Взвешенный метод наименьших квадратов кратко

Обновлено: 17.05.2024

Начнем статью сразу с примера. У нас есть некие экспериментальные данные о значениях двух переменных – x и y . Занесем их в таблицу.

i = 1 i = 2 i = 3 i = 4 i = 5
x i 0 1 2 4 5
y i 2 , 1 2 , 4 2 , 6 2 , 8 3 , 0

После выравнивания получим функцию следующего вида: g ( x ) = x + 1 3 + 1 .

Мы можем аппроксимировать эти данные с помощью линейной зависимости y = a x + b , вычислив соответствующие параметры. Для этого нам нужно будет применить так называемый метод наименьших квадратов. Также потребуется сделать чертеж, чтобы проверить, какая линия будет лучше выравнивать экспериментальные данные.

В чем именно заключается МНК (метод наименьших квадратов)

Главное, что нам нужно сделать, – это найти такие коэффициенты линейной зависимости, при которых значение функции двух переменных F ( a , b ) = ∑ i = 1 n ( y i - ( a x i + b ) ) 2 будет наименьшим. Иначе говоря, при определенных значениях a и b сумма квадратов отклонений представленных данных от получившейся прямой будет иметь минимальное значение. В этом и состоит смысл метода наименьших квадратов. Все, что нам надо сделать для решения примера – это найти экстремум функции двух переменных.

Как вывести формулы для вычисления коэффициентов

Для того чтобы вывести формулы для вычисления коэффициентов, нужно составить и решить систему уравнений с двумя переменными. Для этого мы вычисляем частные производные выражения F ( a , b ) = ∑ i = 1 n ( y i - ( a x i + b ) ) 2 по a и b и приравниваем их к 0 .

δ F ( a , b ) δ a = 0 δ F ( a , b ) δ b = 0 ⇔ - 2 ∑ i = 1 n ( y i - ( a x i + b ) ) x i = 0 - 2 ∑ i = 1 n ( y i - ( a x i + b ) ) = 0 ⇔ a ∑ i = 1 n x i 2 + b ∑ i = 1 n x i = ∑ i = 1 n x i y i a ∑ i = 1 n x i + ∑ i = 1 n b = ∑ i = 1 n y i ⇔ a ∑ i = 1 n x i 2 + b ∑ i = 1 n x i = ∑ i = 1 n x i y i a ∑ i = 1 n x i + n b = ∑ i = 1 n y i

Для решения системы уравнений можно использовать любые методы, например, подстановку или метод Крамера. В результате у нас должны получиться формулы, с помощью которых вычисляются коэффициенты по методу наименьших квадратов.

n ∑ i = 1 n x i y i - ∑ i = 1 n x i ∑ i = 1 n y i n ∑ i = 1 n - ∑ i = 1 n x i 2 b = ∑ i = 1 n y i - a ∑ i = 1 n x i n

Мы вычислили значения переменных, при который функция
F ( a , b ) = ∑ i = 1 n ( y i - ( a x i + b ) ) 2 примет минимальное значение. В третьем пункте мы докажем, почему оно является именно таким.

Это и есть применение метода наименьших квадратов на практике. Его формула, которая применяется для поиска параметра a , включает в себя ∑ i = 1 n x i , ∑ i = 1 n y i , ∑ i = 1 n x i y i , ∑ i = 1 n x i 2 , а также параметр
n – им обозначено количество экспериментальных данных. Советуем вам вычислять каждую сумму отдельно. Значение коэффициента b вычисляется сразу после a .

Обратимся вновь к исходному примеру.

Здесь у нас n равен пяти. Чтобы было удобнее вычислять нужные суммы, входящие в формулы коэффициентов, заполним таблицу.

i = 1 i = 2 i = 3 i = 4 i = 5 ∑ i = 1 5
x i 0 1 2 4 5 12
y i 2 , 1 2 , 4 2 , 6 2 , 8 3 12 , 9
x i y i 0 2 , 4 5 , 2 11 , 2 15 33 , 8
x i 2 0 1 4 16 25 46

Решение

Четвертая строка включает в себя данные, полученные при умножении значений из второй строки на значения третьей для каждого отдельного i . Пятая строка содержит данные из второй, возведенные в квадрат. В последнем столбце приводятся суммы значений отдельных строчек.

Воспользуемся методом наименьших квадратов, чтобы вычислить нужные нам коэффициенты a и b . Для этого подставим нужные значения из последнего столбца и подсчитаем суммы:

n ∑ i = 1 n x i y i - ∑ i = 1 n x i ∑ i = 1 n y i n ∑ i = 1 n - ∑ i = 1 n x i 2 b = ∑ i = 1 n y i - a ∑ i = 1 n x i n ⇒ a = 5 · 33 , 8 - 12 · 12 , 9 5 · 46 - 12 2 b = 12 , 9 - a · 12 5 ⇒ a ≈ 0 , 165 b ≈ 2 , 184

У нас получилось, что нужная аппроксимирующая прямая будет выглядеть как y = 0 , 165 x + 2 , 184 . Теперь нам надо определить, какая линия будет лучше аппроксимировать данные – g ( x ) = x + 1 3 + 1 или 0 , 165 x + 2 , 184 . Произведем оценку с помощью метода наименьших квадратов.

Чтобы вычислить погрешность, нам надо найти суммы квадратов отклонений данных от прямых σ 1 = ∑ i = 1 n ( y i - ( a x i + b i ) ) 2 и σ 2 = ∑ i = 1 n ( y i - g ( x i ) ) 2 , минимальное значение будет соответствовать более подходящей линии.

σ 1 = ∑ i = 1 n ( y i - ( a x i + b i ) ) 2 = = ∑ i = 1 5 ( y i - ( 0 , 165 x i + 2 , 184 ) ) 2 ≈ 0 , 019 σ 2 = ∑ i = 1 n ( y i - g ( x i ) ) 2 = = ∑ i = 1 5 ( y i - ( x i + 1 3 + 1 ) ) 2 ≈ 0 , 096

Ответ: поскольку σ 1 σ 2 , то прямой, наилучшим образом аппроксимирующей исходные данные, будет
y = 0 , 165 x + 2 , 184 .

Как изобразить МНК на графике функций

Метод наименьших квадратов наглядно показан на графической иллюстрации. С помощью красной линии отмечена прямая g ( x ) = x + 1 3 + 1 , синей – y = 0 , 165 x + 2 , 184 . Исходные данные обозначены розовыми точками.

Как изобразить МНК на графике функций

Поясним, для чего именно нужны приближения подобного вида.

Они могут быть использованы в задачах, требующих сглаживания данных, а также в тех, где данные надо интерполировать или экстраполировать. Например, в задаче, разобранной выше, можно было бы найти значение наблюдаемой величины y при x = 3 или при x = 6 . Таким примерам мы посвятили отдельную статью.

Доказательство метода МНК

Чтобы функция приняла минимальное значение при вычисленных a и b , нужно, чтобы в данной точке матрица квадратичной формы дифференциала функции вида F ( a , b ) = ∑ i = 1 n ( y i - ( a x i + b ) ) 2 была положительно определенной. Покажем, как это должно выглядеть.

У нас есть дифференциал второго порядка следующего вида:

d 2 F ( a ; b ) = δ 2 F ( a ; b ) δ a 2 d 2 a + 2 δ 2 F ( a ; b ) δ a δ b d a d b + δ 2 F ( a ; b ) δ b 2 d 2 b

Решение

δ 2 F ( a ; b ) δ a 2 = δ δ F ( a ; b ) δ a δ a = = δ - 2 ∑ i = 1 n ( y i - ( a x i + b ) ) x i δ a = 2 ∑ i = 1 n ( x i ) 2 δ 2 F ( a ; b ) δ a δ b = δ δ F ( a ; b ) δ a δ b = = δ - 2 ∑ i = 1 n ( y i - ( a x i + b ) ) x i δ b = 2 ∑ i = 1 n x i δ 2 F ( a ; b ) δ b 2 = δ δ F ( a ; b ) δ b δ b = δ - 2 ∑ i = 1 n ( y i - ( a x i + b ) ) δ b = 2 ∑ i = 1 n ( 1 ) = 2 n

Иначе говоря, можно записать так: d 2 F ( a ; b ) = 2 ∑ i = 1 n ( x i ) 2 d 2 a + 2 · 2 ∑ x i i = 1 n d a d b + ( 2 n ) d 2 b .

Мы получили матрицу квадратичной формы вида M = 2 ∑ i = 1 n ( x i ) 2 2 ∑ i = 1 n x i 2 ∑ i = 1 n x i 2 n .

В этом случае значения отдельных элементов не будут меняться в зависимости от a и b . Является ли эта матрица положительно определенной? Чтобы ответить на этот вопрос, проверим, являются ли ее угловые миноры положительными.

Вычисляем угловой минор первого порядка: 2 ∑ i = 1 n ( x i ) 2 > 0 . Поскольку точки x i не совпадают, то неравенство является строгим. Будем иметь это в виду при дальнейших расчетах.

Вычисляем угловой минор второго порядка:

d e t ( M ) = 2 ∑ i = 1 n ( x i ) 2 2 ∑ i = 1 n x i 2 ∑ i = 1 n x i 2 n = 4 n ∑ i = 1 n ( x i ) 2 - ∑ i = 1 n x i 2

После этого переходим к доказательству неравенства n ∑ i = 1 n ( x i ) 2 - ∑ i = 1 n x i 2 > 0 с помощью математической индукции.

  1. Проверим, будет ли данное неравенство справедливым при произвольном n . Возьмем 2 и подсчитаем:

2 ∑ i = 1 2 ( x i ) 2 - ∑ i = 1 2 x i 2 = 2 x 1 2 + x 2 2 - x 1 + x 2 2 = = x 1 2 - 2 x 1 x 2 + x 2 2 = x 1 + x 2 2 > 0

У нас получилось верное равенство (если значения x 1 и x 2 не будут совпадать).

  1. Сделаем предположение, что данное неравенство будет верным для n , т.е. n ∑ i = 1 n ( x i ) 2 - ∑ i = 1 n x i 2 > 0 – справедливо.
  2. Теперь докажем справедливость при n + 1 , т.е. что ( n + 1 ) ∑ i = 1 n + 1 ( x i ) 2 - ∑ i = 1 n + 1 x i 2 > 0 , если верно n ∑ i = 1 n ( x i ) 2 - ∑ i = 1 n x i 2 > 0 .

( n + 1 ) ∑ i = 1 n + 1 ( x i ) 2 - ∑ i = 1 n + 1 x i 2 = = ( n + 1 ) ∑ i = 1 n ( x i ) 2 + x n + 1 2 - ∑ i = 1 n x i + x n + 1 2 = = n ∑ i = 1 n ( x i ) 2 + n · x n + 1 2 + ∑ i = 1 n ( x i ) 2 + x n + 1 2 - - ∑ i = 1 n x i 2 + 2 x n + 1 ∑ i = 1 n x i + x n + 1 2 = = ∑ i = 1 n ( x i ) 2 - ∑ i = 1 n x i 2 + n · x n + 1 2 - x n + 1 ∑ i = 1 n x i + ∑ i = 1 n ( x i ) 2 = = ∑ i = 1 n ( x i ) 2 - ∑ i = 1 n x i 2 + x n + 1 2 - 2 x n + 1 x 1 + x 1 2 + + x n + 1 2 - 2 x n + 1 x 2 + x 2 2 + . . . + x n + 1 2 - 2 x n + 1 x 1 + x n 2 = = n ∑ i = 1 n ( x i ) 2 - ∑ i = 1 n x i 2 + + ( x n + 1 - x 1 ) 2 + ( x n + 1 - x 2 ) 2 + . . . + ( x n - 1 - x n ) 2 > 0

Выражение, заключенное в фигурные скобки, будет больше 0 (исходя из того, что мы предполагали в пункте 2 ), и остальные слагаемые будут больше 0 , поскольку все они являются квадратами чисел. Мы доказали неравенство.

Ответ: найденные a и b будут соответствовать наименьшему значению функции F ( a , b ) = ∑ i = 1 n ( y i - ( a x i + b ) ) 2 , значит, они являются искомыми параметрами метода наименьших квадратов (МНК).

При моделировании данных методом наименьших квадратов, кривая обычно не проходит через точки измерений (рис. 1).


Что, если нужно, чтобы эта кривая точно проходила через одну или несколько особо выделенных точек (рис. 2 - показаны зелёными кружочками)?

Тогда читаем дальше.

1. Мотивация

Рассмотрим обычную задачу приближения многочленом и посмотрим, чего нам в ней не хватает.

Дано N точек на плоскости (xi,yi) - значения неизвестной функции f(x). Требуется найти многочлен p(x) степени M (M которого от заданных точек минимальна:

В таком виде задача решается широко известным методом наименьших квадратов (МНК).

При M 2 погрешностей:

Взвешенный МНК хорошо описан в книге [1], гл. 15.1, 15.4.

2.2. Точное прохождение через нуль

Начнём с простого случая: потребуем точного прохождения многочлена p(x) через нуль.

Для этого найдём многочлен q(x) степени M-1 по модифицированным точкам (xi, yi/xi) с помощью взвешеннго МНК, выбрав в качестве весов wi=xi 2 ; и умножим его на x. Тогда:

Он будет иметь степень M и точно проходить через нуль.

Рассмотрим сумму квадратов его отклонений от остальных точек (xi, yi):

Но именно эта величина и минимизируется взвешенным МНК по модифицированным точкам. Поэтому многочлен p(x) будет соответствовать и второму условию задачи - иметь наименьшую сумму квадратов отклонений от (xi, yi).

2.3. Точное прохождение через одну произвольную точку

Усложним задачу и потребуем точного прохождения многочлена p(x) через одну произвольно заданную точку (ξ,η).

Путём замены переменных u=x-ξ, v=y-η, задача сводится к рассмотренной выше. Находим коэффициенты многочлена p0(u), проходящего через нуль и имеющего наименьшую сумму квадратов отклонений p0(ui)-vi. Далее переходим к исходным переменным:

Для нахождения коэффициентов p(x) можно провести алгебраические манипуляции с коэффициентами p0(x-ξ), но есть и более простой на практике способ. Поскольку у нас в программе уже имеется реализация обычного МНК, то можно просто вычислить значения p(x) по формуле (1) в каких-нибудь M+1 или более точках, и применить к этим значениям обычный МНК, задав степень многочлена M. Тем самым и будут найдены коэффициенты p(x).

2.4. Точное прохождение через несколько точек

И, наконец, самый общий случай - потребуем точного прохождения многочлена p(x) через K заданных точек (ξi, ηi). Следует выбирать K ≤ M, в противном случае задача вырождается в интерполяцию.

Переходя к решению, введем многочлен z(x) степени K:

Также введем интерполяционный многочлен Лагранжа L(x) степени K-1, проходящий через точки (ξi, ηi) [1], гл. 3.1.

Используем взвешенный МНК для нахождения многочлена q(x) степени M-K по модифицированным точкам: (xi, (yi-L(xi))/z(xi)) с весовыми коэффициентами wi=z(xi) 2 . Получим коэффициенты j> для q(x), которые минимизируют сумму:

Теперь составим многочлен p(x) как:

Докажем, что p(x) является решением задачи.

Прохождение через точки (ξi, ηi) обеспечивается тем, что z(ξi)=0, обращая в нуль первое слагаемое. Второе слагаемое в этих же точках, L(x), проходит через (ξi, ηi) по построению.

Степень p(x) равна M, так как степень произведения многочленов q(x) и z(x) равна сумме степеней множителей. В данном случае M-K+K=M. Сумма же многочленов имеет степень старшего из слагаемых. Степень L(x) равна K-1, что по условию меньше M.

Запишем сумму квадратов отклонений в точках (xi, yi):

Но это совпадает с величиной (2), которая минимизировалась при нахождении коэффициентов q(x). Следовательно, p(xi) имеет наименьшую сумму квадратов отклонений от yi. Что и требовалось доказать.

Для нахождения коэффициентов p(x) можно провести алгебраические манипуляции с q(x), z(x) и L(x), но это еще сложнее, чем в разделе 2.3. выше. Так что здесь тоже рекомендуется вычислить значения p(x) в M+1 или более точках по формуле (3) и применить к ним обычный МНК.

3. Цена вопроса и рекомендации к применению

За всё в этой жизни приходится платить. Наложение условия точного прохождения через точки (ξi, ηi) на многочлен p(x) приводит к тому, что сумма квадратов его отклонений от остальных точек (xi, yi) оказывается, вообще говоря, выше, чем без наложения условий.

Фактически, мы решили задачу условной оптимизации суммы квадратов отклонений p(xi)-yi. Как и в других задачах условной оптимизации, достигаемое значение целевой функции получается хуже, чем при оптимизации безусловной. В противном случае и безусловная оптимизация дала бы тот же результат.

Когда же следует применять описанный метод? Тогда, когда о моделируемой зависимости имеются "железобетонные" сведения, что она должна проходить через точки (ξi, ηi) независимо от экспериментальных данных (xi, yi).

В моей практике был один такой случай. Моделировалась нелинейная характеристика датчика. Истинный вид функциональной зависимости был неизвестен. Оставалось только использовать многочлены в попытке хоть как-то компенсировать нелинейность. Но многочлены плохо описывали характеристику около нуля. Полученные обычным МНК, они стремились не проходить через нуль. Тем не менее, из физических соображений было ясно, что характеристика датчика должна проходить через нуль. Вот тогда наложение условия и пригодилось. Его применение позволило улучшить компенсацию нелинейности в окрестностях нуля и уменьшить относительную погрешность прибора в целом.

4. Пример с конкретными числами

Этот пример был использован для построения графиков, приведенных на рис. 1 и рис. 2.

В качестве "истинной зависимости" был взят следующий многочлен:

Где T3(x) - многочлен Чебышева третьего порядка. Модификации применены к нему для того, чтобы отобразить интересный участок графика в диапазон x,y ∈ [0; 1]. p1(x) проходит через точки (0,0) и (1,1). Разложение его по степеням x выглядит так:

В качестве данных для метода наименьших квадратов (обычного и условного) взяты значения p1(x) в 11 равноотстоящих точках между 0 и 1 с шагом в 0,1. К значениям многочлена была добавлена нормально распределенная "ошибка измерений" δi с дисперсией σ 2 =0,04. В точках x1=0 и x11=1 ошибка не добавлялась. По случайным числам карты легли следующим образом:

Неоднородность дисперсии. Частным случаем обобщенного метода наименьших квадратов является метод взвешенных наименьших квадратов. Его обычно применяют для построения моделей, когда дисперсия случайных остатков неоднородна, т.е. имеет место гетероскедастичность. Предположения, лежащие в основе построения этой модели, выглядят следующим образом:

1. – спецификация модели;

2. – детерминированная матрица, имеющая максимальный ранг ;

3b. , где матрица диагональная с неравными элементами.

В некоторых случаях удобно считать, что элементы ковариационной матрицы представимы в виде , а весовые коэффициенты нормированы так, что . Если для всех , то модель с гетероскедастичностью сводится к классической с гомоскедастичными остатками.

Применение формулы (3.75) для расчета оценок регрессионного уравнения в условиях гетероскедастичности эквивалентно минимизации взвешенной суммы квадратов

В практических расчетах применяют различные приемы для устранения эффектов гетероскедастичности в зависимости от того, что принимается за оценку неизвестной дисперсии.

Пропорциональность дисперсии независимой переменной. Если есть основания считать, что дисперсия ошибки прямо пропорциональна квадрату одной из независимых переменных модели, т.е. , то путем деления на эту независимую переменную всех (зависимой и независимых) переменных модели случай гетероскедастичности сводится к классической модели.

В более сложном случае можно считать, что дисперсия зависит от нескольких независимых переменных, например и ,

Тогда моделирование осуществляется в три этапа с использованием идей доступного МНК. На первом этапе с помощью стандартного МНК строится регрессия

и вычисляются остатки, квадраты которых принимаются за оценки .

На втором этапе для этих оценок строится регрессия, расчетные значения которой используются для получения весовых коэффициентов, применяемых в методе взвешенных наименьших квадратов на завершающем этапе построения модели.

Двухуровневая дисперсия.Встречаются ситуации, когда данные неоднородны по дисперсии, но их можно разделить на две группы однородных. Пусть, например, в первой группе наблюдение с дисперсией для ,а во второй – наблюдений с дисперсией для . Значения и неизвестны.

Для этого случая также можно предложить многоэтапную процедуру оценивания коэффициентов регрессии на основе доступного МНК.

На первом этапе стандартным МНК получают коэффициенты обычной регрессии и с ее помощью рассчитывают остатки .

На втором этапе в соответствии с группировкой данных строят оценки неизвестных значений дисперсий

На следующем этапе все переменные первых уравнений делятся на , а остальные – на . К преобразованным уравнениям применяется обычный МНК, завершающий построение модели.

Этот подход к построению регрессии в условиях гетероскедастичности с двухуровневой дисперсией допускает обобщение на случай, когда дисперсия имеет не два, а несколько различных уровней.

Неоднородность дисперсии. Частным случаем обобщенного метода наименьших квадратов является метод взвешенных наименьших квадратов. Его обычно применяют для построения моделей, когда дисперсия случайных остатков неоднородна, т.е. имеет место гетероскедастичность. Предположения, лежащие в основе построения этой модели, выглядят следующим образом:

1. – спецификация модели;

2. – детерминированная матрица, имеющая максимальный ранг ;

3b. , где матрица диагональная с неравными элементами.

В некоторых случаях удобно считать, что элементы ковариационной матрицы представимы в виде , а весовые коэффициенты нормированы так, что . Если для всех , то модель с гетероскедастичностью сводится к классической с гомоскедастичными остатками.




Применение формулы (3.75) для расчета оценок регрессионного уравнения в условиях гетероскедастичности эквивалентно минимизации взвешенной суммы квадратов

В практических расчетах применяют различные приемы для устранения эффектов гетероскедастичности в зависимости от того, что принимается за оценку неизвестной дисперсии.

Пропорциональность дисперсии независимой переменной. Если есть основания считать, что дисперсия ошибки прямо пропорциональна квадрату одной из независимых переменных модели, т.е. , то путем деления на эту независимую переменную всех (зависимой и независимых) переменных модели случай гетероскедастичности сводится к классической модели.

В более сложном случае можно считать, что дисперсия зависит от нескольких независимых переменных, например и ,

Тогда моделирование осуществляется в три этапа с использованием идей доступного МНК. На первом этапе с помощью стандартного МНК строится регрессия

и вычисляются остатки, квадраты которых принимаются за оценки .

На втором этапе для этих оценок строится регрессия, расчетные значения которой используются для получения весовых коэффициентов, применяемых в методе взвешенных наименьших квадратов на завершающем этапе построения модели.

Двухуровневая дисперсия.Встречаются ситуации, когда данные неоднородны по дисперсии, но их можно разделить на две группы однородных. Пусть, например, в первой группе наблюдение с дисперсией для ,а во второй – наблюдений с дисперсией для . Значения и неизвестны.

Для этого случая также можно предложить многоэтапную процедуру оценивания коэффициентов регрессии на основе доступного МНК.

На первом этапе стандартным МНК получают коэффициенты обычной регрессии и с ее помощью рассчитывают остатки .

На втором этапе в соответствии с группировкой данных строят оценки неизвестных значений дисперсий

На следующем этапе все переменные первых уравнений делятся на , а остальные – на . К преобразованным уравнениям применяется обычный МНК, завершающий построение модели.

Этот подход к построению регрессии в условиях гетероскедастичности с двухуровневой дисперсией допускает обобщение на случай, когда дисперсия имеет не два, а несколько различных уровней.

Начнем статью сразу с примера. У нас есть некие экспериментальные данные о значениях двух переменных – x и y . Занесем их в таблицу.

i = 1 i = 2 i = 3 i = 4 i = 5
x i 0 1 2 4 5
y i 2 , 1 2 , 4 2 , 6 2 , 8 3 , 0

После выравнивания получим функцию следующего вида: g ( x ) = x + 1 3 + 1 .

Мы можем аппроксимировать эти данные с помощью линейной зависимости y = a x + b , вычислив соответствующие параметры. Для этого нам нужно будет применить так называемый метод наименьших квадратов. Также потребуется сделать чертеж, чтобы проверить, какая линия будет лучше выравнивать экспериментальные данные.

В чем именно заключается МНК (метод наименьших квадратов)

Главное, что нам нужно сделать, – это найти такие коэффициенты линейной зависимости, при которых значение функции двух переменных F ( a , b ) = ∑ i = 1 n ( y i - ( a x i + b ) ) 2 будет наименьшим. Иначе говоря, при определенных значениях a и b сумма квадратов отклонений представленных данных от получившейся прямой будет иметь минимальное значение. В этом и состоит смысл метода наименьших квадратов. Все, что нам надо сделать для решения примера – это найти экстремум функции двух переменных.

Как вывести формулы для вычисления коэффициентов

Для того чтобы вывести формулы для вычисления коэффициентов, нужно составить и решить систему уравнений с двумя переменными. Для этого мы вычисляем частные производные выражения F ( a , b ) = ∑ i = 1 n ( y i - ( a x i + b ) ) 2 по a и b и приравниваем их к 0 .

δ F ( a , b ) δ a = 0 δ F ( a , b ) δ b = 0 ⇔ - 2 ∑ i = 1 n ( y i - ( a x i + b ) ) x i = 0 - 2 ∑ i = 1 n ( y i - ( a x i + b ) ) = 0 ⇔ a ∑ i = 1 n x i 2 + b ∑ i = 1 n x i = ∑ i = 1 n x i y i a ∑ i = 1 n x i + ∑ i = 1 n b = ∑ i = 1 n y i ⇔ a ∑ i = 1 n x i 2 + b ∑ i = 1 n x i = ∑ i = 1 n x i y i a ∑ i = 1 n x i + n b = ∑ i = 1 n y i

Для решения системы уравнений можно использовать любые методы, например, подстановку или метод Крамера. В результате у нас должны получиться формулы, с помощью которых вычисляются коэффициенты по методу наименьших квадратов.

n ∑ i = 1 n x i y i - ∑ i = 1 n x i ∑ i = 1 n y i n ∑ i = 1 n - ∑ i = 1 n x i 2 b = ∑ i = 1 n y i - a ∑ i = 1 n x i n

Мы вычислили значения переменных, при который функция
F ( a , b ) = ∑ i = 1 n ( y i - ( a x i + b ) ) 2 примет минимальное значение. В третьем пункте мы докажем, почему оно является именно таким.

Это и есть применение метода наименьших квадратов на практике. Его формула, которая применяется для поиска параметра a , включает в себя ∑ i = 1 n x i , ∑ i = 1 n y i , ∑ i = 1 n x i y i , ∑ i = 1 n x i 2 , а также параметр
n – им обозначено количество экспериментальных данных. Советуем вам вычислять каждую сумму отдельно. Значение коэффициента b вычисляется сразу после a .

Обратимся вновь к исходному примеру.

Здесь у нас n равен пяти. Чтобы было удобнее вычислять нужные суммы, входящие в формулы коэффициентов, заполним таблицу.

i = 1 i = 2 i = 3 i = 4 i = 5 ∑ i = 1 5
x i 0 1 2 4 5 12
y i 2 , 1 2 , 4 2 , 6 2 , 8 3 12 , 9
x i y i 0 2 , 4 5 , 2 11 , 2 15 33 , 8
x i 2 0 1 4 16 25 46

Решение

Четвертая строка включает в себя данные, полученные при умножении значений из второй строки на значения третьей для каждого отдельного i . Пятая строка содержит данные из второй, возведенные в квадрат. В последнем столбце приводятся суммы значений отдельных строчек.

Воспользуемся методом наименьших квадратов, чтобы вычислить нужные нам коэффициенты a и b . Для этого подставим нужные значения из последнего столбца и подсчитаем суммы:

n ∑ i = 1 n x i y i - ∑ i = 1 n x i ∑ i = 1 n y i n ∑ i = 1 n - ∑ i = 1 n x i 2 b = ∑ i = 1 n y i - a ∑ i = 1 n x i n ⇒ a = 5 · 33 , 8 - 12 · 12 , 9 5 · 46 - 12 2 b = 12 , 9 - a · 12 5 ⇒ a ≈ 0 , 165 b ≈ 2 , 184

У нас получилось, что нужная аппроксимирующая прямая будет выглядеть как y = 0 , 165 x + 2 , 184 . Теперь нам надо определить, какая линия будет лучше аппроксимировать данные – g ( x ) = x + 1 3 + 1 или 0 , 165 x + 2 , 184 . Произведем оценку с помощью метода наименьших квадратов.

Чтобы вычислить погрешность, нам надо найти суммы квадратов отклонений данных от прямых σ 1 = ∑ i = 1 n ( y i - ( a x i + b i ) ) 2 и σ 2 = ∑ i = 1 n ( y i - g ( x i ) ) 2 , минимальное значение будет соответствовать более подходящей линии.

σ 1 = ∑ i = 1 n ( y i - ( a x i + b i ) ) 2 = = ∑ i = 1 5 ( y i - ( 0 , 165 x i + 2 , 184 ) ) 2 ≈ 0 , 019 σ 2 = ∑ i = 1 n ( y i - g ( x i ) ) 2 = = ∑ i = 1 5 ( y i - ( x i + 1 3 + 1 ) ) 2 ≈ 0 , 096

Ответ: поскольку σ 1 σ 2 , то прямой, наилучшим образом аппроксимирующей исходные данные, будет
y = 0 , 165 x + 2 , 184 .

Как изобразить МНК на графике функций

Метод наименьших квадратов наглядно показан на графической иллюстрации. С помощью красной линии отмечена прямая g ( x ) = x + 1 3 + 1 , синей – y = 0 , 165 x + 2 , 184 . Исходные данные обозначены розовыми точками.

Как изобразить МНК на графике функций

Поясним, для чего именно нужны приближения подобного вида.

Они могут быть использованы в задачах, требующих сглаживания данных, а также в тех, где данные надо интерполировать или экстраполировать. Например, в задаче, разобранной выше, можно было бы найти значение наблюдаемой величины y при x = 3 или при x = 6 . Таким примерам мы посвятили отдельную статью.

Доказательство метода МНК

Чтобы функция приняла минимальное значение при вычисленных a и b , нужно, чтобы в данной точке матрица квадратичной формы дифференциала функции вида F ( a , b ) = ∑ i = 1 n ( y i - ( a x i + b ) ) 2 была положительно определенной. Покажем, как это должно выглядеть.

У нас есть дифференциал второго порядка следующего вида:

d 2 F ( a ; b ) = δ 2 F ( a ; b ) δ a 2 d 2 a + 2 δ 2 F ( a ; b ) δ a δ b d a d b + δ 2 F ( a ; b ) δ b 2 d 2 b

Решение

δ 2 F ( a ; b ) δ a 2 = δ δ F ( a ; b ) δ a δ a = = δ - 2 ∑ i = 1 n ( y i - ( a x i + b ) ) x i δ a = 2 ∑ i = 1 n ( x i ) 2 δ 2 F ( a ; b ) δ a δ b = δ δ F ( a ; b ) δ a δ b = = δ - 2 ∑ i = 1 n ( y i - ( a x i + b ) ) x i δ b = 2 ∑ i = 1 n x i δ 2 F ( a ; b ) δ b 2 = δ δ F ( a ; b ) δ b δ b = δ - 2 ∑ i = 1 n ( y i - ( a x i + b ) ) δ b = 2 ∑ i = 1 n ( 1 ) = 2 n

Иначе говоря, можно записать так: d 2 F ( a ; b ) = 2 ∑ i = 1 n ( x i ) 2 d 2 a + 2 · 2 ∑ x i i = 1 n d a d b + ( 2 n ) d 2 b .

Мы получили матрицу квадратичной формы вида M = 2 ∑ i = 1 n ( x i ) 2 2 ∑ i = 1 n x i 2 ∑ i = 1 n x i 2 n .

В этом случае значения отдельных элементов не будут меняться в зависимости от a и b . Является ли эта матрица положительно определенной? Чтобы ответить на этот вопрос, проверим, являются ли ее угловые миноры положительными.

Вычисляем угловой минор первого порядка: 2 ∑ i = 1 n ( x i ) 2 > 0 . Поскольку точки x i не совпадают, то неравенство является строгим. Будем иметь это в виду при дальнейших расчетах.

Вычисляем угловой минор второго порядка:

d e t ( M ) = 2 ∑ i = 1 n ( x i ) 2 2 ∑ i = 1 n x i 2 ∑ i = 1 n x i 2 n = 4 n ∑ i = 1 n ( x i ) 2 - ∑ i = 1 n x i 2

После этого переходим к доказательству неравенства n ∑ i = 1 n ( x i ) 2 - ∑ i = 1 n x i 2 > 0 с помощью математической индукции.

  1. Проверим, будет ли данное неравенство справедливым при произвольном n . Возьмем 2 и подсчитаем:

2 ∑ i = 1 2 ( x i ) 2 - ∑ i = 1 2 x i 2 = 2 x 1 2 + x 2 2 - x 1 + x 2 2 = = x 1 2 - 2 x 1 x 2 + x 2 2 = x 1 + x 2 2 > 0

У нас получилось верное равенство (если значения x 1 и x 2 не будут совпадать).

  1. Сделаем предположение, что данное неравенство будет верным для n , т.е. n ∑ i = 1 n ( x i ) 2 - ∑ i = 1 n x i 2 > 0 – справедливо.
  2. Теперь докажем справедливость при n + 1 , т.е. что ( n + 1 ) ∑ i = 1 n + 1 ( x i ) 2 - ∑ i = 1 n + 1 x i 2 > 0 , если верно n ∑ i = 1 n ( x i ) 2 - ∑ i = 1 n x i 2 > 0 .

( n + 1 ) ∑ i = 1 n + 1 ( x i ) 2 - ∑ i = 1 n + 1 x i 2 = = ( n + 1 ) ∑ i = 1 n ( x i ) 2 + x n + 1 2 - ∑ i = 1 n x i + x n + 1 2 = = n ∑ i = 1 n ( x i ) 2 + n · x n + 1 2 + ∑ i = 1 n ( x i ) 2 + x n + 1 2 - - ∑ i = 1 n x i 2 + 2 x n + 1 ∑ i = 1 n x i + x n + 1 2 = = ∑ i = 1 n ( x i ) 2 - ∑ i = 1 n x i 2 + n · x n + 1 2 - x n + 1 ∑ i = 1 n x i + ∑ i = 1 n ( x i ) 2 = = ∑ i = 1 n ( x i ) 2 - ∑ i = 1 n x i 2 + x n + 1 2 - 2 x n + 1 x 1 + x 1 2 + + x n + 1 2 - 2 x n + 1 x 2 + x 2 2 + . . . + x n + 1 2 - 2 x n + 1 x 1 + x n 2 = = n ∑ i = 1 n ( x i ) 2 - ∑ i = 1 n x i 2 + + ( x n + 1 - x 1 ) 2 + ( x n + 1 - x 2 ) 2 + . . . + ( x n - 1 - x n ) 2 > 0

Выражение, заключенное в фигурные скобки, будет больше 0 (исходя из того, что мы предполагали в пункте 2 ), и остальные слагаемые будут больше 0 , поскольку все они являются квадратами чисел. Мы доказали неравенство.

Ответ: найденные a и b будут соответствовать наименьшему значению функции F ( a , b ) = ∑ i = 1 n ( y i - ( a x i + b ) ) 2 , значит, они являются искомыми параметрами метода наименьших квадратов (МНК).

Читайте также: