Закон силы физиология кратко

Обновлено: 05.07.2024

Законы раздражения отражают определенную зависимость между действием раздражителя и ответной реакцией возбудимой ткани. К законам раздражения относятся, закон силы, закон "все или ничего", закон аккомодации (Дюбуа-Реймона), закон силы-времени (силы-длительности), закон полярного действия постоянного тока, закон физиологического электротона.

Закон силы: чем больше сила раздражителя, тем больше величина ответной реакции. В соответствии с этим законом функционируют сложные структуры, например, скелетная мышца. Амплитуда ее сокращений от минимальных (пороговых) величин постепенно увеличивается с увеличением силы раздражителя до субмаксимальных и максимальных значений. Это обусловлено тем, что скелетная мышца состоит из множества мышечных волокон, имеющих различную возбудимость. Поэтому на пороговые раздражители отвечают только те мышечные волокна, которые имеют самую высокую возбудимость, амплитуд, мышечного сокращения при этом минимальна. С увеличением силы раздражителя в реакцию вовлекается все большее количество мышечных волокон, и амплитуда сокращения мышц все время увеличивается. Когда в реакцию вовлечены все мышечные волокна, составляющие данную мышцу, дальнейшее увеличение силы раздражителя не приводит к увеличению амплитуды сокращения.

Закон раздражения - Дюбуа-Реймона (аккомодации) раздражающее действие постоянного тока зависит не только от абсолютной величины силы тока или его плотности, но и от скорости нарастания тока во времени. При действии медленно нарастающего раздражителя возбуждение не возникает, так как происходит приспосабливание возбудимой ткани к действию этого раздражителя, что получило название аккомодации. Аккомодация обусловлена тем, что при действии медленно нарастающего раздражителя в мембране возбудимой ткани происходит повышение критического уровня деполяризации. При снижении скорости нарастания силы раздражителя до некоторого минимального значения потенциал действия вообще не возникает. Причина заключается в том, что деполяризация мембраны является пусковым стимулом к началу двух процессов: быстрого, ведущего к повышению натриевой проницаемости, и тем самым обусловливающего возникновение потенциала действия, и медленного, приводящего к инактивации натриевой проницаемости и как следствие этого - окончанию потенциала действия. При быстром нарастании стимула повышение натриевой проницаемости успевает достичь значительной величины прежде, чем наступит инактивация натриевой проницаемости. При медленном нарастании тока на первый план выступают процессы инактивации, приводящие к повышению порога или ликвидации возможности генерировать ПД вообще. Способность к аккомодации различных структур неодинакова. Наиболее высокая она у двигательных нервных волокон, а наиболее низкая у сердечной мышцы, гладких мышц кишечника, желудка.

Закон силы-дительности: раздражающее действие постоянного тока зависит не только от его величины, но и от времени, в течение которого он действует. Чем больше ток, тем меньше времени он должен действовать для возникновения возбуждения.

Исследования зависимости силы-длительности показали, что последняя имеет гиперболический характер (рис. 3). Из этого следует, что ток ниже некоторой минимальной величины не вызывает возбуждение, как бы длительно он не действовал, и чем короче импульсы тока, тем меньшую раздражающую способность они имеют. Причиной такой зависимости является мембранная емкость. Очень "короткие" токи просто не успевают разрядить эту емкость до критического уровня деполяризации. Минимальная величина тока, способная вызвать возбуждение при неограниченно длительном его действии, называется реобазой. Время, в течение которого действует ток, равный реобазе,и вызывает возбуждение, называется полезным временем.

В связи с тем, что определение этого времени затруднено, было введено понятие хронаксия - минимальное время, в течение которого ток, равный двум реобазам, должен действова.ть на ткань, чтобы вызвать ответную реакцию. Определение хронаксии - хронаксиметрия - находит применение в клинике. Электрический ток, приложенный к мышце, проходит через как мышечные, так и нервные волокна и их окончания, находящиеся в этой мышце. Так как хронаксия нервных волокон значительно меньше хронаксии мышечных волокон, то при исследовании хронаксии мышцы практически получают хронаксию нервных волокон. Если нерв поврежден или произошла гибель соответствующих мотонейронов спинного мозга (это имеет место при полиомиелите и некоторых других заболеваниях), то поисходит перерождение нервных волокон и тогда определяется хронаксия уже мышечных волокон, которая имеет большую величину, чем нервных волокон.

Закон полярного действия постоянного тока: при замыкании тока возбуждение возникает под катодом, а при размыкании - под анодом. Прохождение постоянного электрического тока через нервное или мышечное волокно вызывает изменение мембранного потенциала покоя. Так, в области приложения к возбудимой ткани катода положительный потенциал на наружной стороне мембраны уменьшается, возникает деполяризация, которая быстро достигает критического уровня и вызывает возбуждение. В области же приложения анода положительный потенциал на наружной стороне мембраны возрастает, происходит гиперполяризация мембраны и возбуждение не возникает. Но при этом под анодом критический уровень деполяризации смещается к уровню потенциала покоя. Поэтому при размыкании цепи тока гиперполяризация на мембране исчезает, и потенциал покоя, возвращаясь к исходной величине, достигает смещенного критического уровня и возникает возбуждение.

Закон физиологического электротона: действие постоянного тока на ткань сопровождается изменением ее возбудимости. При прохождении постоянного тока через нерв или мышцу порог раздражения под катодом и соседних с ним участках понижается вследствие деполяризации мембраны - возбудимость повышается. В области приложения анода происходит повышение порога раздражения, т. е. снижение возбудимости вследствие гиперполяризации мембраны. Эти изменения возбудимости под катодом и анодом получили название электротона (электротоническое изменение возбудимости). Повышение возбудимости под катодом называется катэлектротоном, а снижение возбудимости под анодом – анэлектротоном.

При дальнейшем действии постоянного тока первоначальное повышение возбудимости под катодом сменяется ее понижением, развивается так называемая католическая депрессия. Первоначальное же снижение возбудимости под анодом сменяется ее повышением анодная экзальтация. При этом в области приложения катода происходит инактивация натриевых каналов, а в области действия анода происходит снижение калиевой проницаемости и ослабление исходной инактивации натриевой проницаемости.

Законы раздражения отражают определенную зависимость между действием раздражителя и ответной реакцией возбудимой ткани. К законам раздражения относятся, закон силы, закон "все или ничего", закон аккомодации (Дюбуа-Реймона), закон силы-времени (силы-длительности), закон полярного действия постоянного тока, закон физиологического электротона.

1. Закон силы: чем больше сила раздражителя, тем больше величина ответной реакции. В соответствии с этим законом функционируют сложные структуры, например, скелетная мышца. Амплитуда ее сокращений от минимальных (пороговых) величин постепенно увеличивается с увеличением силы раздражителя до субмаксимальных и максимальных значений. Это обусловлено тем, что скелетная мышца состоит из множества мышечных волокон, имеющих различную возбудимость.

Поэтому на пороговые раздражители отвечают только те мышечные волокна, которые имеют самую высокую возбудимость, амплитуд, мышечного сокращения при этом минимальна. С увеличением силы раздражителя в реакцию вовлекается все большее количество мышечных волокон, и амплитуда сокращения мышц все время увеличивается. Когда в реакцию вовлечены все мышечные волокна, составляющие данную мышцу, дальнейшее увеличение силы раздражителя не приводит к увеличению амплитуды сокращения.

3. Закон раздражения - Дюбуа-Реймона (аккомодации) раздражающее действие постоянного тока зависит не только от абсолютной величины силы тока или его плотности, но и от скорости нарастания тока во времени. При действии медленно нарастающего раздражителя возбуждение не возникает, так как происходит приспосабливание возбудимой ткани к действию этого раздражителя, что получило название аккомодации. (Аккомодация обусловлена тем, что при действии медленно нарастающего раздражителя в мембране возбудимой ткани происходит повышение критического уровня деполяризации. При снижении скорости нарастания силы раздражителя до некоторого минимального значения потенциал действия вообще не возникает.

Причина заключается в том, что деполяризация мембраны является пусковым стимулом к началу двух процессов: быстрого, ведущего к повышению натриевой проницаемости, и тем самым обусловливающего возникновение потенциала действия, и медленного, приводящего к инактивации натриевой проницаемости и как следствие этого - окончанию потенциала действия. При быстром нарастании стимула повышение натриевой проницаемости успевает достичь значительной величины прежде, чем наступит инактивация натриевой проницаемости. При медленном нарастании тока на первый план выступают процессы инактивации, приводящие к повышению порога или ликвидации возможности генерировать ПД вообще).

Способность к аккомодации различных структур неодинакова. Наиболее высокая она у двигательных нервных волокон, а наиболее низкая у сердечной мышцы, гладких мышц кишечника, желудка.

4. Закон силы-длительности: раздражающее действие постоянного тока зависит не только от его величины, но и от времени, в течение которого он действует. Чем больше ток, тем меньше времени он должен действовать для возникновения возбуждения.




Причиной такой зависимости является мембранная емкость. Очень "короткие" токи просто не успевают разрядить эту емкость до критического уровня деполяризации. Раздражитель, способный вызвать ответную реакцию, называется пороговым. Минимальная величина тока, способная вызвать возбуждение при неограниченно длительном его действии, названа Лапиком реобазой. Время, в течение которого действует ток, равный реобазе, и вызывает возбуждение, называется полезным временем. Это означает, что дальнейшее увеличение времени не имеет смысла для возникновения потенциала действия (ПД).

В связи с тем, что определение этого времени затруднено, было введено понятие хронаксия - минимальное время, в течение которого ток, равный двум реобазам, должен действовать на ткань, чтобы вызвать ответную реакцию. Определение хронаксии - хронаксиметрия - находит применение в клинике. Электрический ток, приложенный к мышце, проходит через как мышечные, так и нервные волокна и их окончания, находящиеся в этой мышце. Хронаксия нервных и мышечных волокон равна тысячным долям секунд. Если нерв поврежден или произошла гибель соответствующих мотонейронов спинного мозга (это имеет место при полиомиелите и некоторых других заболеваниях), то происходит перерождение нервных волокон и тогда определяется хронаксия уже мышечных волокон, которая имеет большую величину, чем нервных волокон.


Законы раздражения отражают определенную зависимость между действием раздражителя и ответной реакцией возбудимой ткани. К законам раздражения относятся, закон силы, закон "все или ничего", закон аккомодации (Дюбуа-Реймона), закон силы-времени (силы-длительности), закон полярного действия постоянного тока, закон физиологического электротона.

1. Закон силы: чем больше сила раздражителя, тем больше величина ответной реакции. В соответствии с этим законом функционируют сложные структуры, например, скелетная мышца. Амплитуда ее сокращений от минимальных (пороговых) величин постепенно увеличивается с увеличением силы раздражителя до субмаксимальных и максимальных значений. Это обусловлено тем, что скелетная мышца состоит из множества мышечных волокон, имеющих различную возбудимость.

Поэтому на пороговые раздражители отвечают только те мышечные волокна, которые имеют самую высокую возбудимость, амплитуд, мышечного сокращения при этом минимальна. С увеличением силы раздражителя в реакцию вовлекается все большее количество мышечных волокон, и амплитуда сокращения мышц все время увеличивается. Когда в реакцию вовлечены все мышечные волокна, составляющие данную мышцу, дальнейшее увеличение силы раздражителя не приводит к увеличению амплитуды сокращения.

3. Закон раздражения - Дюбуа-Реймона (аккомодации) раздражающее действие постоянного тока зависит не только от абсолютной величины силы тока или его плотности, но и от скорости нарастания тока во времени. При действии медленно нарастающего раздражителя возбуждение не возникает, так как происходит приспосабливание возбудимой ткани к действию этого раздражителя, что получило название аккомодации. (Аккомодация обусловлена тем, что при действии медленно нарастающего раздражителя в мембране возбудимой ткани происходит повышение критического уровня деполяризации. При снижении скорости нарастания силы раздражителя до некоторого минимального значения потенциал действия вообще не возникает.

Причина заключается в том, что деполяризация мембраны является пусковым стимулом к началу двух процессов: быстрого, ведущего к повышению натриевой проницаемости, и тем самым обусловливающего возникновение потенциала действия, и медленного, приводящего к инактивации натриевой проницаемости и как следствие этого - окончанию потенциала действия. При быстром нарастании стимула повышение натриевой проницаемости успевает достичь значительной величины прежде, чем наступит инактивация натриевой проницаемости. При медленном нарастании тока на первый план выступают процессы инактивации, приводящие к повышению порога или ликвидации возможности генерировать ПД вообще).

Способность к аккомодации различных структур неодинакова. Наиболее высокая она у двигательных нервных волокон, а наиболее низкая у сердечной мышцы, гладких мышц кишечника, желудка.

4. Закон силы-длительности: раздражающее действие постоянного тока зависит не только от его величины, но и от времени, в течение которого он действует. Чем больше ток, тем меньше времени он должен действовать для возникновения возбуждения.

Причиной такой зависимости является мембранная емкость. Очень "короткие" токи просто не успевают разрядить эту емкость до критического уровня деполяризации. Раздражитель, способный вызвать ответную реакцию, называется пороговым. Минимальная величина тока, способная вызвать возбуждение при неограниченно длительном его действии, названа Лапиком реобазой. Время, в течение которого действует ток, равный реобазе, и вызывает возбуждение, называется полезным временем. Это означает, что дальнейшее увеличение времени не имеет смысла для возникновения потенциала действия (ПД).

В связи с тем, что определение этого времени затруднено, было введено понятие хронаксия - минимальное время, в течение которого ток, равный двум реобазам, должен действовать на ткань, чтобы вызвать ответную реакцию. Определение хронаксии - хронаксиметрия - находит применение в клинике. Электрический ток, приложенный к мышце, проходит через как мышечные, так и нервные волокна и их окончания, находящиеся в этой мышце. Хронаксия нервных и мышечных волокон равна тысячным долям секунд. Если нерв поврежден или произошла гибель соответствующих мотонейронов спинного мозга (это имеет место при полиомиелите и некоторых других заболеваниях), то происходит перерождение нервных волокон и тогда определяется хронаксия уже мышечных волокон, которая имеет большую величину, чем нервных волокон.

Законы устанавливают зависимость ответной реакции ткани от параметров раздражителя. Эта зависимость характерна для высоко организованных тканей. Существуют три закона раздражения возбудимых тканей:

1) закон силы раздражения;

2) закон длительности раздражения;

3) закон градиента раздражения.

Для совокупности клеток (для ткани) эта зависимость иная, ответная реакция ткани прямо пропорциональна до определенного предела силе наносимого раздражения. Увеличение ответной реакции связано с тем, что увеличивается количество структур, вовлекающихся в ответную реакцию.

Закон длительности раздражений. Ответная реакция ткани зависит от длительности раздражения, но осуществляется в определенных пределах и носит прямо пропорциональный характер. Существует зависимость между силой раздражения и временем его действия. Эта зависимость выражается в виде кривой силы и времени. Эта кривая называется кривой Гоорвега—Вейса—Лапика. Кривая показывает, что каким бы сильным ни был бы раздражитель, он должен действовать определенный период времени. Если временной отрезок маленький, то ответная реакция не возникает. Если раздражитель слабый, то бы как длительно он ни действовал, ответная реакция не возникает. Сила раздражителя постепенно увеличивается, и в определенный момент возникает ответная реакция ткани. Эта сила достигает пороговой величины и называется реобазой (минимальной силой раздражения, которая вызывает первичную ответную реакцию). Время, в течение которого действует ток, равный реобазе, называется полезным временем.

Закон градиента раздражения. Градиент – это крутизна нарастания раздражения. Ответная реакция ткани зависит до определенного предела от градиента раздражения. При сильном раздражителе примерно на третий раз нанесения раздражения ответная реакция возникает быстрее, так как она имеет более сильный градиент. Если постепенно увеличивать порог раздражения, то в ткани возникает явление аккомодации. Аккомодация – это приспособление ткани к медленно нарастающему по силе раздражителю. Это явление связано с быстрым развитием инактивации Nа-каналов. Постепенно происходит увеличение порога раздражения, и раздражитель всегда остается подпороговым, т. е. порог раздражения увеличивается.

Законы раздражения возбудимых тканей объясняют зависимость ответной реакции от параметров раздражителя и обеспечивают адаптацию организмов к факторам внешней и внутренней среды.

Процесс формирования возбуждения не зависит от природы раздражителя, а определяется его количественными характеристиками (силой и длительностью воздействия, скоростью нарастания силы раздражителя).

Электрический ток является адекватным раздражителем для возбудимых тканей, так как именно местные токи между возбужденными (деполяризованными) и покоящимися участками клеточной мембраны вызывают генерацию потенциала действия, когда возбуждение носит распространяющийся характер.

Электрические процессы в возбудимых тканях определяют основные законы раздражения (закон силы, "все или ничего", "силы-времени", градиента, Полярный закон, закон физиологического электротона)

Процесс формирования возбуждения не зависит от природы раздражителя, а определяется его количественными характеристиками (силой и длительностью воздействия, скоростью нарастания силы раздражителя).

Электрический ток является адекватным раздражителем для возбудимых тканей, так как именно местные токимежду возбужденными (деполяризованными) и покоящимися участками клеточной мембраны вызывают генерацию потенциала действия, когда возбуждение носит распространяющийся характер.

Электрические процессы в возбудимых тканях определяют основные законы раздражения (закон силы, "все или ничего", "силы-времени", градиента, полярный закон, закон физиологического электротона)

Закон силы

Чтобы возникло возбуждение, раздражитель должен быть достаточно сильным - пороговым или сверхпороговым

Учитывая, что порог раздражения является мерой возбудимости, которая определяется порогом деполяризации(разница между потенциалом покоя и уровнем критической деполяризации), то этот закон также должен рассматривать зависимость амплитуды ответа возбудимой ткани от силы раздражителя (раздражитель по силе ниже, равный или выше пороговой величины).

Для одиночных образований (нейрон, аксон, нервное волокно) эта зависимость носит название

Закон "все или ничего"

Подпороговые раздражители не вызывают возбуждение ("ничего"). При пороговых и сверхпороговых воздействиях возникает максимальная ответная реакция ("все"), т. е. возбуждение возникает с максимальной амплитудой ПД

По этому закону также сокращаются сердечная мышца и одиночное мышечное волокно.

Закон не являются абсолютным, а носит относительный характер:

. При действии раздражителей подпороговой силы видимая реакция отсутствует, но возникает местная реакция (локальный ответ)

. При действии пороговых раздражителей растянутая мышечная ткань дает большую амплитуду сокращения, чем не растянутая

При регистрации суммарной активности целостного образования (скелетная мышца, состоящая из отдельных мышечных волокон, нервный ствол, состоящий из множества нервных волокон) проявляется другая зависимость

Чем больше сила раздражителя, тем больше величина ответной реакции

При увеличении силы раздражителя от минимальных (пороговых) до субмаксимальных и максимальных значений амплитуда мышечного сокращения возрастает до определенной величины.

Дальнейшее увеличение силы раздражителя не приводит к увеличению амплитуды сокращения.

Это связано с тем, что скелетная мышца состоит из множества мышечных волокон, каждое из которых имеет свою возбудимость, а, следовательно, и свой порог раздражения. Поэтому на пороговый раздражитель отвечают только те волокна, которые имеют максимальную возбудимость.

С увеличением силы раздражителя в реакцию вовлекаются все большее количество мышечных волокон, и амплитуда сокращения мышцы все больше увеличивается.

Когда в реакцию вовлекаются все мышечные волокна, составляющие данную мышцу, дальнейшее увеличение силы раздражителя не приводит к увеличению амплитуды сокращения

Закон "силы-времени"


Закон отражает зависимость пороговой силы раздражителя от времени его действия для возникновения возбужденияи гласит:

Возникновение распространяющегося возбуждения зависит не только от силы раздражителя, но и от времени, в течение которого он действует. Чем больше по силе раздражитель, тем меньшее время он должен действовать для возникновения возбуждения

Зависимость носит обратный характер и имеет вид гиперболы. Из этого следует, что на кривой "силы-времени" имеются области, которые не подчиняются этому закону.

Если сила раздражителя будет меньше некоторой (пороговой) величины, то возбуждение не возникнет даже при длительном его воздействии.

Наоборот, если время воздействия будет очень коротким, то возбуждение тоже не возникнет даже при воздействии очень большого по силе раздражителя (в физиотерапии токи высокой частоты используются для получения калорического эффекта)

Для выявления этой зависимости и оценки возбудимости ткани используются следующие количественные характеристики:

Реобаза - это минимальная сила электрического тока, вызывающая генерацию потенциала действия

Полезное время - это минимальное время, в течение которого на ткань должен действовать раздражитель, равный по силе реобазе, чтобы возникло распространяющееся возбуждение

Хронаксия - это минимальное время, в течение которого на ткань должен действовать раздражитель, равный по силе 2 реобазам, чтобы возникло распространяющееся возбуждение

(при поражении нерва хронаксия увеличивается)

ХРОНАКСИМЕТРИЯ (греч. chronos время + axia количество + metreo измерять) - метод определения возбудимости тканей или органов на основе выявления зависимости между пороговой силой электрического раздражения, вызывающего процесс возбуждения, и длительностью его действия. Соответствующие приборы - хронаксиметры состоят из источника постоянного тока, набора сопротивлений и приспособлений для дозирования времени действия электрического тока, подающегося на объект.

Хронаксиметрию применяют в диагностике поражений центральной и периферической нервной системы, опорно-двигательного аппарата, при определении границ патол. очага и функционального состояния отдельных структур головного мозга в процессе проведения нейрохирургических операций. Относительная простота метода и достаточно четкая интерпретация результатов дали возможность использовать хронаксиметрию в спортивной медицине, физиологии труда, промышленной и санитарной гигиене.

Процесс формирования возбуждения не зависит от природы раздражителя, а определяется его количественными характеристиками (силой и длительностью воздействия, скоростью нарастания силы раздражителя).

Электрический ток является адекватным раздражителем для возбудимых тканей, так как именно местные токи между возбужденными (деполяризованными) и покоящимися участками клеточной мембраны вызывают генерацию потенциала действия, когда возбуждение носит распространяющийся характер.

Электрические процессы в возбудимых тканях определяют основные законы раздражения (закон силы, "все или ничего", "силы-времени", градиента, Полярный закон, закон физиологического электротона)

Процесс формирования возбуждения не зависит от природы раздражителя, а определяется его количественными характеристиками (силой и длительностью воздействия, скоростью нарастания силы раздражителя).

Электрический ток является адекватным раздражителем для возбудимых тканей, так как именно местные токимежду возбужденными (деполяризованными) и покоящимися участками клеточной мембраны вызывают генерацию потенциала действия, когда возбуждение носит распространяющийся характер.

Электрические процессы в возбудимых тканях определяют основные законы раздражения (закон силы, "все или ничего", "силы-времени", градиента, полярный закон, закон физиологического электротона)

Закон силы

Чтобы возникло возбуждение, раздражитель должен быть достаточно сильным - пороговым или сверхпороговым

Учитывая, что порог раздражения является мерой возбудимости, которая определяется порогом деполяризации(разница между потенциалом покоя и уровнем критической деполяризации), то этот закон также должен рассматривать зависимость амплитуды ответа возбудимой ткани от силы раздражителя (раздражитель по силе ниже, равный или выше пороговой величины).

Для одиночных образований (нейрон, аксон, нервное волокно) эта зависимость носит название

Закон "все или ничего"

Подпороговые раздражители не вызывают возбуждение ("ничего"). При пороговых и сверхпороговых воздействиях возникает максимальная ответная реакция ("все"), т. е. возбуждение возникает с максимальной амплитудой ПД

По этому закону также сокращаются сердечная мышца и одиночное мышечное волокно.

Закон не являются абсолютным, а носит относительный характер:

. При действии раздражителей подпороговой силы видимая реакция отсутствует, но возникает местная реакция (локальный ответ)

. При действии пороговых раздражителей растянутая мышечная ткань дает большую амплитуду сокращения, чем не растянутая

При регистрации суммарной активности целостного образования (скелетная мышца, состоящая из отдельных мышечных волокон, нервный ствол, состоящий из множества нервных волокон) проявляется другая зависимость

Чем больше сила раздражителя, тем больше величина ответной реакции

При увеличении силы раздражителя от минимальных (пороговых) до субмаксимальных и максимальных значений амплитуда мышечного сокращения возрастает до определенной величины.

Дальнейшее увеличение силы раздражителя не приводит к увеличению амплитуды сокращения.

Это связано с тем, что скелетная мышца состоит из множества мышечных волокон, каждое из которых имеет свою возбудимость, а, следовательно, и свой порог раздражения. Поэтому на пороговый раздражитель отвечают только те волокна, которые имеют максимальную возбудимость.

С увеличением силы раздражителя в реакцию вовлекаются все большее количество мышечных волокон, и амплитуда сокращения мышцы все больше увеличивается.

Когда в реакцию вовлекаются все мышечные волокна, составляющие данную мышцу, дальнейшее увеличение силы раздражителя не приводит к увеличению амплитуды сокращения

Закон "силы-времени"


Закон отражает зависимость пороговой силы раздражителя от времени его действия для возникновения возбужденияи гласит:

Возникновение распространяющегося возбуждения зависит не только от силы раздражителя, но и от времени, в течение которого он действует. Чем больше по силе раздражитель, тем меньшее время он должен действовать для возникновения возбуждения

Зависимость носит обратный характер и имеет вид гиперболы. Из этого следует, что на кривой "силы-времени" имеются области, которые не подчиняются этому закону.

Если сила раздражителя будет меньше некоторой (пороговой) величины, то возбуждение не возникнет даже при длительном его воздействии.

Наоборот, если время воздействия будет очень коротким, то возбуждение тоже не возникнет даже при воздействии очень большого по силе раздражителя (в физиотерапии токи высокой частоты используются для получения калорического эффекта)

Для выявления этой зависимости и оценки возбудимости ткани используются следующие количественные характеристики:

Реобаза - это минимальная сила электрического тока, вызывающая генерацию потенциала действия

Полезное время - это минимальное время, в течение которого на ткань должен действовать раздражитель, равный по силе реобазе, чтобы возникло распространяющееся возбуждение

Хронаксия - это минимальное время, в течение которого на ткань должен действовать раздражитель, равный по силе 2 реобазам, чтобы возникло распространяющееся возбуждение

(при поражении нерва хронаксия увеличивается)

ХРОНАКСИМЕТРИЯ (греч. chronos время + axia количество + metreo измерять) - метод определения возбудимости тканей или органов на основе выявления зависимости между пороговой силой электрического раздражения, вызывающего процесс возбуждения, и длительностью его действия. Соответствующие приборы - хронаксиметры состоят из источника постоянного тока, набора сопротивлений и приспособлений для дозирования времени действия электрического тока, подающегося на объект.

Хронаксиметрию применяют в диагностике поражений центральной и периферической нервной системы, опорно-двигательного аппарата, при определении границ патол. очага и функционального состояния отдельных структур головного мозга в процессе проведения нейрохирургических операций. Относительная простота метода и достаточно четкая интерпретация результатов дали возможность использовать хронаксиметрию в спортивной медицине, физиологии труда, промышленной и санитарной гигиене.



Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Возникновение распространяющегося возбуждения (ПД) воз­можно при условии, когда действующий на клетку раздражитель имеет некоторую минимальную (пороговую силу), иначе говоря, когда сила раздражителя соответствует порогу раздражения.

Порог раздражения – это та наименьшая величина раздражите­ля, которая действуя на клетку какое-то определенное время, способна вызвать максимальное возбуждение.

– наименьшая величина раздражителя, при действии которой потенциал покоя может сместиться до уровня критической де­поляризации;
– критическая величина деполяризации клеточной мембраны, при которой активируется перенос ионов натрия внутрь клетки.


Рисунок 5. Возникновение местного потенциала при прохождении электрического тока, через участок нерва. Ток идет от анода к катоду (оба электрода – вне нерва) частично через пленку жидкости на поверхности нерва, а частично через оболочку нерва и в продольном направлении внутри волокна. Кривая внизу показывает вызываемое то­ком изменения мембранного потенциала нервного волокна (по В. Катц)

Зависимость пороговой силы стимула от его длительности

Пороговая сила любого стимула в определенных пределах нахо­дится в обратной зависимости от его длительности. Эта зависи­мость, открытая Гоорвегом, Вейсом, Лапиком получила назва­ние кривой “сила – длительность” или “сила – время”. Кривая “силы времени” имеет форму, близкую к равносторонней ги­перболе и в первом приближении может быть описана эмпири­ческой формулой:

где I – сила тока, Т – длительность его действия, а и b – постоянные, определяемые свойствами ткани.


Рисунок 6. Особенности возникновения и развития местного потенциала. А – Градуальность местного потенциала – чем сильнее раздражение, тем выше местный потенциал; местный потенциал не имеет определенного порога и возникает при любой силе раздражителя. Б – Продолжительность местного потенциала прямо­пропорциональна силе и длительности раздражения, местный потенциал не имеет латентного периода и возникает практически сразу после воздействия раздражи­теля. В – Местные потенциалы могут суммироваться. Так, если на фоне местного потенциала нанести новое подпороговое раздражение, то возникающий на второе раздражение ответ накладывается на первый и общий суммарный эффект от этого увеличивается

Таким образом, го этой кривой вытекают два следствия:

1. Ток величиной ниже порога не вызывает возбуждения, как бы длительно он не действовал.
2. Какой бы сильный не был раздражитель, но если он дейст­вует очень короткое время, то возбуждение не возникает.

Реобаза – минимальная сила тока (или напряжение), способная вызвать возбуждение. Наименьшее время, в течение которого должен действовать сти­мул в одну реобазу, чтобы вызвать возбуждение – полезное время. Дальнейшее его увеличение не имеет значения для воз­никновения возбуждения.
Порог (реобаза) – величины непостоянные, зависят от функ­ционального состояния клеток в покое, поэтому Лапик предло­жил определять более точный показатель – хронаксию.
Хронаксия – наименьшее время, в течение которого ток в две реобазы должен действовать на ткань, чтобы вызывать возбуж­дение.

Метод определения хронаксии – хронаксиметрия используется в клинике для диагностики повреждения нервных стволов и мышц.

Зависимость порога от крутизны нарастания раздражителя (аккомодация)

Порог раздражения имеет наименьшую величину при толчках электрического тока прямоугольной формы, когда сила нараста­ет очень быстро.

При уменьшении крутизны нарастания стимула ускоряются процессы инактивации натриевой проницаемости, приводящие к повышению порога и снижению амплитуды потенциалов дейст­вия. Чем круче должен нарастать ток, чтобы вызвать возбуждение, тем выше скорость аккомодации. Очень мала скорость аккомодации тех образований, которые склонны к автоматической деятельности (миокард, гладкие мышцы).

“Все” — на пороговые и сверхпороговые стимулы ответ макси­мальный и развивается потенциал действия; “ничего” – надо – пороговый стимул потенциал действия не развивается. Закон “все или ничего” установлен Боудичем в 1871 г. на мыш­це сердца: при подпороговой силе раздражения мышца сердца не сокращается, а при пороговой силе раздражения – сокращение максимально. При дальнейшем увеличении силы раздражения амплитуда со­кращений не увеличивается.

Со временем была установлена и относительность этого закона. Оказалось, что “все” зависит от функционального состояния ткани (охлаждение, исходное растяжение мышцы и т. д.). С появлением микроэлектродной техники было установлено еще одно несоответствие: подпороговое раздражение вызывает мест­ное, не распространяющееся возбуждение, следовательно, нельзя говорить, что допороговое раздражение не дает ничего. Процесс развития возбуждения подчиняется этому закону с уровня критической деполяризации, когда запускается лавино­образное поступление ионов калия в клетку.

Изменение возбудимости при возбуждении

Мера возбудимости – это порог раздражения. При местном, локальном, возбуждений возбудимость увеличивается. Потенциал действия сопровождается многофазными изменения­ми возбудимости.

1. Период повышенной возбудимости соответствует ло­кальному ответу, когда мембранный потенциал достигает УКД, возбудимость повышена.
2. Период абсолютной рефрактерности соответствует фазе деполяризации потенциала действия, пику и началу фазы реполяризации, возбудимость снижена вплоть до полного отсутствия во время пика.
3. Период относительной рефрактерности соответствует оставшейся части фазы реполяризации, возбудимость постепенно восстанавливается к исходному уровню.
4. Супернормальный период соответствует фазе следовой деполяризации потенциала действия (отрицательный следовый потенциал), возбудимость повышена.
5. Субнормальный период соответствует фазе следовой гиперполяризации потенциала действия (положительный следовый потенциал), возбудимость снижена.


Рисунок 7. Изменения возбудимости нервного волокна в различные фазы потен­циала действия и следовых изменений потенциала действия (по Б.И. Ходорову). Для наглядности длительность первых двух фаз на каждой кривой несколько увели­чена. Пунктирной линией на рисунке А обозначает потенциал покоя, а на рисунке Б исходный уровень возбудимости

Закон лабильности или функциональной подвижности

Лабильность — скорость протекания физиологических процессов в возбудимой ткани. Например, можно творить о максимальной частоте раздраже­ния, которую возбудимая ткань способна воспроизводить без трансформации ритма.

Мерой лабильности могут служить:

– длительность отдельного потенциала
– величина абсолютной рефрактерной фазы
– скорость восходящей и нисходящей фаз ПД.

Уровень лабильности характеризует скорость возникновения и компенсации возбуждения в любых клетках и уровень их функ­ционального состояния. Можно измерять лабильность мембран, клеток, органов, причем, в системе из нескольких элементов (тканей, органов, образова­ний) лабильность определяется по участку с наименьшей ла­бильностью:

Полярный закон раздражения (закон Пфлюгера)

Закон изменения мембранного потенциала при действии на воз­будимые ткани постоянного электрического тока открыл Пфлюгер в 1859 г.

1. Постоянный ток проявляет свое раздражающее действие только в момент замыкания и размыкания цепи.
2. При замыкании цепи постоянного тока возбуждение возникает под катодом; при размыкании по анодом.

Изменение возбудимости под катодом.

При замыкании цепи постоянного тока под катодом (действуют допороговым, но продолжительным раздражителем) на мембране возникает стойкая длительная деполяризация, которая не связа­на с изменением ионной проницаемости мембраны, а обусловле­на перераспределением ионов снаружи (они привносятся на электроде) и внутри – катион перемещается к катоду.

Вместе со смещением мембранного потенциала уровень крити­ческой деполяризации (УКД) смещается к нулю. При размыка­нии цепи постоянного тока под катодом мембранный потенциал быстро возвращается к исходному уровню, а УКД медленно, следовательно, порог увеличивается, возбудимость снижается и отмечается католическая депрессия Вериго. Таким образом, воз­буждение возникает только при замыкании цепи постоянного тока под катодом.

Изменение возбудимости под анодом.

При замыкании цепи постоянного тока под анодом (действуют допороговым, но продолжительным раздражителем) на мембране развивается гиперполяризация за счет перераспределения ионов по обе стороны мембраны (без изменения ионной проницаемо­сти мембраны) и возникающее за ней смещение уровня крити­ческой деполяризации в сторону мембранного потенциала. Сле­довательно, порог уменьшается, возбудимость повышается – анодическая экзальтация.

При размыкании цепи мембранный потенциал быстро восста­навливается к исходному уровню и достигает сниженного уров­ня критической деполяризации, генерируется потенциал дейст­вия. Таким образом, возбуждение возникает только при размы­кании цепи постоянного тока под анодом. Сдвиги мембранного потенциала вблизи полюсов постоянного тока получили название электротонических. Сдвиги мембранного потенциала не связанные с изменением ионной проницаемости мембраны клетки называют пассивными.

Проведение возбуждения.

Потенциал действия – это волна возбуждения, распространяю­щаяся по мембранам нервных и мышечных клеток.

ПД обеспечивает передачу информации от рецепторов к нерв­ным центрам и от них к исполнительным органам. Синоним ПД – нервный импульс или спайк. Сложная инфор­мация о действующих на организм раздражениях кодируется в виде отдельных групп потенциалов действия – рядов.

Согласно закону “все или ничего” амплитуда и длительность отдельных потенциалов действия постоянны, а частота и коли­чество в ряду зависит от интенсивности раздражения. Такой способ кодирования информации и ее передачи является наиболее психоустойчивым.

В живых организмах информация может передаваться и гумо­ральным путем.

Преимущества ПД:

1. Информация более целенаправлена;
2. Передается быстро;
3. Адресат точно известен;
4. Информация может быть точнее закодирована.

ПД распространяется за счет местных токов, возникающих меж­ду возбужденным и невозбужденным участками. Из-за переза­рядки мембраны во время генерации потенциала действия по­следний обладает способностью к самораспространению. Воз­никнув на одном участке, является стимулом для соседних. Наступающая после возбуждения в данном участке мембраны рефрактерностъ, обусловливает поступательное движение ПД.

Конкретные особенности распространения возбуждения связаны со строением мембраны клетки, нервных волокон. По мембранам мышечных клеток и в безмякотных нервных во­локнах возбуждение распространяется непрерывно вдоль всей мембраны.

В волокнах, покрытых миелиновой оболочкой, потенциал дейст­вия может распространяться только скачкообразно (сальтаторно), перепрыгивая через участки волокна, покрытые шванновскими клетками, с одного перехвата Ранвье на другой.

Перехваты Ранвье представляют собой своеобразные станции ретрансляции, постоянно усиливающие сигнал, не давая ему угаснуть.

Причины сальтаторного проведения:

1. В перехватах Ранвье, свободных от миелина, сопротив­ление электрическому току минимально;
2. Порог раздражения в перехватах Ранвье минимальный;
3. Амплитуда ПД в каждом перехвате в 5 – 6 раз превыша­ет порог в соседнем перехвате;
4. Велика плотность натриевых каналов на мембране пере­хвата.

Следовательно, возбуждение, возникающее в одном перехвате Ранвье, вызывает смещение электронов во внешней среде данно­го волокна и этого смещения достаточно, чтобы вызвать возбуж­дение в соседнем участке. Таким образом, скорость проведения возбуждения по нервному волокну зависит от диаметра волокон и наличия перехватов Ранвье.

Различают декрементное и бездекрементное распространение волны возбуждения.

ДЕКРЕМЕНТНОЕ проведение:

1. Наблюдается в безмиелиновых волокнах;
2. Скорость проведения невелика;
3. По мере удаления от места возникновения раздражаю­щее действие местных токов постепенно уменьшается вплоть до полного угасания;
4. Свойственно волокнам, которые иннервируют внутрен­ние органы, обладающие низкой функциональной актив­ностью.

БЕЗДЕКРЕМЕНТНОЕ проведение:

1. ПД проходит весь путь от места раздражения до места реализации без затухания.
2. Характерно для миелиновых и тех безмиелиновых волокон, которые передают сигналы к органам, обладающими высокой реактивностью (сердце).

Распространение одиночного потенциала действия само по себе не требует энергетических затрат. Однако, восстановление ис­ходного состояния мембраны и поддержание ее готовности к проведению нового импульса связано с затратой энергии.

Законы проведения возбуждения в нервах

Закон анатомической и физиологической непрерывности волокна.

Любая травма волокна нарушает проводимость. При действии новокаина (дикаина, кокаина) блокируются натриевые и калие­вые каналы мембраны. Возникновение возбуждения и его про­ведение в этом случае становится невозможным.

Закон двустороннего проведения возбуждения

В целом организме по рефлекторной дуге возбуждение всегда распространяется в одном направлении: от рецептора к эффек­тору.

Причины:

1. Возбуждение всегда возникает при раздражении специфиче­ских рецепторов;
2. Рефрактерность во время возбуждения обусловливает по­ступательное движение;
3. В рефлекторной дуге возбуждение с одной нервной клетки на другую передастся в синапсах с помощью медиатора, который может выделяться только в одном направлении.

Закон изолированного проведения возбуждения в нервных стволах.

Передача возбуждения на большие расстояния невозможна из-за значительной потери тока во внеклеточной среде.

Физиология нейронов, глиальных клеток, рецепторов и синапсов

Классическая рефлекторная дуга состоит из:

– рецептора;
– афферентного пути (афферентного нейрона, который распо­лагается в спинальном ганглии);
– нервного центра, где возбуждение с афферентного нейрона переходит на вставочную нервную клетку.

Затем возбуждение переходит на эффекторный орган (эффек­тор), в роли которого может выступать мышца. Многие нервные волокна покрыты глиальными клетками (миелиновая оболочка). Между этими Шванновскими клетками есть промежутки – перехваты Ранвье. Возбуждение с одного нейро­на на другой и с мотонейрона на мышцу передается в синапсах с помощью медиатора.

Нервная клетка – структурная и функциональная единица ДНС, которая окружена клетками нейроглии.

Нейроглия (глиоциты) – совокупность всех клеточных элемен­тов нервной ткани кроме нейронов.

В мозге взрослого человека 1150 – 200 млрд. глиальных клеток, что в 10 раз больше нервных.

Нейроглия:

1. макроглия:
– астроциты;
– олигодендроциты;
– эиендимоциты.

2. микроглия: глиальные макрофаги.

Астроциты составляют 45 – 60% серого вещества мозга. Покры­вают 85% поверхности капилляров мозга (сосудистые ножки астроцитов), крупные отростки астроцитов контактируют с те­лами нейронов. Основная функция – трофическая.
Олигодендроциты образуют миелин в нервной системе к поддерживают его целостность.
Эпендимоциты – клетки, выстилающие стенки спинномозгового канала и всех желудочков головного мозга. Это граница между спинномозговой жидкостью (ликвор) и тканью мозга.

Функции нейроглии:

1. Опорная – вместе с сосудами и мозговыми оболочками образуют строму ткани мозга.
2. Трофическая – обеспечивают метаболизм нервных клеток (связь с кровеносными сосудами). В глиоцитах сосредоточен весь гликоген ЦНС.
3. Участие в интегративной деятельности мозга:
– формирование следов воздействия (память), а значит и ус­ловного рефлекса;
– без глиоцитов (блокада антиглиальным гамма-глобулином) меняется электрическая активность нейронов.

Особенности глиальных клеток:

1. Более чувствительны к ионным изменениям среды;
2. Высокая активность калий – натриевой АТФ-азы;
3. Высокая проницаемость для ионов калия;
4. Мембранный потенциал равен 90 мВ, у нейронов 60 – 80 мВ;
5. На раздражение отвечает только медленной деполяризацией не более 10 мВ;
6. Потенциал действия в глиальных клетках не генерируется.

Читайте также: