Условия возникновения магнитного поля кратко

Обновлено: 04.07.2024

Подобно тому, как покоящийся электрический заряд действует на другой заряд посредством электрического поля, электрический ток действует на другой ток посредством магнитного поля. Действие магнитного поля на постоянные магниты сводится к действию его на заряды, движущиеся в атомах вещества и создающие микроскопические круговые токи.

Учение об электромагнетизме основано на двух положениях:

  • магнитное поле действует на движущиеся заряды и токи;
  • магнитное поле возникает вокруг токов и движущихся зарядов.

Взаимодействие магнитов

Постоянный магнит (или магнитная стрелка) ориентируется вдоль магнитного меридиана Земли. Тот его конец, который указывает на север, называется северным полюсом (N), а противоположный конец — южным полюсом (S). Приближая два магнита друг к другу, заметим, что одноименные их полюсы отталкиваются, а разноименные — притягиваются ( рис. 1 ).

Если разделить полюса, разрезав постоянный магнит на две части, то мы обнаружим, что каждая из них тоже будет иметь два полюса, т. е. будет постоянным магнитом ( рис. 2 ). Оба полюса — северный и южный, — неотделимые друг от друга, равноправны.

Магнитное поле, создаваемое Землей или постоянными магнитами, изображается, подобно электрическому полю, магнитными силовыми линиями. Картину силовых линий магнитного поля какого-либо магнита можно получить, помещая над ним лист бумаги, на котором насыпаны равномерным слоем железные опилки. Попадая в магнитное поле, опилки намагничиваются — у каждой из них появляется северный и южный полюсы. Противоположные полюсы стремятся сблизиться друг с другом, но этому мешает трение опилок о бумагу. Если постучать по бумаге пальцем, трение уменьшится и опилки притянутся друг к другу, образуя цепочки, изображающие линии магнитного поля.

На рис. 3 показано расположение в поле прямого магнита опилок и маленьких магнитных стрелок, указывающих направление линий магнитного поля. За это направление принято направление северного полюса магнитной стрелки.

В начале XIX в. датский ученый Эрстэд сделал важное открытие, обнаружив действие электрического тока на постоянные магниты. Он поместил длинный провод вблизи магнитной стрелки. При пропускании по проводу тока стрелка поворачивалась, стремясь расположиться перпендикулярно ему ( рис. 4 ). Это можно было объяснить возникновением вокруг проводника магнитного поля.

Магнитные силовые линии поля, созданного прямым проводником с током, представляют собой концентрические окружности, расположенные в перпендикулярной к нему плоскости, с центрами в точке, через которую проходит ток ( рис. 5 ). Направление линий определяется правилом правого винта:

Магнитное поле тока принципиально ничем не отличается от поля, созданного постоянным магнитом. В этом смысле аналогом плоского магнита является длинный соленоид — катушка из провода, длина которой значительно больше ее диаметра. Схема линий созданного им магнитного поля, изображенная на рис. 6 , аналогична таковой для плоского магнита ( рис. 3 ). Кружочками обозначены сечения провода, образующего обмотку соленоида. Токи, текущие по проводу от наблюдателя, обозначены крестиками, а токи противоположного направления — к наблюдателю — обозначены точками. Такие же обозначения приняты и для линий магнитного поля, когда они перпендикулярны плоскости чертежа ( рис. 7 а, б).

Направление тока в обмотке соленоида и направление линий магнитного поля внутри него также связаны правилом правого винта, которое в этом случае формулируется так:

Если смотреть вдоль оси соленоида, то текущий по направлению часовой стрелки ток создает в нем магнитное поле, направление которого совпадает с направлением движения правого винта ( рис. 8 )

Исходя из этого правила, легко сообразить, что у соленоида, изображенного на рис. 6 , северным полюсом служит правый его конец, а южным — левый.

Магнитное поле внутри соленоида является однородным — вектор магнитной индукции имеет там постоянное значение (B = const). В этом отношении соленоид подобен плоскому конденсатору, внутри которого создается однородное электрическое поле.

Сила, действующая в магнитном поле на проводник с током

Опытным путем было установлено, что на проводник с током в магнитном поле действует сила. В однородном поле прямолинейный проводник длиной l, по которому течет ток I, расположенный перпендикулярно вектору поля B, испытывает действие силы: F = I l B.

Направление силы определяется правилом левой руки:

Если четыре вытянутых пальца левой руки расположить по направлению тока в проводнике, а ладонь — перпендикулярно вектору B, то отставленный большой палец укажет направление силы, действующей на проводник ( рис. 9 ).

Уравнение F = IlB позволяет дать количественную характеристику индукции магнитного поля.

Модуль вектора магнитной индукции B численно равен силе, действующей на расположенный перпендикулярно к нему проводник единичной длины, по которому течет ток силой один ампер.


Северный полюс и южный полюс на самом деле не совсем северный и южный, а вовсе наоборот. Звучит, как странная фантазия сумасшедшего физика, но это имеет место быть. Разбираемся с полюсами в этой статье.

О чем эта статья:

Магнитное поле

Люди только и делают, что говорят про какие-то магнитные бури, привозят магнитики на холодильник, ходят в походы с компасом, который показывает, где север, а где юг. В основе всего этого лежит магнитное поле.

Магнитное поле — это особый вид материи, который существует вокруг магнитов или движущихся зарядов.

У нее есть несколько условий для существования:

  • магнитное поле существует независимо от наших знаний о нем;
  • порождается только движущимся электрическим зарядом;
  • обнаружить магнитное поле можно по действию на движущийся электрический заряд (или проводник с током) с некоторой силой;
  • магнитное поле распространяется в пространстве с конечной скоростью, равной скорости света в вакууме.

Магнитное поле создается только движущимся электрическим зарядом? А как же магниты?

Атом состоит из ядра и вращающихся вокруг него электронов. Электроны могут вращаться по разным орбитам. На каждой орбите может находиться по два электрона, которые вращаются в разных направлениях.

Но у некоторых веществ не все электроны парные, и несколько электронов крутятся в одном и том же направлении, такие вещества называются ферромагнетиками. А поскольку электрон — заряженная частица, вращающиеся вокруг атома в одну и ту же сторону электроны создают магнитное поле. Получается миниатюрный электромагнит.

У любого магнита есть два полюса — северный и южный.

Любое магнитное поле описывается магнитными линиями, которые выходят из северного поля и приходят в южный. Эти линии всегда замкнуты, даже если у них бесконечная длина. Вот так это выглядит:

Как запомнить, что выходят магнитные линии из северного полюса, а приходят в южный?

Все просто — на севере жить никто не хочет. Многие люди переезжают туда, где теплее, зимуют в теплых краях, в общем — стремятся на юг. Магнитные линии тоже.

Северный полюс обозначается латинской буквой N (от английского слова North). А южный — буквой S (от английского слова South).

Мы привыкли к тому, что на географическом севере находится северный магнитный полюс и на него указывает синяя стрелка компаса. Однако это не совсем так.

Опыт Эрстеда

Самое главное экспериментальное доказательство того, что магнитное поле возникает из-за движения зарядов — это опыт Эрстеда. В1820 году Эр­стед опыт­ным пу­тём свя­зал элек­три­че­ст­во и маг­не­тизм с по­мо­щью экс­пе­ри­мен­та с от­кло­не­ни­ем стрел­ки ком­па­са.

Это явление использовали, когда создавали первые ам­пер­мет­ры, так как от­кло­не­ние стрел­ки про­пор­цио­наль­но ве­ли­чи­не то­ка. Оно ле­жит в ос­но­ве лю­бо­го элек­тро­маг­ни­та.

Курсы подготовки к ОГЭ по физике помогут снять стресс перед экзаменом и получить высокий балл.

Чтобы правильно понимать параметры и особенности магнитного поля, требуется дать соответствующие определения тех или иных физических явлений. Не будет лишним напомнить и про то, что такое – магнитное поле, какие величины его характеризуют.

Также очень важен для понимания такой момент, что магнитное поле существует далеко не только у магнитов.

Определение магнитного поля

Итак, под магнитным полем принято подразумевать некую материальную среду, через которое проводники с током или заряженные частицы взаимодействуют друг с другом.

Однако эта среда никак не ощущается человеком. Хотя еще в древности люди начинали подозревать о ее существовании, теоретически и экспериментально доказать существование магнитного поля удалось лишь сравнительно недавно.

Сегодня физиками установлено, что магнитное поле имеется вокруг любых проводников под током. Оно оказывает воздействие на проводник, в результате чего тот движется в сторону действия силы магнитного поля. Если же речь идет о кольцевом проводнике, то он будет совершать обороты вокруг своей оси.

Важное замечание: само по себе это поле не обладает очерченными границами, однако с расстоянием оно начинает стремительно ослабевать. Поэтому на очень большом расстоянии от проводника его или вовсе невозможно зафиксировать, или для этого потребуется использование достаточно мощных приборов.

Токи внутри магнитного поля взаимодействуют между собой с конечной скоростью.

Возникновение магнитного поля

Чтобы лучше понимать свойства и принципы работы магнитного поля, сначала необходимо описать, как оно возникает. А возникает оно при трансформации заряженных элементарных частиц, при этом воздействуя на подвижные электрозаряды. Например, на проводники тока.

Проводники и перемещающиеся внутри поля заряды взаимодействуют за счет так называемых электромагнитных сил. Силовые показатели магнитного поля в конкретном месте пространства определяются постоянной индукцией. Графически можно представить индукцию в виде линий – чтобы лучше и нагляднее понимать особенности и параметры данного явления. Принято считать, что, чем гуще расположение графических линий – тем интенсивнее действие магнитной индукции. По линиям можно также определять направление индукции поля. Однако следует понимать, что в природе никаких линий не существует, они были введены физиками лишь для большей наглядности явления.

Магнитные линии

Прямолинейные проводники, обладающие высокими показателями токопроводимости, имеют более плотные магнитные линии. Они распределяются по концентрическим окружностям, в центре которых располагается данный прямолинейный проводник.

Важно замечание. Чтобы определить направление линий магнитного поля, пользуются так называемым правилом буравчика. Оно гласит: если воображаемый буравчик расположить таким образом, что он будет ввинчиваться вдоль прямолинейного проводника под током, то траектория вращения рукояти буравчика совпадает с направлением магнитных линий.

Еще одной неотъемлемой характеристикой магнитного поля является однородность (неоднородность) распределения магнитных линий и самого поля. Эти составляющие, создаваемые одним и тем же током и при прочих равных условиях, обладают неоднозначной интенсивностью и направленностью в том или ином пространстве. Такая неоднородность зависит от движущихся магнитных свойств внутри вещества, где поле распространяется.

Магнитная специфика окружающего пространства характеризуются стабильной проницаемостью магнита. Ее принято измерять в генри на метр (г/м).

Таким образом, в числе свойств поля следует перечислить и такой показатель, как абсолютная магнитная проницаемость пустоты. Это – магнитная постоянная.

Под магнитной проницаемостью подразумевают определенное значение, показывающее, насколько часто показатель абсолютной магнитной проницаемости данного пространства или среды отличается от показателя постоянной, относительной проницаемости магнита.

Магнитным полем оказывается прямое воздействие на такие параметры, как:

  • Изменяющиеся электрические заряды;
  • Вещества, которые определяют показатели проницаемости магнитного поля;
  • Постоянные магниты – подразумевающие наличие общего магнитного момента у всех заряженных частиц.

Внутри магнитного поля линии возникают, например, во время приближения постоянного или непостоянного магнита к рассыпанным на картонном листе железным опилкам. Этот опыт является классическим и позволяет наглядно продемонстрировать возникновение линий магнитной индукции внутри поля.

Изменения магнитных свойств материалов

Во время усиления постоянства силы тока до полноценного насыщения в катушке с ферромагнитными элементами и последующим исчезновением силы, кривые намагничивания не могут совпадать с линиями размагничивания. Индукция, обладающая в данном случае нулевыми показателями напряженности, не имеет значения, но получает некий параметр, который физики назвали – остаточная магнитная индукция.

Явление ослабевания индукции внутри магнитного поля от намагничивающей интенсивности принято называть гистерезисом.

Чтобы полностью размагнитить проводник, внутри элементов сердечников требуется наличие тока с обратным направлением. В этом случае и возникнет элемент напряженности.

В случае с разными ферромагнитными частицами имеют значение отрезки с разной длиной. То значение, при котором наблюдается окончательное размагничивание того или иного материала, называется коэрцитивная сила.

Если продолжать увеличивать интенсивность действия тока внутри катушки, то и магнитная индукция будет увеличиваться – вплоть до уровня своего насыщения. Но – с совершенно иными направлениями линий магнитной индукции.

Во время полного размагничивания в противоположном направлении можно получить явление остаточной индукции, которое и используется для разработки постоянных магнитов из веществ, обладающих высокими коэффициентами так называемого остаточного магнетизма.

С помощью веществ, имеющих свойство перемагничивания, учеными создаются сердечники для электроприборов, машин и механизмов.

Свойства магнитного поля

Свойствами магнитного поля в настоящее время принято считать:

  • Его появление обусловлено только движением заряженных тел или частиц;
  • Способность его обнаружения по воздействию на заряженные тела и частицы;
  • Материальность магнитного поля (пусть человек его и не ощущает);
  • Способность обнаружения поля через его действие на магнитную стрелку.

При приведении заряженного тела в движение вокруг него появляется магнитное поле, на которое стрелка обязательно отреагирует поворотом.

Все источники магнитного поля принято делить на следующие составляющие:

  • Электрическое пространство, которое со временем изменяется;
  • Подвижные и постоянные заряды;
  • А также заряженные током магниты – электромагниты.

Стоит заметить, что движущийся электрический заряд обладает куда большей магнитной энергией, нежели постоянный магнит.

Учеными были установлены причины, по которым физическое тело получает те или иные магнитные свойства. Как гласит современная теория, любое вещество внутри себя имеет микроскопические электротоки. Они возникают из-за постоянного движения заряженных электронов по своим квантовым орбитам вокруг ядра атома.

Человек не может своими органами чувств зафиксировать наличие или отсутствие магнитного поля вокруг вещества. Это сделать можно лишь специальными приборами.

Магнитное поле принято делить на постоянное и переменное. Первый вид поля наблюдается лишь в случае наличия неизменного электрического поля. Коэффициент данной пропорциональности принято называть индуктивностью основного проводника. Что показывает потенциал элемента формировать потокосцепление во время трансформации электричества в силу тока внутри контура магнитного потока.

Все выше сказанное и помогает нам понять, что же собой представляет и чем характеризуется такое физическое явление, как магнитное поле.


Магнитное поле

Магнитное поле – особый вид материи. Оно проявляется в действии на движущиеся электрические заряды и тела, которые обладают собственным магнитным моментом (постоянные магниты).

Важно: на неподвижные заряды магнитное поле не действует! Создается магнитное поле также движущимися электрическими зарядами, либо изменяющимся во времени электрическим полем, либо магнитными моментами электронов в атомах. То есть любой провод, по которому течет ток, становится также и магнитом!


Магнит - тело, обладающее собственным магнитным полем.

У магнита есть полюса, называемые северным и южным. Обозначения "северный" и "южный" даны лишь для удобства (как "плюс" и "минус" в электричестве).

Магнитное поле изображается посредством силовых магнитных линий. Силовые линии непрерывны и замкнуты, а их направление всегда совпадает с направлением действия сил поля. Если вокруг постоянного магнита рассыпать металлическую стружку, частицы металла покажут наглядную картину силовых линий магнитного поля, выходящих из северного и входящих в южный полюс. Графическая характеристика магнитного поля - силовые линии.


Картина магнитного поля

Характеристики магнитного поля

Основными характеристиками магнитного поля являются магнитная индукция, магнитный поток и магнитная проницаемость. Но давайте обо всем по порядку.

Сразу отметим, что все единицы измерения приводятся в системе СИ.

Магнитная индукция B – векторная физическая величина, являющаяся основной силовой характеристикой магнитного поля. Обозначается буквой B. Единица измерения магнитной индукции – Тесла (Тл).

Магнитная индукция показывает, насколько сильно поле, определяя силу, с которой оно действует на заряд. Данная сила называется силой Лоренца.

Здесь q - заряд, v - его скорость в магнитном поле, B - индукция, F - сила Лоренца, с которой поле действует на заряд.

Магнитный поток Ф – физическая величина, равная произведению магнитной индукции на площадь контура и косинус между вектором индукции и нормалью к плоскости контура, через который проходит поток. Магнитный поток - скалярная характеристика магнитного поля.

Можно сказать, что магнитный поток характеризует количество линий магнитной индукции, пронизывающих единицу площади. Магнитный поток измеряется в Веберах (Вб).


Магнитная проницаемость – коэффициент, определяющий магнитные свойства среды. Одним из параметров, от которых зависит магнитная индукция поля, является магнитная проницаемость.

Магнитное поле Земли

Наша планета на протяжении нескольких миллиардов лет является огромным магнитом. Индукция магнитного поля Земли изменяется в зависимости от координат. На экваторе она равна примерно 3,1 на 10 в минус пятой степени Тесла. К тому же существуют магнитные аномалии, где значение и направление поля существенно отличаются от соседних областей. Одни из самых крупных магнитных аномалий на планете - Курская и Бразильская магнитные аномалии.

Происхождение магнитного поля Земли до сих пор остается загадкой для ученых. Предполагается, что источником поля является жидкое металлическое ядро Земли. Ядро движется, значит, движется расплавленный железо-никелевый сплав, а движение заряженных частиц – это и есть электрический ток, порождающий магнитное поле. Проблема в том, что эта теория (геодинамо) не объясняет того, как поле сохраняется устойчивым.


Магнитное поле земли

Земля – огромный магнитный диполь. Магнитные полюса не совпадают с географическими, хотя и находятся в непосредственной близости. Более того, магнитные полюса Земли движутся. Их смещение регистрируется с 1885 года. Например, за последние сто лет магнитный полюс в Южном полушарии сместился почти на 900 километров и сейчас находится в Южном океане. Полюс арктического полушария движется через Северный Ледовитый океан к Восточно-Сибирской магнитной аномалии, скорость его передвижения (по данным 2004 года) составила около 60 километров в год. Сейчас наблюдается ускорение движения полюсов - в среднем скорость растет на 3 километра в год.

Каково значение магнитного поля Земли для нас? В первую очередь магнитное поле Земли защищает планету от космических лучей и солнечного ветра. Заряженные частицы из далекого космоса не падают прямо на землю, а отклоняются гигантским магнитом и движутся вдоль его силовых линий. Таким образом, все живое оказывается защищенным от пагубной радиации.


Магнитное поле Земли

За историю Земли происходило несколько инверсий (смен) магнитных полюсов. Инверсия полюсов – это когда они меняются местами. Последний раз это явление произошло около 800 тысяч лет назад, а всего геомагнитных инверсий в истории Земли было более 400. Некоторые ученые полагают, что с учетом наблюдающегося ускорения движения магнитных полюсов следующей инверсии полюсов следует ожидать в ближайшие пару тысяч лет.

К счастью, в нашем веке смены полюсов пока не ожидается. А значит, можно думать о приятном и наслаждаться жизнью в старом добром постоянном поле Земли, рассмотрев основные свойства и характеристики магнитного поля.

Читайте также: