Теория связи в секретных системах клод шеннон кратко

Обновлено: 08.07.2024

Содержание

Об авторе

Клод Э́лвуд Ше́ннон (англ. Claude Elwood Shannon ) — американский математик и инженер, основатель теории информации, автор многих книг и статей по кибернетике.

История

В 1940-х годах Клод Шеннон проводил исследования в Лабораториях Белла, связанные с изучением и совершенствованием процессов управления огнем и сглаживанию данных. Работы Шеннона были акцентированы на теории информации и криптографии. [1] [2]

В 1948 году была опубликована работа Шеннона "Математическая теория связи" (англ. A Mathematical Theory of Communication) , которая считается основополагающей для теории информации. [1]

Автор характеризовал свои работы "Математическая теория криптографии" и «"Математическая теория связи" так [5] :

Содержание

Математическая структура секретных систем

В первой части излагается основная математическая структура секретных систем. В теории связи считается, что язык может рассматриваться как некоторый вероятностный процесс, который создает дискретную последовательность символов в соответствии с некоторой системой вероятностей.

Так же в первой части приводятся примеры шифров:

  • шифр простой подстановки;
  • шифр Виженера и его варианты;
  • диграммная, триграммная и n-граммнная подстановки;
  • матричная система;
  • шифр Плэйфера;
  • шифр с автоключом;
  • дробные шифры.

Теоретическая секретность

В этой же части определяется функция H(N) для некоторых идеализированных типов шифров, называемых случайными шифрами. С некоторыми видоизменениями эта функция может быть применена ко многим случаям, представляющим практический интерес. Это даёт способ приближенного вычисления количества материала, который требуется перехватить чтобы получить решение секретной системы.

Рассматриваются идеальные системы - секретные системы с конечным ключом, в которых неопределённость не стремится к нулю при N. В любом языке можно аппроксимировать такую ситуацию, т. е. отсрочить приближение H(N) к нулю до сколь угодно больших N. Однако такие системы имеют много недостатков, таких как сложность и чувствительность к ошибкам при передаче криптограммы.

Вводятся пять основных критериев оценки секретных систем:

Практическая секретность

См. также

Напишите отзыв о статье "Теория связи в секретных системах"

Примечания

Ссылки

Отрывок, характеризующий Теория связи в секретных системах

1. Введение и краткое содержание

Вопросы криптографии и секретных систем открывают возможность для интересных применений теории связи. В настоящей статье развивается теория секретных систем. Изложение ведется в теоретическом плане и имеет своей целью дополнить положения, приводимые в обычных работах по криптографии. В этих работах детально изучаются многие стандартные типы кодов и шифров, а также способы их расшифровки. Мы будем иметь дело с общей математической структурой и свойствами секретных систем.

и записи переданных сигналов. Здесь будет рассмотрен только третий тип систем, так как системы маскировки представляют в основном психологическую проблему, а тайные системы — техническую проблему.

Статья делится на три части. Резюмируем теперь кратко основные результаты исследования. В первой части излагается основная математическая структура секретных систем. В теории связи считается, что язык может рассматриваться как некоторый вероятностный процесс, который создает дискретную последовательность символов в соответствии с некоторой системой вероятностей. С каждым языком связан некоторый параметр D, который можно назвать избыточностью этого языка. Избыточность измеряет в некотором смысле, насколько может быть уменьшена длина некоторого текста в данном языке без потери какой-либо части информации. Простой пример: так как в словах английского языка за буквой q всегда следует только буква и, то и может быть без ущерба опущена. Значительные сокращения в английском языке можно осуществить, используя его статистическую структуру, частую повторяемость определенных букв или слов, и т. д. Избыточность играет центральную роль в изучении секретных систем.

Предполагается, что отображения являются взаимнооднозначными, так что если известен ключ, то в результате процесса расшифровки возможен лишь единственный ответ.

Она представляет собой следующее. Сначала делается предварительный выбор, какая из систем или будет использоваться, причем система выбирается с вероятностью а система с вероятностью После этого выбранная система используется описанным выше способом.

также является отображением из этого множества. То есть зашифровка, расшифровка и снова зашифровка с любыми тремя ключами должна быть эквивалентна зашифровке с некоторым ключом.

Если и подобны, то между получающимися в результате применения этих систем множествами криптограмм можно установить взаимнооднозначное соответствие, приводящее к тем же самым апостериорным вероятностям. Такие две системы аналитически записываются одинаково.

криптограммы из букв. Далее выводятся различные свойства ненадежности, например: ненадежность ключа не возрастает с Эта ненадежность является теоретическим показателем секретности — теоретическим, поскольку она позволяет противнику дешифрировать криптограмму лишь в том случае, если он обладает неограниченным запасом времени.

В этой же части определяется функция для некоторых идеализированных типов шифров, называемых случайными шифрами. С некоторыми видоизменениями эта функция может быть применена ко многим случаям, представляющим практический интерес. Это дает способ приближенного вычисления количества материала, который требуется перехватить, чтобы получить решение секретной системы.

Клод Э́лвуд Ше́ннон (англ. Claude Elwood Shannon; 30 апреля 1916, Петоцки, Мичиган — 24 февраля 2001, Медфорд, Массачусетс) — американский математик и инженер, его работы являются синтезом математических идей с конкретным анализом чрезвычайно сложных проблем их технической реализации. Он является основателем теории информации, нашедшей применение в современных высокотехнологических системах связи. Шеннон внес огромный вклад в теорию вероятностных схем, теорию автоматов и теорию систем управления — области наук, входящие в понятие кибернетика.


Биография Клод Шеннон родился 30 апреля 1916 года в городе Петоцки, штат Мичиган, США. Первые шестнадцать лет своей жизни Клод провел в Гэйлорде, Мичиган, где он посещал общественную школу, а затем выпустился из высшей школы Гэйлорда в 1932 году. В юношестве он работал курьером службы Western Union. Отец его был адвокатом и в течение некоторого времени судьей. Его мать была преподавателем иностранных языков и, впоследствии, стала директором Гайлордской средней школы. Молодой Клод сильно любил конструировать автоматические устройства. Он собирал модели самолетов и радиотехнические цепи, также создал радиоуправляемую лодку и телеграфную систему между домом друга и своим домом. Временами ему приходилось исправлять радиостанции для местного универмага. Томас Эдисон был его дальним родственником.


С 1950 по 1956 Шеннон занимался созданием логических машин, таким образом, продолжая начинания фон Неймана и Тьюринга. Он создал машину, которая могла играть в шахматы, задолго до создания Deep Blue. В 1952 Шеннон создал обучаемую машину поиска выхода из лабиринта.


Шеннон уходит на пенсию в возрасте пятидесяти лет в 1966 году, но он продолжает консультировать компанию Белл (Bell Labs). В 1985 году Клод Шеннон со своей супругой Бетти посещает Международный симпозиум по теории информации в Брайтоне. Шеннон довольно долго не посещал международные конференции, и сначала его даже не узнали. На банкете Клод Шеннон дал короткую речь, пожонглировал всего тремя мячиками, а затем раздал сотни и сотни автографов изумленным своим присутствием ученым и инженерам, отстоявшим длиннейшую очередь, испытывая трепетные чувства по отношению к великому ученому, сравнивая его с сэром Исааком Ньютоном.

Теорема о пропускной способности канала.

Любой канал с шумом характеризуется максимальной скоростью передачи информации, этот предел назван в честь Шеннона. При передаче информации со скоростями, превышающими этот предел, происходят неизбежные искажения данных, но снизу к этому пределу можно приближаться с необходимой точностью, обеспечивая сколь угодно малую вероятность ошибки передачи информации в зашумленном канале.


A: 11
B: 10
C: 01
D: 00

Добавим дополнительный бит для каждой буквы (бит четности):

A: 110
B: 101
C: 011
D: 000

Если добавить еще несколько лишних битов, то это поможет приемнику не только выяснить где ошибка, но и восстановить исходный код:

A: 11111
B: 10010
C: 01001
D: 00100

Коды Хемминга хорошо работают, когда шум распределен случайным образом. Однако, в некоторых сигналах шум возникает периодически или на относительно длительное время. С этой задачей хорошо справляются другой тип кодов — коды Рида-Соломона (Reed-Solomon). С точки зрения математики, они более хитрые, однако и те и другие легко могут быть выполнены на интегральных схемах компьютера.

Читайте также: