Технология рекомбинантных днк кратко

Обновлено: 28.06.2024

Технология рекомбинантных ДНК – это
совокупность методов, позволяющих:
• клонировать ДНК
• расшифровывать порядок нуклеотидов в ДНК
• выявлять интересующие последовательности
ДНК или РНК с целью маркирования признаков и
диагностики наследуемых заболеваний
• осуществлять перенос генетического материала
от одного организма в другой и т.д.
Рекомбинантная ДНК – это молекула ДНК,
полученная объединением in vitro разнородных,
вместе нигде в природе не существующих,
фрагментов ДНК .

ДНК-лигаза – белок, который соединяет 3’- конец одной
цепи ДНК с 5’-концом другой цепи ДНК, восстанавливая
фосфодиэфирную связь и формируя непрерывную цепь

Как получить ген в очищенном виде?
Создание библиотек:
• Геномной ДНК
• кДНК
Выявление клонов, несущих
интересующий ген
Клонирование ДНК

Создание библиотеки геномной ДНК
1. Из организма – донора нужных генов – экстрагируют ДНК,
расщепляют ее рестриктазами и соединяют с вектором с
образованием рекомбинантной молекулы

Вектор – самореплецирующаяся молекула ДНК (напр. плазмида),
используемая в генной инженерии для переноса генов от
организма-донора
в
организм-реципиента,
а
также
для
клонирования фрагментов ДНК

Плазмиды – бактериальные внехромосомные,
автономно реплицирующиеся кольцевые молекулы
ДНК
Полилинкер – искусственная нуклеотидная
последовательность, содержащая несколько сайтов
рестрикции
сайт клонирования
+ репортерный ген
ген
устойчивости
к антибиотику
(селективный
ген)
ориджин
репликации

2. Рекомбинантную ДНК вводят в клетку-хозяина (Е. coli),
где она реплицируется и передаётся потомкам. Этот
процесс называется трансформация.
Колония – совокупность потомков
одной клетки родоначальницы.

БАКТЕРИАЛЬНЫЕ КЛЕТКИ
Escherichia coli, Bacillus subtilis, Rhizobium melitoli,
Pseudomonas putida
- просто получить
- быстро растут
Клетки кишечной палочки (E. coli)

4. Отбор колоний несущих рекомбинантную ДНК с
помощью репортерного гена (синие колонии с
плазмидой без вставки белые колонии с
рекомбинантной плазмидой)

5. Идентификация клетки, несущей нужный участок
ДНК
Гибридизация с использованием ДНК-зонда.
ДНК-зонд – радиоактивно меченная ДНК.

Плазмиды одной колонии содержат клон геномной
ДНК.
Совокупность всех клонов геномной ДНК
составляют библиотеку геномной ДНК.
Вектор, используемый для клонирования ДНК,
называется клонирующий вектор.

Прокариотический экспрессирующий вектор
Nco I
промотор
PstI
Hind III
терминатор
рКК233-2
ориджин репликации
AMPr
ген устойчивости к
ампицилину

Библиотека кДНК (комплементарной ДНК)
иРНК 5’
Обратная транскриптаза
ДНК 3’
АААААА 3’
ТТТТТТТ 5’
Обработка щелочью для разрушения РНК
ДНК полимераза
ДНК 5’
ТТТТТТ 3’
ДНК 3’
АААААА 5’

Рекомбинантный белок – белок, кодируемый геном,
который экспрессируется в клонированной
рекомбинантной ДНК.
Для достижения эффективной экспрессии гена
сконструировано много специфичеких векторов; для
этого проводились манипуляции с целым рядом
генетических элементов, контролирующим процессы
транскрипции и трансляции, стабильность белков,
секрецию продуктов из клетки-хозяина и т. д.

Для стабильной экспрессии клонированного гена важно:
-тип промотора и терминатора транскрипции
- прочность связывания иРНК с рибосомой
- число копий клонированного гена и его локализации
- конечная локализация синтезируемого продукта
- эффективность трансляции в организме хозяине
- стабильность продукта в клетке хозяина

Получение рекомбинантного белка
1. Первый шаг, необходимый для получения
рекомбинантного белка – это клонирование гена,
кодирующего этот белок.
2. Следующий шаг - это введение гена в клетку,
где будет происходить синтез белка. Наиболее
популярные для этих целей организмы: бактерии,
дрожжи, клетки насекомых и млекопитающих.
Одним из самых ранних применений технологий
рекомбинантных белков было производство в
бактериальных клетках человеческих белков в
медицинских целях.

Первый коммерческий биотехнологический продукт разработанный
компанией Genentech был человеческий инсулин
бактериальный
промотор
Инсулин
А - цепь
бактериальный
терминатор
ген устойчивости
к ампициллину
бактериальный
промотор
Инсулин
В-цепь
бактериальный
терминатор
Клетки кишечной палочки
(E. coli)

Взамен инсулина из поджелудочных желез свиней и коров, диабетики
могли использовать нормальный человеческий инсулин
Инсулин А-цепь
Активный инсулин
Инсулин В-цепь
Культура бактериальных
клеток, выращивается в ферментерах

Примеры лекарств, производимых с помощью биотехнологии:
Activase – для разрушения тромбов в кровеносных сосудах
Herceptin – лечение рака молочной железы
Neutropin, Humatrope – лечение недостатка гормона роста
Xolair – лечение аллергической астмы
Rativa, Amevive – лечение псориаза
Epogen и Procruit – лечение анемии
Enbrel, Humira, Remicade – лечение ревматоидного артрита
Avonex, Betaseron – лечение множественного склероза
Recombivax – вакцина против гепатита В
Flumist – вакцина против гриппа
Forteо – лечение остеопороза
Reopro – предотвращает тромбообразование
Xigris – лечение сепсиса

Рекомбинантные белки, которые используют в
терапевтических целях.
Год
1982
1985
Продукт
Человеческий
инсулин
Гормон роста
человека
Диабет
Карликовость
1989
Эритропоэтин
Профилактика
гепатита В
Анемия
1992
Фактор VII
Гемофилия А
1997
Фактор IX
Гемофилия В
1999
Фактор VIIa
Гемофилия
1986
Вакцина гепатита В
Клиническое
применение

Бактериальные клетки имеют ряд недостатков:
-белки могут получаться в неактивной форме
- белки могут включаться в нерастворимые тельца
- получаемые белки часто токсичны для бактерий, что
снижает выход белка
-для работы эукариотических белков часто требуются
особые модификации, которые не могут происходить в
бактериях
- белок может быть загрязнен пирогенами

ДРОЖЖЕВЫЕ КЛЕТКИ
-это эукариотические организмы,
которые могут расти так же
быстро как бактерии
-могут осуществлять некоторые
необходимые модификации
-генетика и физиология детально
изучена
-дрожжи используются человеком
давно и оно признаны безопасными
дрожжевые клетки

Эукариотический экспрессирующий вектор
бактериальный
ориджин
репликации
эукариотический
ориджин
репликации
маркерный ген для
эукариотических
клеток
маркерный ген
для
прокариотическ
их клеток
эукариотический
терминатор
эукариотический промотор
сайт клонирования

Недостатки дрожжевых систем:
-присутствие активных ферментов, которые разрушают
получаемый белок
- не гарантирует получение активного белка любого гена
Некоторые препараты, получаемые с помощью дрожжевых
клеток:
- Фактор роста эпидермиса
- Инсулин
- Тромбоцитарный фактор роста
- Фактор роста фибробластов
- Фактор XIIa системы свертывания крови
-a-антитрипсин
- вакцина против гепатита В

Клетки насекомых
Линии клеток, использующиеся для работы получают из гусениц
Spodoptera frugiperda (линии Sf9, Sf21)
Векторы для экспрессии были разработаны на основе вирусов,
инфицирующих насекомых - бакуловирусов
-высокий уровень синтеза белка
- осуществляется большинство
необходимых модификаций
- получают активные формы белка
клетки насекомых

Некоторые рекомбинантные белки, синтезируемые
в клетках насекомых:
-a-интерферон
- эритропоэтин
- щелочная фосфатаза человека
- липаза поджелудочной железы человека
- интерлейкин-2
- активатор тканевого плазминогена
- регулятор проницаемости мембран, нарушения
в котором приводят к муковисцидозу

Клетки млекопитающих
Созданы экспрессирующие векторы для культуры
клеток млекопитающих
Промышленный синтез
рекомбинантных
белков с использованием
модифицированных клеток
млекопитающих обходится слишком
дорого
Системы экспрессии на основе клеток
млекопитающих
используют
для
получения рекомбинантных белков,
которые
невозможно получить с
помощью других систем получения

Получение определенных лечебных белков может
быть достигнуто только с помощью культуры клеток
млекопитающих, где белок соответствующим образом
укладывается и модифицируется
Выработка этого белка в трансгенных животных
может быть альтернативным методом
Секреция рекомбинантного белка может
происходить в молоко. Таким способом можно
получать экспрессию белка на уровне 35 г/л

Использование растений для получения рекомбинантных белков
Растения – возможная альтернатива, позволяющая отказаться от
использования животных и культуры клеток млекопитающих при
получении рекомбинантных белков.
- растения легко выращивать, и путь от
лабораторных тестов к коммерческому
использованию быстр и легок
-использование животных сопряжено с
риском заражения эндогенными вирусами
- растения выполняют очень схожие с
животными модификации белков
Растения рассматривают как дешевую,
безопасную
и эффективную систему для получения
вакцин

35. Проверь себя!

1.
Одна из важных областей применения технологий
рекомбинантных ДНК – это получение белка. Как
получить высокий уровень экспрессии вставленного
гена ?
2.
Большинство генов животных и человека содержат
интроны. Бактерия не может вырезать интроны из
ядерной иРНК. Как бактерии могут быть использованы
для получения протеина животных или человека?
3.
При каких условиях рестриктаза не подходит для
клонирования фрагмента чужеродной ДНК?

4.
5.
Предположим случайное сочетания нуклеотидов в
фрагменте ДНК, какова вероятность разрезания этого
фрагмента рестриктазой с сайтом узнавания из 4
нуклеотидов? Из 6 нуклеотидов?
ДНК фрагмент 8 kb помечен Р32 с 5’ конца и разрезан
рестриктазами EcoRI и BgII поотдельности и вместе.
Меченные фрагменты обозначены звездочкой.
Построить рестрикционную карту этого фрагмента.
Kb
3,5
EcoRI
вместе
BgII
*
3,0
*
*
2,0
1,5
*
1,0
**
0,5
*
*

Технология рекомбинантных ДНК (также молекулярное клонирование или генная инженерия) – это совокупность экспериментальных процедур, позволяющих осуществлять перенос генетического материала (ДНК) из одного организма в другой. В настоящее время можно вырезать отдельные участки ДНК, получать нуклеотиды на ДНК – синтезаторах (приборах для автоматического химического синтеза ДНК) практически в неограниченном количестве, определять последовательность нуклеотидов (разделяя, секвенируя их) сотнями в сутки, изменять выделенный ген, вводить его вновь в геном культивируемых клеток или эмбриона животного, где этот измененный ген начинает функционировать. Эксперименты с рекомбинантными ДНК используют крупномасштабно в промышленном производстве БАВ.

Эксперименты по клонированию включают следующие этапы:

1. Рестриктазное расщепление из организма-донора нужных генов нативной ДНК (клонируемая ДНК, встраиваемая ДНК, ДНК- мишень, чужеродная ДНК).

2. Быстрая расшифровка всех нуклеотидов в очищенном фрагменте ДНК, позволяющая определить точные границы гена и аминокислотную последовательность, кодируемую геном.

3. Обработка рестрикционными эндонуклеазами вектора для клонирования, который может реплицироваться в клетке-хозяине.

5. Введение этой конструкции в клетку хозяина (реципиента), где она реплицируется и передается потомкам. Этот процесс называется трансформацией. После трансформации бактериальная клетка воспроизводит фрагмент клонируемой ДНК миллионами идентичных клеток.

6. Идентификация и отбор клеток, несущих рекомбинантную ДНК (трансформированные клетки).

7. Получение специфичного белкового продукта, синтезированного клетками-хозяевами (рис. 6).


Конструирование рекомбинантных молекул осуществляется с помощью ряда ферментов – обязательного и незаменимого инструмента практически всех этапов этого сложного процесса, прежде всего ферментов рестрикции (рестрицирующих эндонуклеаз, рестриктаз). Рестриктазы являются составной частью системы рестрикции – модификации прокариотических клеток. Эта система связана с защитой клеток от проникновения чужеродной ДНК. Система модификации осуществляет метилирование собственной ДНК в сайтах ее узнавания немедленно после репликации; чужеродную ДНК, проникающую в клетку, бактерии гидролизуют с помощью рестриктаз.

Различают три основных класса рестриктаз. Рестриктазы класса I разрывают молекулы ДНК в произвольных точках, рестриктазы I и III классов обладают метилирующей и эндонуклеазной активностью.Ферменты II класса, которые и используются в генной инженерии, состоят из двух отдельных белков: рестрикционной эндонуклеазы и модифицирующей метилазы.

В настоящее время используется свыше 400 различных рестриктаз. Эти ферменты синтезируют самые разнообразные микроорганизмы. Для их культивирования необходимы оптимальные условия (температура, состав и pH среды, концентрация кислорода и т.д.). С целью повышения продуктивности и стандартизации процесса получения этих ферментов клонируют гены рестрицирующих эндонуклеаз в Е. coli.

Одних ферментов рестрикции при молекулярном клонировании недостаточно, так как водородные связи между теми четырьмя основаниями, которые образуют липкие концы, не столь прочны, чтобы удержать два объединившихся фрагмента ДНК. Для устранения разрыва в сахарофосфатном остове молекулы служит фермент ДНК-лигаза, катализирующий образование фосфодиэфирных связей между концами полинуклеотидных цепей, которые удерживаются вместе при спаривании липких концов. ДНК-лигаза сшивает и тупые концы.

Таким образом, одна часть рекомбинантной молекулы ДНК несет нужный ген, который предполагается клонировать, другая – содержит информацию, необходимую для репликации в клетке рекомбинантной ДНК. Кроме того, при ДНК-рестрикции образуются разнообразные фрагменты и после их лигирования (соединения фосфодиэфирной связью) с векторной ДНК появляется множество различных комбинаций фрагментов, например, объединяющих между собой фрагменты донор- ной ДНК и векторные ДНК. Для уменьшения количества последних рестрицированную векторную ДНК обрабатывают щелочной фосфатазой.

Для введения рекомбинантной ДНК применяют два основных вектора:

Плазмиды представляют собой внехромосомный генетический элемент в виде кольцевых молекул ДНК, содержащих 1-3% генома бактериальной клетки. Плазмиды есть у всех бактерий. Одни из них содержат информацию, обеспечивающую их собственный перенос из одной клетки в другую (F-плазмиды), другие – несут гены устойчивости к антибиотикам (R-плазмиды) или специфические наборы генов, ответственных за утилизацию метаболитов (плазмиды деградации). Каждая плазмида содержит сайт начала репликации, без которого репликация плазмиды в клетке-хозяине невозможна. Если две или более плазмиды не могут сосуществовать в одной и той же клетке – они принадлежат к одной группе несовместимости. Плазмиды, относящиеся к разным группам несовместимости, беспрепятственно существуют в одной клетке независимо от числа копий. У некоторых микроорганизмов в одной клетке обнаружено до 10 разных плазмид, каждая из которых выполняла свои функции И относилась к своей группе несовместимости. Репликация плазмид идет независимо от репликации хромосом. Количество копий определяется регуляторной системой клетки.

Таким образом, плазмиды обладают свойствами, позволяющими использовать их в качестве вектора для переноса клонируемой ДНК. Бактериальный клон, содержащий такую плазмиду, можно сравнить с фабрикой по производству этого фрагмента.

– небольшого размера, так как эффективность переноса экзогенной ДНК в Е. coli снижается при длине плазмиды более 15 тысяч пар нуклеотидов;

– наличия сайта рестрикции, в который осуществлена вставка;

– наличия одного или более селективных генетических маркеров для идентификации реципиентных клеток, несущих рекомбинантную ДНК.

Вводят плазмиды в соматические клетки с помощью химических реагентов, повышающих проницаемость клеточной оболочки. В частности, чтобы обеспечить проникновение в клетки плазмидной ДНК, их обрабатывают ледяным раствором кальция хлорида, затем выдерживают при 42 °С в течение 1,5 мин. Эта обработка приводит к локальному разрушению клеточной стенки. Максимальная частота трансформации – 10 -3 , т.е. на каждую тысячу клеток приходится одна трансформированная. Частота трансформации не бывает 100%-й, затем используют схемы отбора, позволяющие идентифицировать трансформированные клетки.

В качестве маркеров плазмида может содержать гены, определяющие устойчивость бактерии к антибиотикам. Вставка чужеродного (донорного) гена в маркерный ген приводит к инактивации последнего. Это позволяет отличать трансформированные клетки, получившие векторную плазмиду (утратившие устойчивость к антибиотику), от клеток, получивших рекомбинантную молекулу (сохранивших устойчивость к одному, но утративших устойчивость к другому антибиотику). Этот прием называется инактивацией маркера вставки.

Для отбора трансформированных клеток, содержащих рекомбинантную ДНК (гибридную плазмиду), проводят тестирование на резистентность к определенным антибиотикам. Например, клетки, несущие гибридную плазмиду, устойчивы к ампициллину, но чувствительны к тетрациклину (в маркерный ген которого и внедрена донорная ДНК).

Процесс разделения геномной ДНК на клонируемые элементы и введения этих элементов в клетки-хозяева называется созданием геномной библиотеки (банка клонов, банка генов).

Все системы клонирования должны отвечать двум основным требованиям:

1. Наличию нескольких сайтов для клонирования;

2. Возможности достаточно простой идентификации клеток с рекомбинантными ДНК.

Для всех рутинных процедур молекулярного клонирования широко используется E. соli в качестве клетки-хозяина. Клетки, способные поглощать чужеродную ДНК называются компетентными; компетентность E. соli повышают, используя специальные условия культивирования. Для получения больших количеств чужеродных белков с помощью рекомбинантных штаммов E. соli была сконструирована плазмида, содержащая сильный промотор, селективный маркерный ген и короткий участок с несколькими уникальными сайтами для рестрицирующих ферментов – полилинкер.

Эффективными методами трансформации E. соli плазмидами является электропорация (воздействие на клеточные мембраны электрическим током для увеличения их проницаемости). Для введения клонированных генов в соматические клетки также применяют микроинъекциии, мнкроукалывания или слияние с клеткой нагруженных ДНК мембранных везикул (липосом).

Использование бактериофагов в качестве носителей генетической информации основано на том, что рекомбинантный ген встраивается в геном вируса и в последующем реплицируется с генами вируса при размножений в инфицированной клетке-хозяина. С этой целью применяют бактериофаг λ- вирус с двухценочечной ДНК, которая после проникновения в клетку смыкается в кольцо. Бактериофаг М-13 – вирус нитевидной формы с кольцевой замкнутой ДНК, которая в клетке превращается в двухцепочечную и реплицируется в клетках-потомках. В поисках эукариотических систем экспрессии, для получения биологически активных белков, созданы бакмиды — экспрессирующие векторы на основе бакуловирусов для Е. coli и клеток насекомых. Выход рекомбинантных бакуловирусов в такой системе повысился до 99%. Клетки насекомого, инфицированные бакуловирусами, синтезировали гетерологичный белок. Векторы на основе фага удобны ддя создания клонеток (банка генов), но не для тонких манипуляций с фрагментом ДНК. Для детального изучения и преобразования фрагменты ДНК переклонируют в плазмиды.

Кроме указанных векторов в генной инженерии применяют космиды – плазмиды, несущие cos-участок (комплементарные липкие концы) ДНК фага λ. Наличие cos-участка позволяет производить упаковку ДНК в головку фага in vitro, что обеспечивает возможность их, введения в клетку путем инфекции, а не трансформации. Фазмиды – гибриды между фагами и плазмидами – способны развиваться как фаг и как плазмида. Уступая космидам по клонирующей емкости, фазмиды дают возможность отказаться от переклонирования генов из фаговых, в плазмидные векторы.

Таким образом, для получения любого белкового продукта необходимо обеспечить правильную транскрипцию кодирующего его гена и трансляцию соответствующей мРНК. Для инициации транскрипции (синтеза РНК) в нужном сайте необходим промотор, для ее остановки терминирующий кодон.

Для синтеза разнообразных белков, кодируемых клонированными генами, интенсивно используют обычные дрожжи S. cerevisiae; генетика этих одноклеточных организмов хорошо изучена. Рекомбинантные белки, синтезированные в системах экспрессии S. cerevisiae, применяют в качестве вакцин и лекарственных препаратов.

Придавать новые свойства существующим белкам, создавать уникальные ферменты возможно, производя, специфические изменения с помощью плазмид или ПЦР. Клонированные гены позволяют получать белки, содержащие нужные аминокислоты в заданных сайтах. Внесение специфических изменений в кодирующие последовательности ДНК, приводящие к определенным изменениям в аминокислотных последовательностях, называется направленным мутагенезом

2. Секвенирование нуклеотидов. Фрагменты ДНК, различающиеся по размеру, отделяют электрофорезом и исследуют каждый из них отдельно. Строят рестрикционную карту, на которой указано положение каждого сайта рестрикции относительно других участков.

4. Клонирование (размножение) рекомбинантной ДНК:

- клонирование ДНК in vivo: к культуре E.coli добавляют рекомбинантные плазмиды, которые включаются в бактериальные клетки, и получают рекомбинантные буктерии. Плазмиды в клетке начинают реплицироваться. При размножении бактерий вновь образующиеся бактериальные клетки тоже содержат эти плазмиды. Из рекомбинантных бактерий выделяют клонированные рекомбинантные плазмиды, а из них – исследуемый фрагмент ДНК. Так выделяют ген или любой фрагмент ДНК в количествах, достаточных для исследовательских целей;

Применение ПЦРв медицинской практике – диагностические тесты на генетические и инфекционные заболевания (в частности, для ранней диагностики ВИЧ); для анализа индивидуальных сперматозоидов и пр.

5. Введение гена в клетку.

Ген водят двумя способами так, чтобы он не был разрушен клеточными нуклеазами, и интегрировался с геномом клетки.

1 способ. Трансдукция.

Вектор, молекула ДНК или РНК, состоящая из векторной части (носителя) и клонируемого чужеродного гена. Задача вектора – донести выбранную ДНК в клетку-реципиент и встроить ее в геном. В состав вектора входит маркерный ген, позволяющий селектировать измененные клетки. Выделяют 2 группы маркерных генов: селективные гены, отвечающие за устойчивость к антибиотикам или гербицидам; репортерные гены, кодирующие нейтральные для клеток белки, наличие которых в тканях легко тестируется. За способность гена к экспрессии отвечают регуляторные последовательности, которые встраивают в каждую векторную молекулу. Для экспрессии эукариотических генов в клетках прокариот нужно, чтобы гены контролировались прокариотическими регуляторными элементами.




Типы векторов:

- бактериальные плазмиды – наиболее часто используемая для клонирования плазмида pBR 322 создана на основе плазмид, выделенных из E.coli;

- вирусы – есть вирусы, не ведущие к гибели клетки, но встраивающиеся в геном клетки-хозяина, и размножающиеся вместе с ней, либо вызывающие ее неконтролируемый рост (превращение в раковую);

- гибридные векторы – содержат ДНК фага и плазмиды: космиды и фазмиды.

2 способ. Трансформация (прямое введение гена в клетку):

- трансфекция: ДНК адсорбируется на кристаллах фосфата кальция, которые поглощаются клеткой путем фагоцитоза;

- микроинъекции ДНК микропипетками и микроманипулятором;

- электропорация – импульсы высокого напряжения обратимо увеличивают проницаемость биомембран;

- упаковка в лизосомы – защита экзогенного генетического материала от действия рестриктаз;

- метод биолистики – один из самых эффективных методов трансформации растений: на частички вольфрама напыляются ДНК-векторы. Частички помещаются внутрь биолистической пушки, откуда с огромной скоростью выбрасываются и, разрывая клеточные стенки, входят в цитоплазму и ядро клеток.

С развитием генной инженерии стало возможным заставить микроорганизмы синтезировать вещества, которые получить другими методами сложно: интерферон, инсулин, соматостатин, фермент урокиназу, некоторые факторы свертывания крови и др.

Плазмиды можно ввести и в клетки эукариот. Генетическая трансформация соматических клеток млекопитающих позволяет изучать механизмы регуляции экспрессии генов и модифицировать генетический аппарат клетки.

Генотерапия – лечения заболеваний с помощью генов. Существует два типа генотерапии:

- заместительная генотерапия: в клетку вводят неповрежденный ген;

- корректирующая генотерапия: дефектный ген заменяют нормальным в результате рекомбинации.

Муковисцидоз – наследственное заболевание легких, поражающее в Центральной Европе одного новорожденного из 2500. Для него установлен дефектный ген, кодирующий белок-регулятор трансмембранной проводимости. Основное проявление этого гена – пневмония. Поражаются все эпителиальные клетки. Неповрежденную копию гена, включенную в аденовирусный вектор или липосому, вводят в форме аэрозоля в дыхательные пути больного.

Генотерапия применима не только к наследственным заболеваниям. Предстоит решить проблему лечения генами СПИДа. ВИЧ – ретровирус, поражающий Т-лимфоциты и макрофаги. Болезнь удалось бы победить, если бы были найдены новые гены, введение которых в зараженные ВИЧ лимфоциты останавливало бы дальнейшее размножение вируса.

Получение трансгенных животных. Для изменения свойств всего организма следует изменять геном половых клеток, которые передадут новые свойства потомкам. Разработаны способы введения генов в эмбриональные клетки млекопитающих, мух и некоторых растений. Микроинъекцию клонированных генов производят в оплодотворенную яйцеклетку, затем ее имплантируют в яйцевод приемной матери. Можно вводить ген в сперматозоиды и затем проводить ими оплодотворение.

В Англии созданы трансгенные овцы, молоко которых содержит фактор свертывания крови. Создан трансгенный крупный рогатый скот, в молоке которого содержится человеческий альбумин: каждая корова производит до 80 кг рекомбинантного человеческого альбумина в год.

Трансгенных животных получают для трансплантации органов. Лучшие доноры органов – свиньи, т.к. имеется анатомическое сходство органов и иммунологическийх свойств. Реакции отторжения органов при трансплантации имеют сложный механизм, и одним из сигналов для атаки организма на чужой орган являются белки, локализованные на внешней поверхности мембраны. У трансгенных свиней эти белки заменены на человеческие.

2. Секвенирование нуклеотидов. Фрагменты ДНК, различающиеся по размеру, отделяют электрофорезом и исследуют каждый из них отдельно. Строят рестрикционную карту, на которой указано положение каждого сайта рестрикции относительно других участков.

4. Клонирование (размножение) рекомбинантной ДНК:

- клонирование ДНК in vivo: к культуре E.coli добавляют рекомбинантные плазмиды, которые включаются в бактериальные клетки, и получают рекомбинантные буктерии. Плазмиды в клетке начинают реплицироваться. При размножении бактерий вновь образующиеся бактериальные клетки тоже содержат эти плазмиды. Из рекомбинантных бактерий выделяют клонированные рекомбинантные плазмиды, а из них – исследуемый фрагмент ДНК. Так выделяют ген или любой фрагмент ДНК в количествах, достаточных для исследовательских целей;

Применение ПЦРв медицинской практике – диагностические тесты на генетические и инфекционные заболевания (в частности, для ранней диагностики ВИЧ); для анализа индивидуальных сперматозоидов и пр.

5. Введение гена в клетку.

Ген водят двумя способами так, чтобы он не был разрушен клеточными нуклеазами, и интегрировался с геномом клетки.

1 способ. Трансдукция.

Вектор, молекула ДНК или РНК, состоящая из векторной части (носителя) и клонируемого чужеродного гена. Задача вектора – донести выбранную ДНК в клетку-реципиент и встроить ее в геном. В состав вектора входит маркерный ген, позволяющий селектировать измененные клетки. Выделяют 2 группы маркерных генов: селективные гены, отвечающие за устойчивость к антибиотикам или гербицидам; репортерные гены, кодирующие нейтральные для клеток белки, наличие которых в тканях легко тестируется. За способность гена к экспрессии отвечают регуляторные последовательности, которые встраивают в каждую векторную молекулу. Для экспрессии эукариотических генов в клетках прокариот нужно, чтобы гены контролировались прокариотическими регуляторными элементами.

Типы векторов:

- бактериальные плазмиды – наиболее часто используемая для клонирования плазмида pBR 322 создана на основе плазмид, выделенных из E.coli;

- вирусы – есть вирусы, не ведущие к гибели клетки, но встраивающиеся в геном клетки-хозяина, и размножающиеся вместе с ней, либо вызывающие ее неконтролируемый рост (превращение в раковую);

- гибридные векторы – содержат ДНК фага и плазмиды: космиды и фазмиды.

2 способ. Трансформация (прямое введение гена в клетку):

- трансфекция: ДНК адсорбируется на кристаллах фосфата кальция, которые поглощаются клеткой путем фагоцитоза;

- микроинъекции ДНК микропипетками и микроманипулятором;

- электропорация – импульсы высокого напряжения обратимо увеличивают проницаемость биомембран;

- упаковка в лизосомы – защита экзогенного генетического материала от действия рестриктаз;

- метод биолистики – один из самых эффективных методов трансформации растений: на частички вольфрама напыляются ДНК-векторы. Частички помещаются внутрь биолистической пушки, откуда с огромной скоростью выбрасываются и, разрывая клеточные стенки, входят в цитоплазму и ядро клеток.

С развитием генной инженерии стало возможным заставить микроорганизмы синтезировать вещества, которые получить другими методами сложно: интерферон, инсулин, соматостатин, фермент урокиназу, некоторые факторы свертывания крови и др.

Плазмиды можно ввести и в клетки эукариот. Генетическая трансформация соматических клеток млекопитающих позволяет изучать механизмы регуляции экспрессии генов и модифицировать генетический аппарат клетки.

Генотерапия – лечения заболеваний с помощью генов. Существует два типа генотерапии:

- заместительная генотерапия: в клетку вводят неповрежденный ген;

- корректирующая генотерапия: дефектный ген заменяют нормальным в результате рекомбинации.

Муковисцидоз – наследственное заболевание легких, поражающее в Центральной Европе одного новорожденного из 2500. Для него установлен дефектный ген, кодирующий белок-регулятор трансмембранной проводимости. Основное проявление этого гена – пневмония. Поражаются все эпителиальные клетки. Неповрежденную копию гена, включенную в аденовирусный вектор или липосому, вводят в форме аэрозоля в дыхательные пути больного.

Генотерапия применима не только к наследственным заболеваниям. Предстоит решить проблему лечения генами СПИДа. ВИЧ – ретровирус, поражающий Т-лимфоциты и макрофаги. Болезнь удалось бы победить, если бы были найдены новые гены, введение которых в зараженные ВИЧ лимфоциты останавливало бы дальнейшее размножение вируса.

Получение трансгенных животных. Для изменения свойств всего организма следует изменять геном половых клеток, которые передадут новые свойства потомкам. Разработаны способы введения генов в эмбриональные клетки млекопитающих, мух и некоторых растений. Микроинъекцию клонированных генов производят в оплодотворенную яйцеклетку, затем ее имплантируют в яйцевод приемной матери. Можно вводить ген в сперматозоиды и затем проводить ими оплодотворение.

В Англии созданы трансгенные овцы, молоко которых содержит фактор свертывания крови. Создан трансгенный крупный рогатый скот, в молоке которого содержится человеческий альбумин: каждая корова производит до 80 кг рекомбинантного человеческого альбумина в год.

Трансгенных животных получают для трансплантации органов. Лучшие доноры органов – свиньи, т.к. имеется анатомическое сходство органов и иммунологическийх свойств. Реакции отторжения органов при трансплантации имеют сложный механизм, и одним из сигналов для атаки организма на чужой орган являются белки, локализованные на внешней поверхности мембраны. У трансгенных свиней эти белки заменены на человеческие.

Современная технология рекомбинантной ДНК. Виды рекомбинантных субъединичных вакцин.

Современная технология рекомбинантной ДНК пришла на смену устаревшей рутинной технологии изготовления вакцины против одного из наиболее опасных и широко распространенных заболеваний людей. Ранние вакцины против гепатита В были необычными и представляли собой очищенный поверхностный антиген вируса (HBsAg), полученный из плазмы крови человека, хронического носителя вируса. Это была уникальная в своем роде вакцина.

Рекомбинантные дрожжевые клетки продуцируют поверхностный антиген вируса гепатита В, агрегированный в многомерные сферические частицы диаметром 22 нм, идентичные натуральному поверхностному HBsAg антигену, обнаруживаемому в плазме крови хронически инфицированных людей.

HBsAg синтезировался в дрожжах в количестве, достаточном для промышленного изготовления вакцины. Антиген, выделенный из разрушенных дрожжей, очищают скоростным центрифугированием в сочетании с иммунной хроматографией.

Сравнительный анализ физико-химических, морфологических и иммуногенных свойств HBsAg, полученного генно-инженерным способом и выделенного из плазмы крови носителей вируса, продемонстрировал близость их характеристик. Однако поверхностный антиген вируса гепатита В, продуцируемый дрожжами, оказался негликозилированным. С целью усиления иммуногенности в рекомбинантные вакцины были включены, помимо HBsAg, белки, кодируемые зонами пpe-S ДНК вируса гепатита В.

тельца гварниери рекомбинантной вакцины

Рекомбинантные культуры дрожжей, в отличие от плазмы носителей антигена вируса, практически представляют неограниченный источник вирусного антигена для изготовления вакцинного препарата. Протективная активность рекомбинантной вакцины не отличается от активности вакцины, полученной из плазмы крови доноров. В дрожжах экспрессирован G-белок вируса бешенства в нативном виде.

Основной протективный белок VP2 вируса бурсальной болезни кур образовывался в высокоиммуногенной форме в рекомбинантных дрожжах. Рекомбинантный белок VP2 после однократного внутримышечного введения (50 мкг) в составе эмульгированной вакцины вызывал у кур вируснейтрализующие антитела в таком же титре, как после введения живого вируса. Трансовариальная передача антител обеспечивала выраженный иммунитет у потомства и вселяла надежду на практическое применение такой вакцины.

Аналогичные результаты получены с рекомбинантной субъединичной вакциной, содержащей белок VP2, экспрессированный в бакуловирусной системе.
Создание эффективной вакцины против гепатита С связано с многими проблемами, и в первую очередь, с отсутствием возможности размножения вируса в культуре клеток, а так же генетическим разнообразием и высоким уровнем мутабильности вируса. Вакцины, основанные на гликопротеинах Е1 и Е2, вызывали кратковременное образование антител у обезьян к этим антигенам и требовали частой бустеризации. Привитые животные были защищены против внутривенного заражения малыми дозами вирулентного вируса гомологичной антигенности, но не против заражения большой дозой вируса или заражения гетерологичным штаммом вируса.

Возможно, что для усиления протективного эффекта требуется индукция специфических цитотоксических лимфоцитов к консервативным эпитопам неструктурных белков.

Возрастающий интерес к изготовлению компонентных вакцин на основе технологии рекомбинантной ДНК привлек внимание к использованию клеток животных в качестве систем, экспрессирующих рекомбинантные вирусные белки. В качестве таких систем часто использовали трансформированные линии клеток, в том числе яичника китайского хомяка (линия СНО), а также клетки обезьян, трансформированные вирусом SV-40 (линия COS). Такую систему использовали для наработки антигенов, вируса гепатита В и др. Продуцируемые в рекомбинантных клетках СНО вирусоподобные частицы, содержащие поверхностный антиген вируса гепатита В, имели диаметр 22 нм, плотность в хлориде цезия 1,21 г/см3 и не отличались от частиц, обнаруживаемых в плазме крови инфицированных носителей. Культуральные свойства клеток СНО позволяли рассчитывать на их промышленное использование в качестве продуцентов иммуногенного материала.

Клетки гепатобластомы человека (линия HepG2), трансфицированные полноразмерной ДНК вируса гепатита В, в большом количестве секретировали антигены Е, С и S. Мембранный гликопротеин (340/220) вируса Эпштейн-Барр длительное время экспрессировался в фибрабластоподобных клетках мышей, трансформированных вирусом папилломы крупного рогатого скота.

Белок Е1 вируса краснухи был экспрессирован в клетках COS после трансфекции клеток кДНК в составе вектора обезьяньего вируса SV-40. Этот белок антигенно подобен белку, экспрессируемому в клетках, зараженных вирусом краснухи.

Генно-инженерным методом получена клеточная линия, продуцирующая пустые капсиды парвовируса В-19 человека. Продукция полых капсидов была равной или превышала формирование вирионов в инфицированных клетках костного мозга (1000-2000 капсидов на клетку). Трансфекция не влияла на скорость роста клеток-продуцентов. Капсиды парвовируса В-19, экспрессированные в бакуловирусной системе, по антигенным и иммуногенным свойствам были подобны нативным вирионам. Испытание рекомбинантной вакцины на серонегативных добровольцах дало положительные результаты Получен рекомбинантный вирус бешенства, стабильно экспрессирующий гликопротеин оболочки др 160 вируса иммунодефицита человека 1. Этот вирус вызывал у мышей образование ВН-антител в высоком титре (1:800) и мог служить прообразом рекомбинантной вакцины против ВИЧ-1.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Читайте также: