Закон харди вайнберга кратко

Обновлено: 02.07.2024

Закон Харди-Вайнберга — это ключевая закономерность популяционной генетики. Этот закон можно сформулировать следующим образом: в популяции бесконечно большого размера, в которой не действует отбор, мутационный процесс, отсутствует обмен особями с другими популяциями, а так же ассортативность скрещиваний, частоты генотипов по какому-либо гену (в случае если в популяции есть два аллеля этого гена) будут поддерживаться постоянными из поколения в поколение и соответствовать уравнению:

p² + 2pq + q² = 1

Где p² — доля гомозигот по одному из аллелей; p — частота этого аллеля;

q² — доля гомозигот по альтернативному аллелю; q — частота соответствующего аллеля;

2pq — доля гетерозигот.

Содержание

Статистическое обоснование закономерности

Рассмотрим популяцию, бесконечно большого размера, в которой на частоты аллелей изучаемого гена не действуют какие-либо факторы, а так же имеет место панмиксия. Изучаемый ген имеет два аллельных состояния A и a. В момент времени (или в поколение) n, частота аллеля A = pn, частота аллеля a = qn, тогда, pn+qn=1. Пусть Pn, Hn, Qn — частоты генотипических классов AA, Aa и aa в момент времени n. Тогда pn=Pn+Hn/2, qn=Qn+Hn/2. Так как в условиях панмиксии вероятность встречи гамет, происходящих от разных генотипических классов (P, H, Q) родителей подчиняется статистическим закономерностям, то можно рассчитать частоты классов потомков (Pn+1, Hn+1, Qn+1) в следующем поколении (n+1). Возможны следующие варианты скрещивания

Потомками от скрещиваний 1, 3 и 6 будут особи с генотипами AA, Aa и aa соответственно; в результате скрещивания 2 — будет по половине особей с генотипами AA и Aa; в результате скрещивания 5 — будет по половине особей с генотипами Aa и aa; скрещивание 4 — даст все три возможных класса потомков (AA, Aa и aa) в пропорции 1 : 2 : 1.

Исходя из вероятностей скрещиваний и пропорций в потомках от этих скрещиваний можно рассчитать частоты генотипических классов в поколении n+1.

Так как, Pn + Hn + Qn = 1, Pn+1 + Hn+1 + Qn+1 = 1 и исходя из соотношений написанных выше между частотами аллелей а генотипических классов эти выражения можно привести к виду:

Аналогично можно рассчитать, что соотношение между классами P, H, Q в поколении n+2 и последующих не изменится, и будет соответсвовать прведённому в начале статьи уравнению.

В случае, если число рассматриваемых аллелей гена более двух, формула, описывающая равновесные частоты генотипов усложняется и её можно записать в общем виде как:

где p, q, z и т. д. — частоты аллельных вариантов гена в исследуемой популяции; разложив в левой части уравнения квадрат суммы получим выражение, состоящее из суммы квадратов частот аллелей и удвоенных произведений всех попарных комбинаций этих частот:

Биологический смысл закона Харди-Вайнберга

Процесс наследования не влияет сам по себе на частоту аллелей в популяции, а возможные изменения её генетической структуры возникают вследствие других причин.

Условия действия закона Харди-Вайнберга

Закон действует в идеальных популяциях, состоящих из бесконечного числа особей, полностью панмиксических и на которых не действуют факторы внешней среды.

Равновесие Харди-Вайнберга в реальных популяциях

На реальные популяции в той или иной степени действуют факторы, небезразличные для поддержания равновесия Харди — Вайнберга по каким-либо генетическим маркерам. В популяциях многих видов растений или животных распространены такие явления как инбридинг или самооплодотворение — в таких случаях происходит уменьшение доли или полное изчезновение класса гетерозигот (например — см. [3]). В случае сверхдоминирования наоборот, доли классов гомозигот будут меньше расчётных.

Практическое значение закона Харди–Вайнберга

В здравоохранении – позволяет оценить популяционный риск генетически обусловленных заболеваний, поскольку каждая популяция обладает собственным аллелофондом и, соответственно, разными частотами неблагоприятных аллелей. Зная частоты рождения детей с наследственными заболеваниями, можно рассчитать структуру аллелофонда. В то же время, зная частоты неблагоприятных аллелей, можно предсказать риск рождения больного ребенка. В селекции – позволяет выявить генетический потенциал исходного материала (природных популяций, а также сортов и пород народной селекции), поскольку разные сорта и породы характеризуются собственными аллелофондами, которые могут быть рассчитаны с помощью закона Харди-Вайнберга. Если в исходном материале выявлена высокая частота требуемого аллеля, то можно ожидать быстрого получения желаемого результата при отборе. Если же частота требуемого аллеля низка, то нужно или искать другой исходный материал, или вводить требуемый аллель из других популяций (сортов и пород). В экологии – позволяет выявить влияние самых разнообразных факторов на популяции. Дело в том, что, оставаясь фенотипически однородной, популяция может существенно изменять свою генетическую структуру под воздействием ионизирующего излучения, электромагнитных полей и других неблагоприятных факторов. По отклонениям фактических частот генотипов от расчетных величин можно установить эффект действия экологических факторов. (При этом нужно строго соблюдать принцип единственного различия. Пусть изучается влияние содержания тяжелых металлов в почве на генетическую структуру популяций определенного вида растений. Тогда должны сравниваться две популяции, обитающие в крайне сходных условиях. Единственное различие в условиях обитания должно заключаться в различном содержании определенного металла в почве).

В основе популяционной генетики, изучающей генотипы живых организмов без использования скрещиваний, лежит закон Харди-Вайнберга. Его сформулировали независимо друг от друга двое ученых в 1908 г. Данный закон, который также называют равновесием и уравнением, соблюдается только при определенных идеальных условиях.

Уравнение Харди-Вайнберга представляет собой математическую модель, объясняющую, каким образом в генофонде популяции сохраняется генетическое равновесие.

Формулировка закона Харди-Вайнберга

Частота генотипов по определенному гену в популяции остается постоянной в ряду поколений и соответствует уравнению p 2 + 2pq + q 2 = 1, где

  • p 2 — частота как доля от единицы гомозигот по одному аллелю (например, доминантному – AA ),
  • q 2 — частота гомозигот по другому аллелю ( aa ),
  • 2pq — частота гетерозигот ( Aa ),
  • p — частота в популяции первого аллеля ( A ),
  • q — частота второго аллеля ( a ).

При этом p + q = 1 , или A + a = 1 .

Также из законов математики следует

(p + q) 2 = p 2 + 2pq + q 2

Формула квадрата двучлена используется для одного исследуемого гена, имеющего всего два аллеля.

Может встречаться формулировка не по отношению к генотипам, а по отношению к аллелям: частоты доминантного и рецессивного аллелей в популяции будут оставаться постоянными в ряду поколений при соблюдении ряда условий. То есть значений p и q не будут изменяться из поколения в поколение.

Таким образом, закон Харди-Вайнберга позволяет рассчитать частоты аллелей и генотипов в популяции, что является важной ее характеристикой, так как именно популяция рассматривается как единица эволюции.

Условия соблюдения закона Харди-Вайнберга

Закон Харди-Вайнберга в полной мере соблюдается при выполнении следующих условий:

  • Популяция должна иметь большой размер.
  • Особи не должны выбирать брачного партнера в зависимости от генотипа по исследуемому гену.
  • Миграции особей из популяции и в нее должны отсутствовать.
  • В отношении изучаемого гена (его аллелей) не должен действовать естественный отбор. Другими словами, все генотипы по исследуемому гену должны быть одинаково плодовитыми.
  • Не должно возникать новых мутаций исследуемого гена.

Так, если в популяции гомозиготы по рецессивному аллелю имеют пониженную жизнеспособность или не выбираются брачными партнерами, то в отношении такого гена закон Харди-Вайнберга не выполняется.

Таким образом, частота аллелей в популяции остается постоянной, если скрещивание особей случайно, и на популяцию не действуют каких-либо внешние факторы.

Отклонение от закона Харди-Вайнберга (это значит, что в популяции частота аллелей гена меняется) говорит о том, что на популяцию действует какой-либо фактор эволюции. Однако в больших популяциях отклонения бывают незначительными, если рассматривать краткосрочный период времени. Данный факт позволяет использовать закон для проведения расчетов. С другой стороны, в эволюционном масштабе динамика генофонда популяции отражает то, как эволюция протекает на генетическом уровне.

Применение уравнения Харди-Вайнберга

В большинстве случаев частоту аллелей и генотипов вычисляют, взяв за основу частоту гомозиготных особей по рецессивному аллелю. Это единственный генотип, который однозначно распознается по фенотипическому проявлению. Тогда как отличить доминантные гомозиготы от гетерозигот часто не представляется возможным, поэтому их долю вычисляют, пользуясь уравнением Харди-Вайнберга.

Допустим, в гипотетической популяции людей присутствуют только два аллеля цвета глаз — карий и голубой. Карий цвет определяется доминантным A аллелем гена, голубой — рецессивным a . Пусть кареглазых людей будет 75% (или в долях 0,75), а голубоглазых 25% (0,25). Требуется определить в популяции

  1. долю гетерозигот Aa и доминантных гомозигот AA ,
  2. частоту аллелей A и a .

Если доля рецессивных гомозигот составляет 0,25, то доля рецессивного аллеля находится как квадратный корень из этого числа (исходя из формулы p 2 + 2pq + q 2 = 1, где q 2 — частота рецессивных гомозигот, а q — частота рецессивного аллеля), то есть будет 0,5 (или 50%). Поскольку в гипотетической популяции только два аллеля, сумма их долей составит единицу: p + q = 1. Отсюда находим долю доминантного аллеля: p = 1 - 0,5 = 0,5. Таким образом, частота обоих аллелей составляет по 50%. Мы ответили на второй вопрос.

Частота гетерозигот составляет 2pq . В данном случае 2 * 0,5 * 0,5 = 0,5. Отсюда следует, что из 75% кареглазых людей 50% являются гетерозиготами. Тогда на долю доминантных гомозигот остается 25%. Мы ответили на первый вопрос задачи.

Рассмотрим другой пример использования уравнения Харди-Вайнберга. Такое заболевание человека как муковисцидоз встречается только у рецессивных гомозигот. Частота заболевания составляет примерно 1 больной на 2500 человек. Это значит, что 4 человека из 10000 являются гомозиготами, что составляет в долях единицы 0,0004. Таким образом, q 2 = 0,0004. Извлекая квадратный корень, находим частоту рецессивного аллеля: q = 0,02 (или 2 %). Частота доминантного аллеля будет равна p = 1 - 0,02 = 0,98. Частота гетерозигот: 2pq = 2 · 0,98 · 0,02 = 0,039 (или 3,9 %). Значение частоты гетерозигот позволяет оценить количество патогенных генов, находящихся в скрытом состоянии.

Такие вычисления показывают, что, несмотря на малое число особей с гомозиготным рецессивным генотипом, частота рецессивного аллеля в популяциях достаточно велика за счет его нахождения в генотипах гетерозигот (носителей).

Закон Харди-Вайнберга в случае множественного аллелизма

Уравнение Харди-Вайнберга применяется и для случаев множественного аллелизма. При этом для определения частот генотипов в квадрат возводится многочлен из частот аллелей.

Если существует три аллеля гена (a1, a2, a3), то их частоты (p, q, r) в сумме будут давать единицу: p + q + r = 1. Если возвести уравнение в квадрат, то получим следующее распределение частот генотипов:

(p + q + r) 2 = p 2 + q 2 + r 2 + 2pq + 2pr + 2qr = 1

Здесь p 2 , q 2 , r 2 — это частоты гомозигот: соответственно a1a1, a2a2, a3a3. Произведения 2pq, 2pr, 2qr — частоты гетерозиготных генотипов: a1a2, a1a3, a2a3.

Закон Харди — Вайнберга характеризует распределение частот генотипов в популяциях, которые не эволюционируют. Поэтому он является фундаментальной нулевой моделью для популяционной генетики. Несмотря на то что в природе обычно всё развивается, будь то трава на лугу, волки в лесу или даже бактерии в организме человека, это совсем не означает, что все они придут к какому-то окончательному состоянию совершенства.

Популяционная генетика

Менделевская генетика

В соответствии с ныне дискредитированной теорией смешанного наследования, генетический материал был задуман как жидкость. Она объединяет черты двух индивидуумов в фенотипически промежуточное потомство. Учитывая наблюдаемые закономерности сходства между родителями и потомками, смешение генного материала интуитивно кажется разумным. Именно так думали многие современники Чарльза Дарвина.

Менделевская генетика

Такой способ наследования, однако, поставил под вопрос жизнеспособность дарвинской теории естественного отбора. А ведь она напрямую зависит от существования изменчивости передаваемых признаков у различных видов организмов. Смешивание генофонда быстро разрушило бы такие вариации, поскольку весь материал будет передаваться от одного поколения к другому до тех пор, пока все особи не будут иметь один и тот же смешанный генотип.

В своих знаменитых экспериментах на растениях гороха Грегор Иоганн Мендель отверг этот механизм, продемонстрировав, что альтернативные версии аллелей объясняют различия в унаследованных признаках, хотя на самом деле не знал о генах как таковых. Он опубликовал свои выводы в 1866 году. Эта работа долгое время оставалась неясной, пока не была повторно открыта в 1900, что помогло создать современную область генетики.

Закон сегрегации Менделя в актуальных терминах гласит, что диплоидный индивид несёт две отдельные копии каждого аутосомного гена (то есть по одной на каждого члена пары гомологичных хромосом). Каждая гамета получает только одну копию, которая выбирается случайным образом. Согласно менделевскому закону разделения, обе реплики имеют равные шансы стать частью половой клетки.

Даже после того, как бо́льшая часть научного сообщества приняла законы Менделя, оставалась путаница в отношении сохранения генетической изменчивости в природных популяциях. Некоторые противники утверждали, что доминантные черты должны увеличиваться, а рецессивные уменьшаться по частоте, что не наблюдается в реальных экосистемах.

В 1908 году Харди опроверг такие аргументы в статье, которая вместе с независимо опубликованным документом Вайнберга заложила основы для области популяционной генетики.

Основы равновесия

Теорема Харди — Вайнберга имеет дело с менделевской теорией в контексте популяций диплоидных, размножающихся половым путём, особей. Учитывая набор предположений, эта работа гласит:

Менделевская теория

  • Частоты аллелей в совокупности организмов одного вида не будут меняться на протяжении поколений.
  • Если частоты популяционных генотипов с двумя генами в локусе равны p и q, то ожидаемые признаки — p ², 2 pq и q ². Это частотное распределение не изменится для потомков, когда видовое население находится в равновесии Харди-Вайнберга. Например, локусы в конкретной популяциях p и q соответствует аллелям A и a, тогда частота генотипа AA = p ², Aa = 2 pq и aa = q ². Если в локусе только два аллеля, то по необходимости p + q равно единице. Закон Харди — Вайнберга и его математическое выражение (в виде уравнения) выглядит следующим образом: (p + q) ² = p ² + 2 pq + q ² = 1. Применение этой теоремы возможно и к локусам с более чем двумя версиями генов. В этом случае ожидаемые частоты генотипов определяются мультиномиальным разложением для всех k аллелей, выделяющихся в популяции: (p1 + p2 + p3 +… + pk) ².

Выводы из теоремы Харди — Вайнберга применимы только тогда, когда совокупность соответствует следующим допущениям:

Генетический дрейф

  • Естественный отбор не действует на данный локус. То есть нет постоянных различий в вероятностях выживания или размножения между генотипами.
  • Ни мутация (происхождение новых аллелей), ни миграция (перемещение особей или их генов в популяцию или из неё) не привносят в видовое сообщество новых генотипов.
  • Размер популяции бесконечен. Это означает, что генетический дрейф не вызывает случайных изменений в частотах аллелей из-за ошибки выборки от одного поколения к следующему. Очевидно, что все естественные видовые совокупности конечны и, следовательно, подвержены дрейфу. Однако ожидается, что в малых популяциях такой эффект будет более выраженным.
  • Скрещивание людей, по отношению к рассматриваемому локусу, происходит случайным образом. Хотя неслучайное спаривание не меняет версий генов на протяжении поколений, если выполняются другие условия. Например, оно может генерировать отклонения от ожидаемых частот генотипа или подготовить почву для естественного отбора, чтобы вызвать эволюционные изменения.

Если версии генов отклоняются от формулировки закона Харди — Вайнберга, то для того, чтобы привести их в равновесные пропорции, требуется только одно поколение случайных спариваний. Но только при условии, что вышеупомянутые предположения верны, а частоты аллелей равны у мужчин и у женщин (или что особи являются гермафродитами), и этот локус аутосомен.

Учитывая эти условия, легко получить ожидаемые частоты генотипа Харди — Вайнберга, если подумать о случайном спаривании с точки зрения вероятности создания каждого набора версий генов посредством случайного объединения гамет в зиготы. Поскольку существует два способа формирования гетерозиготных генотипов (А или а яйцеклетка и а или А сперматозоид), просуммировать вероятности этих двух типов союзов и прийти к ожидаемой частоте, согласно формуле Харди — Вайнберга.

Главные выводы

Важно признать, что такое равновесие является нейтральным. Это означает, что популяция, возмущённая частотами своего генотипа, действительно достигнет такой модели после одного поколения случайного спаривания (если оно подчиняется другим допущениям теоремы). Однако если частоты аллелей изменились, то это будет новое равновесие. Такое свойство отличает нейтральную модель от стабильной, в котором нарушение системы возвращает её в то же состояние.

Учитывая популяцию, в которой известно число людей с каждым генотипом, можно проверить статистическое отклонение от теоремы, используя простой критерий соответствия хи — квадрат или более мощный и точный тест. Последний класс методов оказался особенно полезным для крупномасштабных исследований генома. В них учёные оценивали тысячи локусов, сегрегирующих для множественных аллелей.

Наблюдаемые пропорции генотипа

Наблюдаемые пропорции генотипа в природных популяциях обычно практически соответствуют правилам теоремы, поскольку можно ожидать, что видовая группа, выведенная из равновесия, может достичь новых равновесных частот только после одного поколения случайного спаривания.

Хотя статистическое отклонение обычно указывает на возможное нарушение предположений теоремы, обратное утверждение не всегда верно. Некоторые формы естественного отбора могут генерировать распределение генотипических частот, которые соответствуют тем, что описывает закон. Но также может быть верно, что процессы миграции или мутации происходят, но с такими низкими показателями, которые невозможно обнаружить с помощью доступных статистических методов. И, конечно же, все популяции в биологии конечны и подвержены, по крайней мере, некоторой эволюции через генетический дрейф.

Следствия закона

Теорема демонстрирует, что менделевские локусы, сегрегирующие по множественным аллелям в диплоидных популяциях, сохранят предсказуемые уровни генетической изменчивости при отсутствии факторов, которые влияют на структурные изменения генотипов. Основным способом визуализации этих вероятностей является график p ², 2 pq и q ² в зависимости от частот аллелей. Если его нарисовать, то можно увидеть два важных следствия:

  • Популяционная гетерозиготность наиболее высокая при выполнении равенства p = q = 0,5.
  • Редкие аллели обнаруживаются главным образом у гетерозигот, как и должно быть, учитывая, что q ² намного меньше, чем 2 pq, когда q близко к нулю, и p ² мало, в соотношении с 2 pq, если p стремится к 0.

Новая доминантная мутация

Второй пункт приобретает особое значение, если рассмотреть возможность естественного отбора влиять на частоты новых мутаций. Когда популяция соответствует всем другим вероятностям закона, отбор в конечном счёте определит полезный ген, так что все индивидуумы будут гомозиготными по этому аллелю. Первоначальное увеличение частоты редкого, выгодного, доминантного гена происходит быстрее, чем у редкого, рецессивного аллеля.

Новая доминантная мутация характеризуется тем, что она сразу видна при естественном отборе, потому что его влияние на физическую форму проявляется у гетерозигот. Таким образом, Харди продемонстрировал, что доминирование само по себе не изменяет частоты аллелей в локусе, но, как правило, оказывает существенное влияние на эволюционные траектории.

Отбор, мутация, миграция и свободный генетический дрейф являются механизмами, которые влияют на изменение версий генов. И когда действует одна или несколько этих сил, популяция нарушает постулаты описываемого закона и происходит эволюция.

Эволюционные механизмы

Надо сказать, что идеальных решений нет. И постулаты теоремы нарушаются соответственно различным механизмам эволюции:

Мутация ген

Все перечисленные механизмы могут действовать в той или иной степени в любой естественной популяции. Фактически эволюционная траектория гена может быть результатом нескольких инструментов эволюции, действующих одновременно. Мутация может продуцировать новый аллель, который затем одобряется (или нет) естественным отбором.

Мутация может продуцировать новый аллель

Эволюция происходит прямо здесь и сейчас. Это означает, что любая популяция меняется в своём генетическом составе в течение нескольких поколений. И изменения могут быть незначительными. Например, у волков может быть сдвиг в частоте генного варианта для чёрного, а не для серого меха. Иногда такие изменения происходят в результате естественного процесса отбора. В других случаях причина тому миграция новых организмов в популяцию или случайные события, всё это — эволюционная лотерея.

Популяция является формой существования любого вида. Популяция - это совокупность особей одного вида, достаточно длительное время существующая на одной территории, внутри которой осуществляется панмиксия и которая отделена от других таких же совокупностей той или иной степенью изоляции.

Совокупность генотипов всех особей, составляющих данную популяцию, носит название генофонд.

Существует ли закономерность в распределении генов и генотипов внутри генофонда? Да. Она была сформулирована в 1908 году одновременно двумя учеными: английским математиком Харди и немецким врачом Вайнбергом и получила название закона Харди-Вайнберга. Этот закон полностью справедлив только для идеальных популяций, т.е. популяций, отвечающих следующим требованиям:

1) бесконечно большая численность;

2) внутри популяции осуществляется панмиксия (свободное скрещивание);

3) отсутствуют мутации по данному гену;

4) отсутствует приток и отток генов;

5) отсутствует отбор по анализируемому признаку (признак нейтральный!).

Природные популяции в большинстве своем приближаются к идеальным, поэтому данный закон находит применение.

Закон Харди-Вайнберга имеет математическое и словесное выражения, причем в двух формулировках:

Частоты встречаемости генов одной аллельной пары в популяции остаются постоянными из поколения в поколение.

p + q = 1,где p – частота встречаемости доминантного аллеля (А), q – частота встречаемости рецессивного аллеля (a).

Частоты встречаемости генотипов в одной аллельной паре в популяции остаются постоянными из поколения в поколение, а их распределение соответствует коэффициентам разложения бинома Ньютона 2-й степени.

p 2 + 2pq +q 2 = 1

Эту формулу следует выводить с помощью генетических рассуждений.

Допустим, что в генофонде популяции доминантный аллель А встречается с частотой р, а рецессивный аллель а с частотой q. Тогда в этой же популяции женские и мужские гаметы будут нести аллель А с частотой р, а аллель а с частотой q. При свободном скрещивании (панмиксии) происходит случайное слияние гамет и образуются самые разные их сочетания:

qa
pA р 2 AA pqAa
qa pqAa q 2 aa

Запишем полученные генотипы в одну строку:

p 2 AA + 2pqAa + q 2 aa = 1.

Теперь докажем на конкретном примере, что частоты встречаемости генов одной аллельной пары из поколения в поколение не меняются. Допустим, что в некой популяции в данном поколении pA = 0,8, qa = 0,2. Тогда в следующем поколениибудет:

0,8А 0,2a
0,8A 0,64AA 0,16Aa
0,2a 0,16Aa 0,04aa

0,64 АА + 0,32 Аа + 0,04 аа = 1.

При этом частота встречаемости аллельных геновв гаметах остается без изменений:

А = 0,64+0,16 = 0,8; а = 0,04+0,16 = 0,2.

Закон Харди-Вайнберга применим и для множественных аллелей.

Так, для трех аллельных генов формулы будут следующие:

(I) p + q + r = 1,

(II) p 2 + 2pq + 2pr + 2 qr + q 2 + r 2 = 1.

Практическое значение закона Харди-Вайнберга состоит в том, что он позволяет рассчитать генетический состав популяции в данный момент и выявить тенденцию его изменения в будущем.

Применение этого закона на практике показало, что популяции отличаются друг от друга по частоте встречаемости генов. Так, по генам группы крови в системе АВ0 различия между русскими и англичанами были следующие:

I A I B I 0
Русские 0,25 0,19 0,56
Англичане 0,25 0,05 0,70

Дрейф генов

В малочисленных популяциях закон Харди-Вайнберга не действует. Там имеет место явление дрейфа генов. Под дрейфом генов понимают случайное изменение частоты встречаемости генов одной аллельной пары в популяции. Ввели данный термин зарубежные ученые. Российские ученые это явление назвали генетико-автоматическими процессами.

Дрейф генов может привести популяцию в гомозиготное состояние. Он играет очень важную роль в формировании генофонда малочисленных популяций. Именно дрейфом генов ученые объясняют отсутствие у североамериканских индейцев (коренных жителей) гена группы крови I B , и соответственно у них имеется только две группы крови (0 и А).

Доказательство дрейфа генов было получено в эксперименте на мухах-дрозофилах. Мух анализировали по одному признаку – строению щетинки

(адаптивного значения не имеет):

А – ген, определяющий нормальное строение щетинки;




а – ген, определяющий раздвоенность щетинки.

Взяли 96 ящиков, в каждый из них поместили по 4 самца и 4 самки. Из полученного потомства в каждом поколении методом случайной выборки оставляли в каждом ящике 4 самца и 4 самки. И так проделывали на протяжении 16 поколений. На 16-м поколении получили следующий результат: в 41 ящике все мухи имели генотип АА, в29 ящиках – генотип аа, в 26 – генотип Аа.

Методы изучения наследственности человека: генеалогический, близнецовый, биохимический, цитогенетический, генетики соматических клеток, популяционно-статистический, моделирования, методы изучения ДНК. Их сущность и возможности.

К методам, используемым в генетике человека, относятся следующие:

· генеалогический,

· близнецовый,

· цитогенетический,

· биохимический,

· генетики соматических клеток,

· популяционно-статистический,

· методы моделирования,

· молекулярно-генетические методы,

· дерматоглифики и пальмоскопии.

Для каждого метода необходимо знать его сущность (как проводится) и возможности.

Популяция является формой существования любого вида. Популяция - это совокупность особей одного вида, достаточно длительное время существующая на одной территории, внутри которой осуществляется панмиксия и которая отделена от других таких же совокупностей той или иной степенью изоляции.

Совокупность генотипов всех особей, составляющих данную популяцию, носит название генофонд.

Существует ли закономерность в распределении генов и генотипов внутри генофонда? Да. Она была сформулирована в 1908 году одновременно двумя учеными: английским математиком Харди и немецким врачом Вайнбергом и получила название закона Харди-Вайнберга. Этот закон полностью справедлив только для идеальных популяций, т.е. популяций, отвечающих следующим требованиям:

1) бесконечно большая численность;

2) внутри популяции осуществляется панмиксия (свободное скрещивание);

3) отсутствуют мутации по данному гену;

4) отсутствует приток и отток генов;

5) отсутствует отбор по анализируемому признаку (признак нейтральный!).

Природные популяции в большинстве своем приближаются к идеальным, поэтому данный закон находит применение.

Закон Харди-Вайнберга имеет математическое и словесное выражения, причем в двух формулировках:

Частоты встречаемости генов одной аллельной пары в популяции остаются постоянными из поколения в поколение.

p + q = 1,где p – частота встречаемости доминантного аллеля (А), q – частота встречаемости рецессивного аллеля (a).

Частоты встречаемости генотипов в одной аллельной паре в популяции остаются постоянными из поколения в поколение, а их распределение соответствует коэффициентам разложения бинома Ньютона 2-й степени.

p 2 + 2pq +q 2 = 1

Эту формулу следует выводить с помощью генетических рассуждений.

Допустим, что в генофонде популяции доминантный аллель А встречается с частотой р, а рецессивный аллель а с частотой q. Тогда в этой же популяции женские и мужские гаметы будут нести аллель А с частотой р, а аллель а с частотой q. При свободном скрещивании (панмиксии) происходит случайное слияние гамет и образуются самые разные их сочетания:

qa
pA р 2 AA pqAa
qa pqAa q 2 aa

Запишем полученные генотипы в одну строку:

p 2 AA + 2pqAa + q 2 aa = 1.

Теперь докажем на конкретном примере, что частоты встречаемости генов одной аллельной пары из поколения в поколение не меняются. Допустим, что в некой популяции в данном поколении pA = 0,8, qa = 0,2. Тогда в следующем поколениибудет:

0,8А 0,2a
0,8A 0,64AA 0,16Aa
0,2a 0,16Aa 0,04aa

0,64 АА + 0,32 Аа + 0,04 аа = 1.

При этом частота встречаемости аллельных геновв гаметах остается без изменений:

А = 0,64+0,16 = 0,8; а = 0,04+0,16 = 0,2.

Закон Харди-Вайнберга применим и для множественных аллелей.

Так, для трех аллельных генов формулы будут следующие:

(I) p + q + r = 1,

(II) p 2 + 2pq + 2pr + 2 qr + q 2 + r 2 = 1.

Практическое значение закона Харди-Вайнберга состоит в том, что он позволяет рассчитать генетический состав популяции в данный момент и выявить тенденцию его изменения в будущем.

Применение этого закона на практике показало, что популяции отличаются друг от друга по частоте встречаемости генов. Так, по генам группы крови в системе АВ0 различия между русскими и англичанами были следующие:

I A I B I 0
Русские 0,25 0,19 0,56
Англичане 0,25 0,05 0,70

Дрейф генов

В малочисленных популяциях закон Харди-Вайнберга не действует. Там имеет место явление дрейфа генов. Под дрейфом генов понимают случайное изменение частоты встречаемости генов одной аллельной пары в популяции. Ввели данный термин зарубежные ученые. Российские ученые это явление назвали генетико-автоматическими процессами.

Дрейф генов может привести популяцию в гомозиготное состояние. Он играет очень важную роль в формировании генофонда малочисленных популяций. Именно дрейфом генов ученые объясняют отсутствие у североамериканских индейцев (коренных жителей) гена группы крови I B , и соответственно у них имеется только две группы крови (0 и А).

Доказательство дрейфа генов было получено в эксперименте на мухах-дрозофилах. Мух анализировали по одному признаку – строению щетинки

(адаптивного значения не имеет):

А – ген, определяющий нормальное строение щетинки;

а – ген, определяющий раздвоенность щетинки.

Взяли 96 ящиков, в каждый из них поместили по 4 самца и 4 самки. Из полученного потомства в каждом поколении методом случайной выборки оставляли в каждом ящике 4 самца и 4 самки. И так проделывали на протяжении 16 поколений. На 16-м поколении получили следующий результат: в 41 ящике все мухи имели генотип АА, в29 ящиках – генотип аа, в 26 – генотип Аа.

Методы изучения наследственности человека: генеалогический, близнецовый, биохимический, цитогенетический, генетики соматических клеток, популяционно-статистический, моделирования, методы изучения ДНК. Их сущность и возможности.

К методам, используемым в генетике человека, относятся следующие:

· генеалогический,

· близнецовый,

· цитогенетический,

· биохимический,

· генетики соматических клеток,

· популяционно-статистический,

· методы моделирования,

· молекулярно-генетические методы,

· дерматоглифики и пальмоскопии.

Для каждого метода необходимо знать его сущность (как проводится) и возможности.

Чтобы изменить состав генофонда, требуется нечто большее, чем генетическая рекомбинация.

Рассмотрим этот закон на простом примере. Назовем два аллеля Х и х. Тогда у особей могут встречаться четыре следующие комбинации этих аллелей: ХХ, хх, хХ и Хх. Если обозначить через p и q частоту встречаемости индивидуумов с аллелями Х и х соответственно, то согласно закону Харди—Вайнберга

p 2 + 2pq + q 2 = 100%,

где p 2 — частота встречаемости индивидуумов с аллелями ХХ, 2pq — с аллелями Хх или хХ, а q 2 — частота встречаемости индивидуумов с аллелями хх. Эти частоты, при соблюдении сформулированных выше условий, будут оставаться постоянными из поколения в поколение, независимо от изменения количества индивидуумов и от того, насколько велики (или малы) p и q. Этот закон представляет собой модель, используя которую генетики могут количественно определять изменения в распределении генов в популяции, вызванные, например, мутациями или миграцией. Другими словами, этот закон является теоретическим критерием для измерения изменений в распределении генов.

Годфри Харолд ХАРДИ

Английский математик, родился в Кранли, графство Суррей. Сын учителя рисования. Изучал математику в Кембриджском и Оксфордском университете. Пожалуй, самую большую известность Харди принесли совместные работы с Джоном Идензором Литлвудом (John Edensor Littlewood, 1885–1977) и позднее с индийским математиком-самоучкой Cриниваса Рамануджаном (Srinivasa Aaiyangar Ramanujan, 1887–1920), который работал клерком в Мадрасе. В 1913 году Рамануджан послал Харди список доказанных им теорем. Признав гениальность юного клерка, Харди пригласил его в Кембридж, и в течение нескольких лет, предшествовавших безвременной смерти Рамануджана, они опубликовали серию блестящих совместных работ.

Вильгельм ВАЙНБЕРГ

Немецкий врач, имевший большую частную практику в Штуттгарте. По воспоминаниям современников, помог появиться на свет 3500 младенцам, в том числе по крайней мере 120 парам близнецов. На основании собственных наблюдений над рождением близнецов и переоткрытых генетических законов Менделя пришел к выводу, что предрасположенность к рождению двуяйцевых (неидентичных) близнецов передается по наследству.

Читайте также: