволяющие делать предсказания. Наконец, Мендель в неявной форме высказал идею дискретности и бинарности наследственных задатков: каждый признак контролируется материнской и отцовской парой задатков (или генов, как их потом стали называть), которые через родительские половые клетки передаются гибридам и никуда не исчезают. Задатки признаков не влияют друг на друга, но расходятся при образовании половых клеток и затем свободно комбинируются у потомков (законы расщепления и комбинирования признаков). Парность задатков, парность хромосом, двойная спираль ДНК – вот логическое следствие и магистральный путь развития генетики ХХ века на основе идей Менделя.

Работами Т.Г. Моргана и его школы в США (А. Стертевант, Г. Меллер, К. Бриджес), выполненными в 1910-1925 гг., была создана хромосомная теория наследственности, согласно которой гены являются дискретными элементами нитевидных структур клеточного ядра – хромосом. Были составлены первые генетические карты хромосом плодовой мушки, ставшей к тому времени основным объектом генетики. Хромосомная теория наследственности прочно опиралась не только на генетические данные, но и на наблюдения о поведении хромосом в митозе и мейозе, о роли ядра в наследственности. Успехи генетики в значительной мере определяются тем, что она опирается на собственный метод – гибридологический анализ, основы которого заложил Мендель.

ЗАКЛЮЧЕНИЕ

Менделевская теория наследственности, т.е. совокупность представ-лений о наследственных детерминантах и характере их передачи от родителей к потомкам, по своему смыслу прямо противоположна доменделевским теориям, в частности теории пангенезиса, предложенной Дарвином. В соответствии с этой теорией признаки родителей прямо, т.е. от всех частей организма, передаются потомству. Поэтому характер признака потомка должен прямо зависеть от свойств родителя. Это полностью противоречит выводам, сделанным Менделем: детерминанты наследственности, т.е. гены, присутствуют в организме относительно независимо от него самого. Характер признаков (фенотип) определяется их случайным сочетанием. Они не модифицируются какими-либо частями организма и находятся в отношениях доминантности-рецессивности. Таким образом, менделевская теория наследственности противостоит идее наследования приобретенных в течение индивидуального развития признаков.

Опыты Менделя послужили основой для развития современной генетики – науки, изучающей два основных свойства организма – наследственность и изменчивость. Ему удалось выявить закономерности наследования благодаря принципиально новым методическим подходам:

1) Мендель удачно выбрал объект исследования;

2) он проводил анализ наследования отдельных признаков в потомстве скрещиваемых растений, отличающихся по одной, двум и трем парам контрастных альтернативных признаков. В каждом поколении велся учет отдельно по каждой паре этих признаков;

3) он не просто зафиксировал полученные результаты, но и провел их математическую обработку.

Перечисленные простые приемы исследования составили принципиально новый, гибридологический метод изучения наследования, ставший основой дальнейших исследований в генетике.

Гено́м — совокупность наследственного материала, заключенного в клетке организма [1] . Геном содержит биологическую информацию, необходимую для построения и поддержания организма. Большинство геномов, в том числе геном человека и геномы всех остальных клеточных форм жизни, построены из ДНК, однако некоторые вирусы имеют геномы из РНК [2] .

У человека (Homo sapiens) геном состоит из 23 пар хромосом, находящихся в ядре, а также митохондриальной ДНК. Двадцать две аутосомы, две половые хромосомы Х и Y, а также митохондриальная ДНК человека содержат вместе примерно 3,1 млрд пар оснований [1] .

Известно, что ДНК, которая является носителем генетической информации у большинства организмов и, следовательно, составляет основу генома, включает в себя не только гены в современном смысле этого слова.

Генетическая информация в клетках содержится не только в хромосомах ядра, но и во внехромосомных молекулах ДНК. У бактерий к таким ДНК относятся плазмиды и некоторые умеренные вирусы, в клетках эукариот — это ДНК митохондрий, хлоропластов и другихорганоидов клеток (См. плазмон).

Объёмы генетической информации, заключённой в клетках зародышевой линии (предшественники половых клеток и сами гаметы) и соматических клетках, в ряде случаев существенно различаются. В онтогенезе соматические клетки могут утрачивать часть генетической информации клеток зародышевой линии, амплифицировать группы последовательностей и (или) значительно перестраивать исходные гены.

Следовательно, под геномом организма понимают суммарную ДНК гаплоидного набора хромосом и каждого из внехромосомных генетических элементов, содержащуюся в отдельной клетке зародышевой линии многоклеточного организма.

В определении генома отдельного биологического вида необходимо учитывать, во-первых, генетические различия, связанные с полом организма, поскольку мужские и женские половые хромосомы различаются.

Во-вторых, из-за громадного числа аллельных вариантов генов и сопутствующих последовательностей, которые присутствуют в генофонде больших популяций, можно говорить лишь о некоем усреднённом геноме, который сам по себе может обладать существенными отличиями от геномов отдельных особей.

Размер генома — общее число базовых пар ДНК в одной копии гаплоидного генома.

Размеры геномов организмов разных видов значительно отличаются друг от друга, и при этом часто не наблюдается корреляции между уровнем эволюционной сложности биологического вида и размером его генома.

Первые идеи о механизме наследственности высказали еще древнегреческие ученые Демокрит, Гиппократ, Платон, Аристотель. Автор первой научной теории эволюции Ж.-Б. Ламарк воспользовался идеями древнегреческих ученых для объяснения постулированного им на рубеже XVIII-XIX вв. принципа передачи приобретенных в течение жизни индивидуума новых признаков потомству. Ч. Дарвин выдвинул теорию пангенезиса, объяснявшую наследование приобретенных признаков. Законы наследственности, открытые Г. Менделем, заложили основы становления генетики как самостоятельной науки.

Оглавление

Введение. 3
1. Генетика и эволюция. 4
1.1. Факторы эволюции. Естественный отбор. 4
1.2. Теория пангенезиса Ч.Дарвина. 5
2. Классические законы Г. Менделя. 6
2.1. Гениальное предвидение или творческая удача?. 6
2.2. Закон единообразия гибридов первого поколения (первый закон Менделя) 8
2.3. Закон расщепления (второй закон Менделя) 8
2.4. Закон независимого комбинирования (наследования) признаков (третий закон Менделя) 9
3. Признание открытий Менделя. 13
4. Значение работ Менделя для развития генетики. 15
Заключение. 17
Список литературы.. 18

Файлы: 1 файл

Реферат Современная карта мира 2 курс 1 семестр (1).doc

С чем же связана важность исключений из закона Менделя о независимом комбинировании? Дело в том, что именно эти исключения позволяют определять хромосомные координаты генов (так называемый локус).

В случаях когда наследуемость определенной пары генов не подчиняется третьему закону Менделя, вероятнее всего эти гены наследуются вместе и, следовательно, располагаются на хромосоме в непосредственной близости друг от друга. Зависимое наследование генов называется сцеплением, а статистический метод, используемый для анализа такого наследования, называется методом сцепления. Однако при определенных условиях закономерности наследования сцепленных генов нарушаются. Основная причина этих нарушений – явление кроссинговера, приводящего к перекомбинации (рекомбинации) генов. Биологическая основа рекомбинации заключается в том, что в процессе образования гамет гомологичные хромосомы, прежде чем разъединиться, обмениваются своими участками.

Кроссинговер – процесс вероятностный, а вероятность того, произойдет или не произойдет разрыв хромосомы на данном конкретном участке, определяется рядом факторов, в частности физическим расстоянием между двумя локусами одной и той же хромосомы. Кроссинговер может произойти и между соседними локусами, однако его вероятность значительно меньше вероятности разрыва (приводящего к обмену участками) между локусами с большим расстоянием между ними.

Данная закономерность используется при составлении генетических карт хромосом (картировании). Расстояние между двумя локусами оценивается путем подсчета количества рекомбинаций на 100 гамет. Это расстояние считается единицей измерения длины гена и называется сентиморганом в честь генетика Т. Моргана, впервые описавшего группы сцепленных генов у плодовой мушки дрозофилы – любимого объекта генетиков. Если два локуса находятся на значительном расстоянии друг от друга, то разрыв между ними будет происходить так же часто, как при расположении этих локусов на разных хромосомах.

Используя закономерности реорганизации генетического материала в процессе рекомбинации, ученые разработали статистический метод анализа, называемый анализом сцепления.

Законы Менделя в их классической форме действуют при наличии определенных условий. К ним относятся:

1) гомозиготность исходных скрещиваемых форм;

2) образование гамет гибридов всех возможных типов в равных соотношениях (обеспечивается правильным течением мейоза; одинаковой жизнеспособностью гамет всех типов; равной вероятностью встречи любых гамет при оплодотворении);

3) одинаковая жизнеспособность зигот всех типов.

Нарушение этих условий может приводить либо к отсутствию расщепления во втором поколении, либо к расщеплению в первом поколении; либо к искажению соотношения различных генотипов и фенотипов. Законы Менделя имеют универсальный характер для всех диплоидных организмов, размножающихся половым способом. В целом они справедливы для аутосомных генов с полной пенетрантностью (т.е. 100-процентной частотой проявления анализируемого признака; 100% пенетрантность подразумевает, что признак выражен у всех носителей аллеля, детерминирующего развитие этого признака) и постоянной экспрессивностью (т.е. постоянной степенью выраженности признака); постоянная экспрессивность подразумевает, что фенотипическая выраженность признака одинакова или примерно одинакова у всех носителей аллеля, детерминирующего развитие этого признака.

3. Признание открытий Менделя

Вокруг парадоксальной судьбы открытия и переоткрытия законов Менделя создан красивый миф о том, что его работа оставалась совсем неизвестной и на нее лишь случайно и независимо, спустя 35 лет, натолкнулись три переоткрывателя. На самом деле, работа Менделя цитировалась около 15 раз в сводке о растительных гибридах 1881 г., о ней знали ботаники. Более того, как выяснилось недавно при анализе рабочих тетрадей К. Корренса, он еще в 1896 г. читал статью Менделя и даже сделал ее реферат, но не понял в то время ее глубинного смысла и забыл.

4. Значение работ Менделя для развития генетики

Совсем иные следствия вытекали из семилетней работы Менделя, по праву составляющей фундамент генетики. Во-первых, он создал научные принципы описания и исследования гибридов и их потомства (какие формы брать в скрещивание, как вести анализ в первом и втором поколении). Мендель разработал и применил алгебраическую систему символов и обозначений признаков, что представляло собой важное концептуальное нововведение. Во-вторых, Мендель сформулировал два основных принципа, или закона наследования признаков в ряду поколений, позволяющие делать предсказания. Наконец, Мендель в неявной форме высказал идею дискретности и бинарности наследственных задатков: каждый признак контролируется материнской и отцовской парой задатков (или генов, как их потом стали называть), которые через родительские половые клетки передаются гибридам и никуда не исчезают. Задатки признаков не влияют друг на друга, но расходятся при образовании половых клеток и затем свободно комбинируются у потомков (законы расщепления и комбинирования признаков). Парность задатков, парность хромосом, двойная спираль ДНК – вот логическое следствие и магистральный путь развития генетики ХХ века на основе идей Менделя.

Работами Т.Г. Моргана и его школы в США (А. Стертевант, Г. Меллер, К. Бриджес), выполненными в 1910-1925 гг., была создана хромосомная теория наследственности, согласно которой гены являются дискретными элементами нитевидных структур клеточного ядра – хромосом. Были составлены первые генетические карты хромосом плодовой мушки, ставшей к тому времени основным объектом генетики. Хромосомная теория наследственности прочно опиралась не только на генетические данные, но и на наблюдения о поведении хромосом в митозе и мейозе, о роли ядра в наследственности. Успехи генетики в значительной мере определяются тем, что она опирается на собственный метод – гибридологический анализ, основы которого заложил Мендель.

Заключение

Менделевская теория наследственности, т.е. совокупность представ-лений о наследственных детерминантах и характере их передачи от родителей к потомкам, по своему смыслу прямо противоположна доменделевским теориям, в частности теории пангенезиса, предложенной Дарвином. В соответствии с этой теорией признаки родителей прямо, т.е. от всех частей организма, передаются потомству. Поэтому характер признака потомка должен прямо зависеть от свойств родителя. Это полностью противоречит выводам, сделанным Менделем: детерминанты наследствен-ности, т.е. гены, присутствуют в организме относительно независимо от него самого. Характер признаков (фенотип) определяется их случайным сочетанием. Они не модифицируются какими-либо частями организма и находятся в отношениях доминантности-рецессивности. Таким образом, менделевская теория наследственности противостоит идее наследования приобретенных в течение индивидуального развития признаков.

Опыты Менделя послужили основой для развития современной генетики – науки, изучающей два основных свойства организма – наследственность и изменчивость. Ему удалось выявить закономерности наследования благодаря принципиально новым методическим подходам:

1) Мендель удачно выбрал объект исследования;

2) он проводил анализ наследования отдельных признаков в потомстве скрещиваемых растений, отличающихся по одной, двум и трем парам контрастных альтернативных признаков. В каждом поколении велся учет отдельно по каждой паре этих признаков;

3) он не просто зафиксировал полученные результаты, но и провел их математическую обработку.

Перечисленные простые приемы исследования составили принципиально новый, гибридологический метод изучения наследования, ставший основой дальнейших исследований в генетике.

Список литературы

1. Алиханян С.И., Акифьев А.П., Чернин Л.С. Общая генетика: Учеб. – М.: Высш. шк., 1985. – 448 с.

2. Гайсинович А.Е. Зарождение и развитие генетики. – М.: Высш. шк., 1988. – С.14.

3. Горелов А.А. Концепции современного естествознания. – М.: Владос, 2000. – 512 с.

4. Концепции современного естествознания / Под ред. В.Н. Лавриненко, В.П. Ратникова. – М.: ЮНИТИ, 2000. – 203 с.

5. Концепции современного естествознания / Самыгин С.И. и др. – Ростов н/Д.: Феникс, 1997. – 448 с.

6. Лемеза Н.А., Камлюк Л.В., Лисов Н.Д. Биология в экзаменационных вопросах и ответах. – М.: Рольф, Айрис-пресс, 1998. – С.172-173.

7. Равич-Щербо И.В., Марютина Т.М., Григоренко Е.Л. Психогенетика: Учеб. / Под ред. И.В. Равич-Щербо. - М.: Аспект-Пресс, 2000. - 447 с.

8. Рузавин Г.И. Концепции современного естествознания: Курс лекций. – М.: Проект, 2002. – 336 с.

перехо́д (фазовое превращение) в термодинамике — переход вещества из одной термодинамической фазы в другую при изменении внешних условий. С точки зрения движения системы по фазовой диаграмме при изменении её интенсивных параметров (температуры, давления и т. п.), фазовый переход происходит, когда система пересекает линию, разделяющую две фазы. Поскольку разные термодинамические фазы описываются различными уравнениями состояния, всегда можно найти величину, которая скачкообразно меняется при фазовом переходе.

Поскольку разделение на термодинамические фазы — более мелкая классификация состояний, чем разделение по агрегатным состояниям вещества, то далеко не каждый фазовый переход сопровождается сменой агрегатного состояния. Однако любая смена агрегатного состояния есть фазовый переход.

Благодаря Менделю сегодня можно предсказать характеристики, которые дети будут унаследовать от своих родителей, а именно вероятность заражения болезнями и даже умственные способности и природные таланты.

Хотя его эксперименты начинались скромно с создания скрещиваний с простыми растениями гороха, позже они заложили основу для появления генетики - области исследований, посвященной изучению наследственности, процесса, посредством которого родители передают характеры своим детям.

Грегор Мендель, австрийский монах и ботаник, родился в 1822 году и посвятил свою жизнь религии, естествознанию и математике.

Он считается отцом генетики после публикации своей знаменитой работы. Очерк гибридов растений в 1866 году, и он был первым, кто объяснил, как люди являются результатом совместного действия отцовских и материнских генов.

Кроме того, он обнаружил, как гены передаются между поколениями, и указал путь будущим генетикам и биологам, которые продолжают проводить свои эксперименты даже сегодня.

В своей работе он раскрыл основные термины, которые сегодня использует генетика, в основном, гены, генотип и фенотип.

Благодаря его исследованиям генетика дала возможность узнать происхождение различных заболеваний и более глубоко проанализировать хромосомы и гены в различных областях, таких как классическая, молекулярная, эволюционная, количественная и цитогенетическая генетика.

Отправная точка: понимание работ Менделя

Целью законов, разработанных Менделем, было изучение того, как определенные признаки или наследственные факторы передаются от одного поколения к другому. Вот почему в период с 1856 по 1865 год он решил провести серию экспериментов.

Их работа заключалась в скрещивании разновидностей растений гороха с учетом их специфических особенностей, таких как цвет и расположение цветков растения, форма и цвет стручков гороха, форма и цвет семян и длина стебля гороха. растения.

Мендель использовал горох Pisum Sativum, потому что было легко и в больших количествах; Кроме того, эти растения были интересны тем, что, предоставленные сами себе, они скрещивались и опыляли друг друга.

Используемый метод заключался в переносе пыльцы с тычинок растения на пестик другого вида растений.

Мендель объединил растение гороха с красными цветками и растение гороха с белыми цветами, чтобы увидеть, что получилось в результате скрещивания. Чтобы позже начать эксперименты с этим поколением, полученным из смеси.

В качестве примера Мендель взял разные растения и построил разные версии хорошо известных генеалогических деревьев, чтобы изучить, что случилось с этими персонажами при их скрещивании.

Результаты и важность их работы

1- Открытие менделевских законов

Первый закон Менделя

Получив этот результат, он понял, что когда чистый вид скрещивается с другим, потомки этого первого дочернего поколения будут такими же по своему генотипу и фенотипически более похожими на носителя доминантного аллеля или гена, в данном случае гладкого семени.

Более распространенный пример: если у матери черные глаза, а у отца голубые глаза, 100% их детей выйдут с черными глазами, как у матери, потому что они являются доминирующим персонажем.

Второй закон Менделя

Следовательно, задавался вопросом Мендель, как могло случиться, что у персонажей второго поколения были черты, такие как грубые, которыми не обладали их родители с гладкими семенами?

Типичный пример, следующий за менделевским экспериментом: черноглазая мать пересекается с голубоглазым отцом, в результате чего у детей будут 100% черные глаза.

Если эти дети (в том числе братья и сестры) скрещиваются, в результате у большинства будут черные глаза и четверть голубые.

Это объясняет, как в семьях внуки имеют характеристики своих бабушек и дедушек, а не только своих родителей. В случае, представленном на изображении, происходит то же самое.

Третий закон Менделя

Следовательно, во время формирования гамет сегрегация и распространение наследственных признаков возникают независимо друг от друга.

Следовательно, если между двумя разновидностями есть два или более разных символа, каждый из них будет передаваться независимо от других. Как видно на изображении.

2- Определение ключевых аспектов генетики

Наследственные факторы

Это гены, наследственные единицы, которые контролируют характеры живых существ.

Аллели

Рассматривается как каждая из различных альтернативных форм, которые может представлять один и тот же ген.

Аллели состоят из доминантного и рецессивного гена. И первое проявит себя в большей степени, чем второе.

Гомозиготный против гетерозиготного

Мендель обнаружил, что у всех организмов есть по две копии каждого гена, и если эти копии чистокровные, то есть идентичны, то организм гомозиготен.

А если копии разные, то организм гетерозиготен.

Генотип и фенотип

Своими открытиями Мендель показал, что наследственность, присущая каждому человеку, будет отмечена двумя факторами:

  1. Генотип, понимаемый как полный набор генов, которые наследует человек.

2. И фенотип, а именно все внешние проявления генотипа, такие как: морфология, физиология и поведение индивида.

3- Это открыло путь к открытию множества генетических заболеваний.

Эти мутации способны изменять функцию белка, кодируемого геном, поэтому белок не продуцируется, не функционирует должным образом или экспрессируется ненадлежащим образом.

Эти генетические варианты вызывают большое количество дефектов или редких заболеваний, таких как серповидноклеточная анемия, муковисцидоз и гемофилия, среди наиболее распространенных.

Благодаря его первоначальным открытиям сегодня открыты различные наследственные заболевания и хромосомные аномалии.

Читайте также: