Связь математики с философией кратко

Обновлено: 30.06.2024

Древнегреческие философы Пифагор и Платон считали, что математика отражает глубинную структуру бытия, и с ее помощью можно описать то, как мир устроен на самом деле. Однако со времен Канта и до недавнего времени господствовал иной взгляд на науку и познание: считалось, что наш разум меняет изучаемый объект, подстраивая его под себя, и тем самым конструирует его. Неожиданным образом в наши дни философия вернулась к давней идее математической структуры мира, не зависящей от нашего сознания и познания. О том, как это вышло и что из этого следует, рассказывает философ Елена Косилова.

Конструктивизм, в отличие от платонизма, постулирует, что любые математические понятия рождаются только в умах людей и в их культуре. Имеет смысл (как в средневековье) выделять крайний реализм, умеренный реализм и крайний конструктивизм, который, соответственно, можно возвести к средневековому номинализму. Тогда крайний реализм будет выглядеть так:

Любые математические объекты существуют в независимом от человека математическом мире.

Мы открываем, а не изобретаем их.

Любые математические объекты сконструированы людьми. Если бы человеческие обстоятельства сложились по-другому, были бы придуманы другие объекты, и даже известные нам объекты обладали бы другими свойствами.

Умеренный реализм — и он же умеренный конструктивизм:

Мы конструируем математические объекты, но в согласии с независимыми от нас логическими правилами.

Свойства сконструированного объекта не придумываются, а открываются.

Возможно, близким к умеренному конструктивизму счел бы себя Аристотель (хотя это, конечно, не факт).


Скептицизм в философии науки ХХ века

В философии со времени Канта господствовала теория познания. Из теории познания вычленилась философия науки, а в философии науки к концу XX века стали преобладать скептические направления — радикальный конструктивизм, социальный конструктивизм, учение о науке как практике и т.п. Радикальный конструктивизм начался с Канта, потому что его учение утверждало не только ограниченность наших познавательных способностей, но и активность познающего субъекта. С тех пор повелось считать, что субъект конструирует большую часть того, что познает. Учения о том, как именно субъект конституирует познаваемое и что в него привносит, становились все изощреннее.

Однако наука тем временем шла вперед широким шагом.

В современном мире мы не просто видим успехи науки — мы живем на ее иждивении и шагу не можем сделать без смартфона, компьютера и интернета.

Философы, относящиеся к науке свысока, настолько неадекватны с ее точки зрения, что развод философии с современной наукой уже приобрел черты скандала. Очень многие ученые презирают философию, потому что она не сообщает им ничего полезного. Философия конца XX века полностью промахивается мимо науки.

Спасение от торжества субъективности Мейясу видит в математике. С его точки зрения, на математику не распространяются трансцендентальные (корреляционистские) ограничения. Это у него постулат, обосновать его невозможно.

Кант считал, что математика априорна, она основана на общих познавательных способностях всех людей, фактически она является как раз изучением этих самых способностей.

Правда, Кант отводил основополагающую роль созерцанию, от которого современная математика ушла очень далеко. Но нельзя же всерьез доказывать, что человек способен познать нечто, выходящее за пределы его познавательных возможностей. Впрочем, это тавтология. Мейясу ничего не говорит об устройстве реальности, но мы поговорим позже о том, какая именно реальность имеется здесь в виду и как она соотносится с мышлением.

Вот что пишет Мейясу (выделение его):

Это очень важная идея для Мейясу. Напрямую она не связана с его философией математики, она касается физики. Речь идет о том, что все природные законы могут изменяться. Все, кроме математики, совершенно ненадежно. Мы не только не знаем заранее, какой закон будет вскоре открыт, но и открытые законы могут завтра измениться. Мейясу не случайно осуждает Канта за антропоцентризм и одобряет Юма: таким образом он превозносит эмпиризм (хотя и не использует этого слова), причем эмпиризм скептический и как бы возведенный в квадрат: невозможно точно предсказать не только то или иное явление, но невозможно даже предсказать, сохранится тот или иной закон или нет.

У Мейясу очень сложные отношения с логикой. В одном месте он прямо говорит, что любые логические законы могут в любой момент поменяться, то есть они контингентны.


Критика идей Мейясу

Это критика той части его философии, которая непосредственно связана с наукой.

Прежде всего, на мой взгляд, Мейясу не вполне понимает соотношение математики и логики, да и саму природу логики. Каким образом законы логики могут быть контингентными, если математика надежна? Математика основывается на логике. Даже согласно самой идее контингентности она должна, конечно, касаться эмпирических вещей, а не нормативной науки. Но если Мейясу хочет добиться непредсказуемости вообще всего, то можно и логику объявить контингентной — только тогда не надо объявлять надежной математику. Если изменятся, например, принципы следования, закон модус поненс, определения связок — то и равенства в математике, а также правила математического вывода станут совершенно другими. Скорее всего такое просто невозможно представить, это будет уже какая-то совершенно нечеловеческая логика и нечеловеческая математика.

Я понимаю задачу Мейясу по-другому: он хочет оправдать торжество современной науки, а не провозгласить новую нечеловеческую науку. Контингентность логики — это упущение Мейясу.

Теперь сосредоточимся на том, насколько представима контингентность физики. Мыслить ее можно широко, если не знать о ее очень тесной связи с математикой. Например, есть закон гравитационного притяжения двух тел: F = γm1m2 / R2. В нем сказано, что сила притяжения прямо пропорциональна массе каждого из этих тел и обратно пропорциональна квадрату расстояния. Что она возрастает с возрастанием массы, нам интуитивно кажется достаточно естественным. А что она убывает в зависимости от квадрата расстояния, казалось бы, установлено чисто эмпирически. Почему не в зависимости от первой степени расстояния или от его куба? Я была очень удивлена, когда мне объяснили, что на самом деле никакой другой степени тут не может быть — квадрат здесь потому, что пространство трехмерно. Другими словами, этот закон можно было не открывать эмпирически (хотя он открыт эмпирически). Его можно было буквально вывести из головы.

И в физике едва ли не все так. Только константы устанавливаются чисто эмпирически и могли бы быть совершенно другими.

Иногда физики пишут, что значения констант не случайно стали такими, чтобы появилась именно наша вселенная и в ней появились мы.

Что это так называемая тонкая настройка (fine tuning), которую разумный Творец вселенной подобрал специально. Однако понятно, что доказать это нельзя, можно только размышлять об этом.

В солнечной системе нет никаких конусов, но мы снова видим, что математические представления работают в физике, и работают достаточно неожиданным, неочевидным образом.

Вигнер приводит другие, не менее впечатляющие примеры. Не случайно сегодня едва ли не большинство законов физики рождаются на кончике пера, и перо это математическое.

Отсюда следует, что при постулировании надежности математики не следует говорить об абсолютной контингентности физики.

Такая центральная роль математики в науке о мироздании определенно взывает к появлению новой онтологии. Мы уже выяснили, что новая гносеология — это реализм, эмпиризм. Это то, что касается вопроса о познании человеком законов вселенной. Законы, конечно, устанавливаются эмпирически, но записываться они должны на математическом языке.

О каком же устройстве вселенной идет речь?

Предустановленная гармония

Неопифагореизм

Тегмарк проводит капитальное математическое изучение условий, при которых вселенную можно считать математической структурой. Физические интерпретации он называет багажом и не вводит их в рассмотрение. Но никакой контингентности у него нет, потому что есть мультиверс. Условие множественности вселенных таково: если наблюдатель внутри вселенной (лягушка) описывает ее более сложным образом, чем наблюдатель извне, видящий четыре измерения (птица), то вселенные множественны. Поскольку фундаментальные законы извне вроде бы проще тех, что внутри, то он уверен, что вселенных много. И все математически допустимые физические варианты где-то, вероятно, реализуются.

Так выглядит онтология с точки зрения современных философствующих физиков. Думаю, французские новые реалисты должны встроиться в это русло и принять пифагореизм и теорию математической вселенной. Это не отменяет того, что конкретно в нашей вселенной законы могут оказаться любыми, хотя у физиков пока, конечно, не идет речь о контингентности внутри одной вселенной. Здесь мысль Мейясу носит более прорывной характер, чем у физиков, но, как уже говорилось, ему надо скорректировать учение о том, что контингентно абсолютно все, описываемое физически. Ему следует привести это в соответствии с необходимой стабильностью математики.


Тождество бытия и мышления

Что можно сказать о том, какое гносеологическое учение должно прийти на смену корреляционизму в этой новой для нас ситуации возрождения Пифагора (и Галилея)?

Поскольку математика теперь становится одновременно и наукой, и принципом устройства вселенной, то это с необходимостью требует только одного: тождества бытия и мышления.

Вопрос о материи и о точности

В богословских терминах (что чрезвычайно далеко от Мейясу, позиционирующего себя как антифидеиста) пифагорейскую теорию можно сформулировать так: Бог сотворил математику и некоторое количество материи. Поэтому материя подчиняется математическим законам. Что-то им должно подчиняться, в чем-то они должны воплощаться. Таким образом, мы выходим из пифагореизма в теорию Аристотеля о формах и материи.

Существенным у Аристотеля было то, что материя вообще не имела свойств, она не вносила ничего своего и ничего не искажала, поэтому формы можно было выделить вполне точно.

В истории философии было много дуалистических учений, где материи явным образом приписываются те или иные свойства. В учении Декарта материя уже обладает полным набором свойств. Не факт, что такой тип дуализма будет востребован в онтологии будущего. А вот аристотелевский дуализм, как мне кажется, очень подходит для современных учений, которые выделяют структуру отдельно от ее воплощения. И именно материя ответственна за воплощение структуры и представление ее в реальности.

Тегмарк формулирует эту идею следующим образом: чтобы описать математическую структуру вселенной, нам надо мысленно избавиться от так называемого багажа. Под багажом понимается конкретное воплощение структуры. В некотором смысле у Тегмарка получается, что багажом является материя. Однако он имеет в виду не это, а то, что багаж мешает выделять структуры. Он отвлекает внимание на себя. А это значит, что у него есть собственное бытие, то есть, скорее всего, какая-то своя структура.

Теперь мы можем сказать, почему математические структуры часто реализуются на практике с приблизительностью: это дает о себе знать материя.

Однако не исключено, что слишком простым образом описать мироздание не получится.

Материя будет постоянно вносить помехи. Частично эти помехи тоже будут описываться математически, а именно в том случае, когда материя принимает в себя много структур разом. Но, скорее всего, мы будем сталкиваться с тем, что материя вносит просто белый шум, который отличается как раз отсутствием структуры, то есть является простым признаком бытия без всякого смысла.

Поэтому мне кажется, что помехи, вносимые материей, надо искать в каком-то другом месте. Этот вопрос пока остается открытым.

Вопрос о взаимосвязи математики и философии впервые был задан довольно давно. Аристотель, Бэкон, Леонардо да Винчи - многие великие умы человечества занимались этим вопросом и достигали выдающихся результатов. Это не удивительно: ведь основу взаимодействия философии с какой-либо из наук составляет потребность использования аппарата философии для проведения исследований в данной области; математика же, несомненно, более всего, среди точных наук поддается философскому анализу (в силу своей абстрактности). Наряду с этим прогрессирующая математизация науки оказывает активное воздействие на философское мышление.

Совместный путь математики и философии начался в Древней Греции около VI века до н.э.

а) в познании исходить от единичного;

б) любые предмет и явление разложимы до простейших элементов (синтез) и объяснимы исходя из них (анализ);

г) явления действительности - это отдельные фрагменты упорядоченного космоса, который возник и функционирует в результате действий чисто механической причинности.

Математика по праву должна считаться у Демокрита первым разделом собственно физики и следовать непосредственно за каноникой. В самом деле, атомы качественно однородны и их первичные свойства имеют количественный характер. Однако было бы неправильно трактовать учение Демокрита как разновидность пифагореизма, поскольку Демокрит хотя и сохраняет идею господства в мире математической закономерности, но выступает с критикой априорных математических построений пифагорейцев, считая, что число должно выступать не законодателем природы, а извлекаться из нее. Математическая закономерность выявляется Демокритом из явлений действительности, и в этом смысле он предвосхищает идеи математического естествознания. Исходные начала материального бытия выступают у Демокрита в значительной степени как математические объекты, и в соответствии с этим математике отводится видное место в системе мировоззрения как науке о первичных свойствах вещей. Однако включение математики в основание мировоззренческой системы потребовало ее перестройки, приведения математики в соответствие с исходными философскими положениями, с логикой, гносеологией, методологией научного исследования. Созданная таким образом концепция математики, называемая концепцией математического атомизма, оказалась существенно отличной от предыдущих.

У Демокрита все математические объекты (тела, плоскости, линии, точки) выступают в определенных материальных образах. Идеальные плоскости, линии, точки в его учении отсутствуют. Основной процедурой математического атомизма является разложение геометрических тел на тончайшие листики (плоскости), плоскостей - на тончайшие нитки (линии), линий - на мельчайшие зернышки (атомы). Каждый атом имеет малую, но ненулевую величину и далее неделим. Теперь длина линии определяется как сумма содержащихся в ней неделимых частиц. Аналогично решается вопрос о взаимосвязи линий на плоскости и плоскостей в теле. Число атомов в конечном объеме пространства не бесконечно, хотя и настолько велико, что недоступно чувствам. Итак, главным отличием учения Демокрита от рассмотренных ранее является отрицание им бесконечной делимости. Таким образом он решает проблему правомерности теоретических построений математики, не сводя их к чувственно воспринимаемым образам, как это делал Протагор. Так, на рассуждения Протагора о касании окружности и прямой Демокрит мог бы ответить, что чувства, являющиеся отправным критерием Протагора, показывают ему, что чем точнее чертеж, тем меньше участок касания; в действительности же этот участок настолько мал, что не поддается чувственному анализу, а относится к области истинного познания.

Выдающимся достижением Демокрита в математике явилась также его идея о построении теоретической математики как системы. В зародышевой форме она представляет собой идею аксиоматического построения математики, которая затем была развита в методологическом плане Платоном и получила логически развернутое положение у Аристотеля.

На постсоветском пространстве математика и философия все больше отчуждаются, хотя математика сохраняется в учебных планах специальности ‘философия’, а последняя остается обязательной для всех студентов.

мат2

Особую сложность представляет изложение математики философам, которое должно существенно отличаться от преподавания ее на всех иных специальностях.
Соответствующий курс обязан включать описание развития математической мысли (за две с половиной тысячи лет!) в увязке с философской проблематикой.
Будущему философу необходимо иметь концептуальный взгляд на математику, а не просто освоить приемы решения некоторых типов задач (что типично для технических вузов).

Литература по философии математики достаточно обширна (философия науки весьма почиталась в советские времена). Но чрезвычайная редкость, чтобы математики писали специально для философов (скорее уж для гуманитариев широкого профиля).

В данной публикации мы попытаемся остановиться на ряде узловых моментов курса, опираясь, в частности, на собственный опыт преподавания математики на философском факультете Харьковского национального университета им. В.Н. Каразина.
Предлагаемую статью можно рассматривать и как пояснительную записку к построению курса математики для философов, и как вводную лекцию для студентов, и как сжатый конспект лекций.

Предмет математики и ее связь с философией лучше всего прослеживаются в историческом плане.

Сущность чисел типа квадратного корня из двух антиномична. С одной стороны, на рисунке квадрата его сторона и диагональ равным образом реальны. Но если говорить о числе, которое, будучи возведено в квадрат, оказывается равным числу 2, то оно не может быть целым. А несложные арифметические рассуждения показывают, что это число не может быть и рациональным. Так, что же это за феномен?!

В дальнейшем ходе развития математики выяснилось, однако, что в иррациональных числах нет ничего мистического. Правда, строгое построение теории действительных чисел было осуществлено лишь в конце XIX века (Вейерштрасс, Кантор, Гейне). Действительные числа стали представлять особыми множествами рациональных чисел (сечениями Дедекинда, последовательностями Коши и т.п.) При этом сами рациональные числа отождествлялись с некоторыми простейшими типами таких подмножеств.

В XIX веке объекты, с которыми имели дело математики, в частности, функции, существенно усложнялись. Например, в математическом анализе появилась возможность строить функции в виде бесконечных степенных рядов, получать их с помощью предельных переходов. Шли споры, является ли та или иная функция полноценной. В частности, проблемной казалась функция Дирихле, значение которой в рациональных точках равно 1, а в иррациональных – 0.

Но что такое пара вообще? На уровне здравого смысла упорядоченная пара – это два элемента а и в, расположенные таким образом, что один из них является первым, а другой вторым: (а, в). Иными словами, попытка объяснить, что такое упорядоченная пара, упирается в необходимость использовать все то же понятие пары. Возникающий логический круг разрывается благодаря тому, что пара признается первичным понятием теории множеств.

Отметим, что в современной математике на основе понятия упорядоченной пары вводится фундаментальная конструкция декартова произведения двух множеств – как множества всех упорядоченных пар элементов этих множеств. А на базе декартова произведения вводятся важнейшие понятия отношения и функции.

Важность теории множеств была осознана и в образовательной среде –теоретико-множественный язык начал использоваться в школьном курсе математики. Еще более важное значение имеет внедрение теории множеств в высшую школу.

Читайте также: