Система координат это кратко

Обновлено: 02.07.2024

Положение точек земной поверхности на карте и плане определяется координатами.

Координатные методы привязки объектов обеспечивают единство представлений об окружающей среде, создают необходимые условия для организации взаимодействия в пространстве и эффективного функционирования современных технических комплексов. Координаты описывают положение объектов в цифровом виде и являются обязательным атрибутом средств сбора и обработки информации о местности, компьютерных географических информационных систем и автоматизированных систем управления. Преобразования координат выполняются с целью объединения географически зависимой информации.

Координаты - это числа, описывающие положение точки в определенной системе отсчета координат. Система координат (СК) представляет собой совокупность специально назначенных точек, линий и поверхностей, относительно которых фиксируется положение интересующих объектов.

Применение координатных методов привязки объектов основывается на установлении системы отсчета координат. Выбор той или иной системы координат осуществляется на основе простых принципов:

а). СК должна обеспечивать единство представления данных;

б). СК должна обеспечивать удобство в решении практических задач;

в).Реализация СК осуществляется по соглашению между пользователями, которым должны быть известны правила применения координат.

Существует множество способов установления систем координат, но среди них особая роль принадлежит системам координат, используемым в геодезии. Геодезические системы координат предназначены для объединения различных пользователей в глобальном, национальном и региональном масштабе. Геодезические системы координат создают математическую основу для географических и топографических карт, используются в процессе сбора, обработки и систематизации информации о местности и положении местных объектов. Геодезические системы координат вводятся в действие постановлениями правительства и закрепляются на местности геодезическими пунктами длительной сохранности.

1).Наиболее употребляемы географические(астрономические или геодезические) координаты.

Географическими координатами является широта и долгота точки.

Система координат применяемая для определения положения точек на поверхности земного шара относительно экватора и меридиана принятого за начальный называется географической системой координат.

Выражается эта система координат в угловой мере, те в градусах , минутах , секундах.

Широта- это угол составленный плоскостью экватора и отвесной линией проходящей через данную точку. Широты измеряются от 0 до 90. Подразделяется к северу от экватора- северная широта , к югу- южная широта.

Долгота –угол составленный плоскостью начального меридиана и плоскостью меридиана проходящего через данную точку. За начальный меридиан принят гринвический.

Долготы измеряются от 0 до 180. К востоку от начального меридиана-долгота восточная, к западу – западная.

2).Декартова система координат (математическая).

Система прямоугольных координат очень удобна для производства топографических работ, т.к. она выражается в линейной мере. Но эта система применяется только на плоскости.

Прямоугольные координаты применяются в основном на небольших участках, а географические на всей поверхности земного шара.

Прямоугольные координаты можно считать каждый раз от своего начала, а географические от одного и того же начала.

Прямоугольные координаты выражаются в линейной мере, географические -в угловой.

3).Полярная система координат определяет положение точки на плоскости полярным горизонтальным углом, отсчитываемым от некоторого начального направления, и горизонтальным проложением.

Полярную систему координат применяют на небольших участках( меньше чем в прямоугольных).Через точку О проводят начальную линию ОА. О- называется полюсом. Линия ОА- полярная ось. Для определения местонахождения точки М на плоскости соединяют точку М с точкой О .Измеряют расстояние на местности ОМ и измеряют горизонтальный угол – угол направления на точку М с точки О.

Положение точек земной поверхности на карте и плане определяется координатами.



Координатные методы привязки объектов обеспечивают единство представлений об окружающей среде, создают необходимые условия для организации взаимодействия в пространстве и эффективного функционирования современных технических комплексов. Координаты описывают положение объектов в цифровом виде и являются обязательным атрибутом средств сбора и обработки информации о местности, компьютерных географических информационных систем и автоматизированных систем управления. Преобразования координат выполняются с целью объединения географически зависимой информации.

Координаты - это числа, описывающие положение точки в определенной системе отсчета координат. Система координат (СК) представляет собой совокупность специально назначенных точек, линий и поверхностей, относительно которых фиксируется положение интересующих объектов.

Применение координатных методов привязки объектов основывается на установлении системы отсчета координат. Выбор той или иной системы координат осуществляется на основе простых принципов:

а). СК должна обеспечивать единство представления данных;

б). СК должна обеспечивать удобство в решении практических задач;

в).Реализация СК осуществляется по соглашению между пользователями, которым должны быть известны правила применения координат.

Существует множество способов установления систем координат, но среди них особая роль принадлежит системам координат, используемым в геодезии. Геодезические системы координат предназначены для объединения различных пользователей в глобальном, национальном и региональном масштабе. Геодезические системы координат создают математическую основу для географических и топографических карт, используются в процессе сбора, обработки и систематизации информации о местности и положении местных объектов. Геодезические системы координат вводятся в действие постановлениями правительства и закрепляются на местности геодезическими пунктами длительной сохранности.

1).Наиболее употребляемы географические(астрономические или геодезические) координаты.

Географическими координатами является широта и долгота точки.

Система координат применяемая для определения положения точек на поверхности земного шара относительно экватора и меридиана принятого за начальный называется географической системой координат.

Выражается эта система координат в угловой мере, те в градусах , минутах , секундах.

Широта- это угол составленный плоскостью экватора и отвесной линией проходящей через данную точку. Широты измеряются от 0 до 90. Подразделяется к северу от экватора- северная широта , к югу- южная широта.

Долгота –угол составленный плоскостью начального меридиана и плоскостью меридиана проходящего через данную точку. За начальный меридиан принят гринвический.

Долготы измеряются от 0 до 180. К востоку от начального меридиана-долгота восточная, к западу – западная.

2).Декартова система координат (математическая).

Система прямоугольных координат очень удобна для производства топографических работ, т.к. она выражается в линейной мере. Но эта система применяется только на плоскости.

Прямоугольные координаты применяются в основном на небольших участках, а географические на всей поверхности земного шара.

Прямоугольные координаты можно считать каждый раз от своего начала, а географические от одного и того же начала.

Прямоугольные координаты выражаются в линейной мере, географические -в угловой.

3).Полярная система координат определяет положение точки на плоскости полярным горизонтальным углом, отсчитываемым от некоторого начального направления, и горизонтальным проложением.

Полярную систему координат применяют на небольших участках( меньше чем в прямоугольных).Через точку О проводят начальную линию ОА. О- называется полюсом. Линия ОА- полярная ось. Для определения местонахождения точки М на плоскости соединяют точку М с точкой О .Измеряют расстояние на местности ОМ и измеряют горизонтальный угол – угол направления на точку М с точки О.

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве.

Общие сведения о системах координат

Система координат — это комплекс определений, реализующий метод координат, то есть способ определять положение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки. В общем и целом систему координат можно определить как опорную систему для определения положения точек в пространстве или на плоскостях и поверхностях относительно выбранных осей, плоскостей или поверхностей.

Систему координат широко применяют во многих отраслях науки:

В математике координаты - это совокупность чисел, сопоставленных точками многообразия в некоторой карте определённого атласа.
В элементарной геометрии координаты — величины, определяющие положение точки на плоскости и в пространстве. На плоскости положение точки чаще всего определяется расстояниями от двух прямых (координатных осей), пересекающихся в одной точке (начале координат) под прямым углом; одна из координат называется ординатой, а другая — абсциссой. В пространстве по системе Декарта положение точки определяется расстояниями от трёх плоскостей координат, пересекающихся в одной точке под прямыми углами друг к другу, или сферическими координатами, где начало координат находится в центре сферы.

В географии координаты выбираются как (приближённо) сферическая система координат — широта, долгота и высота над известным общим уровнем (например, океана).

В астрономии небесные координаты — упорядоченная пара угловых величин (например, прямое восхождение и склонение), с помощью которых определяют положение светил и вспомогательных точек на небесной сфере. В астрономии употребляют различные системы небесных координат. Каждая из них по существу представляет собой сферическую систему координат (без радиальной координаты) с соответствующим образом выбранной фундаментальной плоскостью и началом отсчёта. В зависимости от выбора фундаментальной плоскости система небесных координат называется горизонтальной (плоскость горизонта), экваториальной (плоскость экватора), эклиптической (плоскость эклиптики) или галактической (галактическая плоскость).

Наиболее используемая система координат — прямоугольная система координат (также известная как декартова система координат).
Координаты на плоскости и в пространстве можно вводить бесконечным числом разных способов. Решая ту или иную математическую или физическую задачу методом координат, можно использовать различные координатные системы, выбирая ту из них, в которой задача решается проще или удобнее в данном конкретном случае. Известным обобщением системы координат являются системы отсчёта и системы референции.

Что такое координатная сетка?

Одним из элементов географической карты является сетка координатных линий. Существуют два вида координатной сетки: картографическая, образуемая линиями меридианов и параллелей, и сетка прямоугольных координат, образуемая линиями, параллельными осям координат OX и OY.

На топографических картах меридианы и параллели являются границами листа карты; в углах карты подписываются их долгота и широта. Внутри листа вычерчивается сетка прямоугольных координат в виде квадратов, называемая иногда километровой сеткой, так как на картах масштаба 1:10 000 и мельче линии сетки проводятся через целое число километров.
Вертикальные линии сетки параллельны осевому меридиану зоны (оси OX) и имеют уравнение Y = Const; значение координаты Y подписывается у каждой линии. Горизонтальные линии сетки параллельны оси OY и имеют уравнение X = Const; значение координаты X подписывается у каждой линии.

Для удобства пользования листами карт, на которых изображены граничные участки зоны, на них показывается сетка прямоугольных координат соседней зоны. Ширина граничной полосы с сеткой соседней зоны составляет 2 градуса по долготе с обоих сторон зоны. Выходы линий координатной сетки соседней зоны наносятся на внешнюю сторону рамки листа карты.

Классификация систем координат

1. Прямоугольная (плоская) система координат: XY
За основную плоскость XOY в данном случае принята плоскость земного экватора. Основная координатная ось OX направлена в определенную точку. Ось OY расположена в плоскости земного экватора под углом 90º к востоку от принятого начального меридиана. Ось OZ совмещена с северным направлением оси вращения Земли.

2. Пространственная прямоугольная система координат: XYZ
Начало пространственных прямоугольных координат либо определяется под условием совмещения с центром масс Земли (в общеземных системах), либо находится вблизи от него.
Ориентировка оси Z в каждой системе координат выполняется с учетом ориентировки средней оси вращения Земли. При установлении системы среднего полюса, в том числе и полюса в Системе МУН, не накладывают условия прохождения средней оси вращения через центр масс Земли, поэтому и в референцных и в общеземных системах оси Z не совпадают со средней осью вращения, а параллельны ей.
Плоскость XOY перпендикулярна оси Z и средней оси вращения Земли. Плоскость XOZ выбирается под условием ее параллельности плоскости начального астрономического меридиана.

3. Геодезическая (эллипсоидальная) система координат: BLH
Геодезическая эллипсоидальная система координат строится на базе эллипсоида вращения, поверхность которого используется в качестве поверхности относимости, на которую проецируются и затем обрабатываются результаты геодезических измерений.
B– геодезическая широта, угол между нормалью к эллипсоиду, проведенной через заданную точку M на поверхности Земли, и плоскостью экватора;
L – геодезическая долгота, двугранный угол между плоскостями гринвичского G и заданного геодезического меридианов;
H – геодезическая высота над референц-эллипсоидом, расстояние по нормали от поверхности эллипсоида до точки M.

Назначение систем координат

1. Общеземные (мировые ) WGS 84, ПЗ 9011, ITRS
Общеземными принято называть такие системы координат, которые получены под условием совмещения их начала с центром масс Земли. Они устанавливаются в отношении территории, покрывающей весь земной эллипсоид. И используется для решения общеземных задач. Наиболее удобными являются географические координаты (широта и долгота) отсчитываемые от поверхности экватора и начального меридиана в виде дуг, которым соответствуют центральные углы.

2. Государственные (СК-95, СК-63, ГСК-2011)
Эта система координат ограничивается территорией одного государства и используется, для осуществления геодезических и картографических работ внутри этого государства. В РФ в качестве координатной поверхности в этой системе используется поверхность эллипсоида Красовского.

3. Местные (МСК-50, МСК-50.2, Московская)
Под местной системой координат понимается условная система координат, устанавливаемая в отношении ограниченной территории, не превышающей территорию субъекта Российской Федерации, начало отсчета координат и ориентировка осей координат которой смещены по отношению к началу отсчета координат и ориентировке осей координат единой государственной системы координат, используемой при осуществлении геодезических и картографических работ. Местные системы координат устанавливаются для проведения геодезических и топографических работ при инженерных изысканиях, строительстве и эксплуатации зданий и сооружений, межевании земель, ведении кадастров и осуществлении иных специальных работ. Обязательным требованием при установлении местных систем координат является обеспечение возможности перехода от местной системы координат к государственной системе координат, который осуществляется с использованием параметров перехода (ключей). Каждая местная система координат может создаваться с одной или несколькими трех или шести градусными зонами. Параметры местных систем координат и ключи перехода к государственной системе координат (формулы и правила, по которым координаты точек в одной системе можно получить в другой системы) устанавливает Росреестр по согласованию с Минобороны РФ.

Определение положения точек в различных СК

Положение точек непосредственно на физической поверхности Земли или в околоземном пространстве, а также на поверхности земного эллипсоида могут определяться в различных как прямолинейных, так и криволинейных системах координат. Однако в теории и практике производства топографо-геодезических работ наибольшее распространение получили следующие СК:

Пространственные прямоугольные декартовы СК – Х, У, Z;
Отличительной особенностью использования в геодезии системы пространственных полярных геодезических координат является то, что ее основная плоскость выбирается на поверхности и представляет собой плоскость геодезического горизонта (или параллельная плоскости горизонта). За полярную ось принимается линия пересечения плоскости горизонта с плоскостью геодезического меридиана данной точки О (полюса системы) с положительным направлением на северный полюс Земли. Положение точки Q в этой СК определяется тремя величинами (координатами): S – длина прямой OQ; А – геодезический азимут (двугранный угол между плоскостью геодезического меридиана начальной точки О и нормальной плоскостью точки О, содержащей точку Q); Zг – зенитное расстояние (угол между нормалью точки О и линией OQ).

Криволинейные эллипсоидальные геодезические координаты – B, L, H;
Также очень широкое распространение имеют криволинейные эллипсоидальные системы геодезических координат. Эти СК непосредственно связаны с некоторой математической моделью земной поверхности, в качестве которой в настоящее время принимается поверхность эллипсоида вращения с определенными параметрами и ориентировкой его в теле Земли, и обычно называется он просто – земным эллипсоидом. Таким образом, земным эллипсоидом является эллипсоид вращения, форма и размеры которого с той или иной степенью точности соответствуют форме и размерам Земли. Для определения формы и размеров земного эллипсоида достаточно задать его основные параметры а – большую и b – малую полуоси. Однако на практике обычно для этих целей используются два других его элемента – одна линейная величина, например, большая полуось и одна относительная. В качестве относительной величины чаще всего используется его сжатие α, вычисляемое по формуле:

Если земной эллипсоид наилучшим образом представляет собой всю землю в целом, то такой эллипсоид называется общим земным эллипсоидом, и определяться он должен с соблюдением следующих условий:
1. Совпадение центра эллипсоида с центром масс Земли и плоскости его экватора с плоскостью земного экватора;
2. Минимум суммы квадратов уклонений по высоте квазигеоида (геоида), во всех его точках, от поверхности эллипсоида.

Различные виды систем полярных координат как пространственных, так и на поверхностях (сферы, эллипсоида, плоскости);

Пространственные прямоугольные топоцентрические координаты – Xт, Ут, Zт;
Системы плоских прямоугольных декартовых координат - х, у и H (геодезической высоты)

Название Местных Систем Координат по регионам

МСК-01 Республика Адыгея
МСК-02 Республика Башкортостан
МСК-03 Республика Бурятия
МСК-04 Республика Алтай
МСК-05 Республика Дагестан
МСК-06 Республика Ингушетия
МСК-07 Кабардино-Балкарская Республика
МСК-08 Республика Калмыкия
МСК-09 Республика Карачаево-Черкесия
МСК-10 Республика Карелия
МСК-11 Республика Коми
МСК-12 Республика Марий Эл
МСК-13 Республика Мордовия
МСК-14 Республика Саха (Якутия)
МСК-15 Северная Осетия — Алания
МСК-16 Республика Татарстан
МСК-18 Удмуртская Республика
МСК-20 Чеченская Республика
МСК-21 Чувашская Республика
МСК-22 Алтайский край
МСК-23 Краснодарский край
МСК-24 Красноярский край
МСК-25 Приморский край
МСК-26 Ставропольский край
МСК-27 Хабаровский край
МСК-28 Амурская область
МСК-29 Архангельская область
МСК-30 Астраханская область
МСК-31 Белгородская область
МСК-32 Брянская область
МСК-33 Владимирская область
МСК-34 Волгоградская область
МСК-35 Вологодская область
МСК-36 Воронежская область
МСК-37 Ивановская область
МСК-38 Иркутская область
МСК-39 Калининградская область
МСК-40 Калужская область
МСК-41 Камчатский край
МСК-42 Кемеровская область
МСК-43 Кировская область
МСК-44 Костромская область
МСК-45 Курганская область
МСК-46 Курская область
МСК-47 Ленинградская область
МСК-1964 город Санкт-Петербург
МСК-48 Липецкая область
МСК-49 Магаданская область
МСК-50 Московская область
МГГТ Москва
МСК-51 Мурманская область
МСК-52 Нижегородская область
МСК-53 Новгородская область
МСК-54 Новосибирская область
МСК-55 Омская область
МСК-56 Оренбургская область
МСК-57 Орловская область
МСК-58 Пензенская область
МСК-59 Пермский край
МСК-60 Псковская область
МСК-61 Ростовская область
МСК-62 Рязанская область
МСК-63 Самарская область
МСК-64 Саратовская область
МСК-65 Сахалинская область
МСК-66 Свердловская область
МСК-67 Смоленская область
МСК-68 Тамбовская область
МСК-69 Тверская область
МСК-70 Томская область
МСК-71 Тульская область
МСК-72 Тюменская область
МСК-73 Ульяновская область
МСК-74 Челябинская область
МСК-75 Забайкальский край
МСК-76 Ярославская область
МСК-83 Ненецкий автономный округ
МСК-86 Ханты-Мансийский автономный округ — Югра
МСК-87 Чукотский автономный округ

  • Систе́ма координа́т — комплекс определений, реализующий метод координат, то есть способ определять положение и перемещение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки.

В математике координаты — совокупность чисел, сопоставленных точкам многообразия в некоторой карте определённого атласа.

В элементарной геометрии координаты — величины, определяющие положение точки на плоскости и в пространстве. На плоскости положение точки чаще всего определяется расстояниями от двух прямых (координатных осей), пересекающихся в одной точке (начале координат) под прямым углом; одна из координат называется ординатой, а другая — абсциссой. В пространстве по системе Декарта положение точки определяется расстояниями от трёх плоскостей координат, пересекающихся в одной точке под прямыми углами друг к другу, или сферическими координатами, где начало координат находится в центре сферы.

В географии координаты выбираются как (приближённо) сферическая система координат — широта, долгота и высота над известным общим уровнем (например, океана). См. Географические координаты.

В астрономии небесные координаты — упорядоченная пара угловых величин (например, прямое восхождение и склонение), с помощью которых определяют положение светил и вспомогательных точек на небесной сфере. В астрономии употребляют различные системы небесных координат. Каждая из них по существу представляет собой сферическую систему координат (без радиальной координаты) с соответствующим образом выбранной фундаментальной плоскостью и началом отсчёта. В зависимости от выбора фундаментальной плоскости система небесных координат называется горизонтальной (плоскость горизонта), экваториальной (плоскость экватора), эклиптической (плоскость эклиптики) или галактической (галактическая плоскость).

Наиболее используемая система координат — прямоугольная система координат (также известная как декартова система координат).

Связанные понятия

Начало координат (начало отсчёта) в евклидовом пространстве — особая точка, обычно обозначаемая буквой О, которая используется как точка отсчёта для всех остальных точек. В евклидовой геометрии начало координат может быть выбрано произвольно в любой удобной точке.

Прямоугольная система координат — прямолинейная система координат с взаимно перпендикулярными осями на плоскости или в пространстве. Наиболее простая и поэтому часто используемая система координат. Очень легко и прямо обобщается для пространств любой размерности, что также способствует её широкому применению.

Норма́ль — прямая, ортогональная (перпендикулярная) касательному пространству (касательной прямой к кривой, касательной плоскости к поверхности и так далее).

Геометри́ческое ме́сто то́чек (ГМТ) — фигура речи в математике, употребляемая для определения геометрической фигуры как множества точек, обладающих некоторым свойством.

Пло́скость — одно из основных понятий геометрии. При систематическом изложении геометрии понятие плоскости обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется аксиомами геометрии.

Упоминания в литературе

Как было сказано выше, в AutoCAD существуют: мировая система координат World Coordinate System, WCS, и пользовательская система координат User Coordinate System, UCS. Ось X мировой системы координат направлена горизонтально, осьY– вертикально, а ось Z проходит перпендикулярно плоскости XY. Начало координат – это точка пересечения осей X и Y, по умолчанию она совмещается с левым нижним углом рисунка. В любой текущий момент активна только одна система координат, которую принято называть текущей. В ней координаты определяются любым доступным способом.

Как было сказано выше, в AutoCAD существуют: мировая система координат World Coordinate System, WCS и пользовательская система координат User Coordinate System, UCS. Ось X мировой системы координат направлена горизонтально, ось F– вертикально, а ось Z проходит перпендикулярно плоскости XY. Начало координат – это точка пересечения осей X и Y; по умолчанию она совмещается с левым нижним углом рисунка. В любой текущий момент активна только одна система координат, которую принято называть текущей. В ней координаты определяются любым доступным способом.

Данный режим вычерчивания основывается на использовании полярной системы координат . В этом случае координаты точки определяются двумя параметрами: первый – расстояние от начала координат; второй – угол между нулевым направлением полярной системы отсчета и вектором, направленным от начала координат к вводимой точке (направляющий вектор).

Пусть это будет точка О (рис. 1). Проведя через нее три взаимно перпендикулярные оси Ох, Оу и Oz, получим прямоугольную систему координат , в которой положение материальной точки А (например, положение самолета в воздухе) в данный момент времени характеризуется тремя координатами xA, yA, zA.

Рис. 3. Если изображать на плоскости только временную координату с · t события и его расстояние r до центра системы координат , то каждая точка такой плоскости может представлять любое положение на сфере радиуса r в пространстве, то есть с любым значением долготы и широты. Иными словами, каждая точка нарисованной здесь плоскости суть двумерная сфера. Следует подчеркнуть, что на самом деле здесь изображена полуплоскость, так как r может принимать только неотрицательные значения

Связанные понятия (продолжение)

То́чка — абстрактный объект в пространстве, не имеющий никаких измеримых характеристик (нульмерный объект). Точка является одним из фундаментальных понятий в математике.

Стереографическая проекция — отображение определённого типа из сферы с одной выколотой точкой на плоскость.

Паралле́льный перено́с (иногда трансляция) ― частный случай движения, при котором все точки пространства перемещаются в одном и том же направлении на одно и то же расстояние.

Векторное произведение двух векторов в трёхмерном евклидовом пространстве — вектор, перпендикулярный обоим исходным векторам, длина которого равна площади параллелограмма, образованного исходными векторами, а выбор из двух направлений определяется так, чтобы тройка из по порядку стоящих в произведении векторов и получившегося вектора была правой. Векторное произведение коллинеарных векторов (в частности, если хотя бы один из множителей — нулевой вектор) считается равным нулевому вектору.

Поверхность вращения — поверхность, образуемая при вращении вокруг прямой (оси поверхности) произвольной линии (прямой, плоской или пространственной кривой). Например, если прямая пересекает ось вращения, то при её вращении получится коническая поверхность, если параллельна оси — цилиндрическая, если скрещивается с осью — гиперболоид. Одна и та же поверхность может быть получена вращением самых разнообразных кривых.

Углы Эйлера — углы, описывающие поворот абсолютно твердого тела в трёхмерном евклидовом пространстве.

Параметрическое представление — используемая в математическом анализе разновидность представления переменных, когда их зависимость выражается через дополнительную величину — параметр.

Кватернионы предоставляют удобное математическое обозначение положения и вращения объектов в пространстве. В сравнении с углами Эйлера, кватернионы позволяют проще комбинировать вращения, а также избежать проблемы, связанной с невозможностью поворота вокруг оси, независимо от совершённого вращения по другим осям (на иллюстрации). В сравнении с матрицами они обладают большей вычислительной устойчивостью и могут быть более эффективными. Кватернионы нашли своё применение в компьютерной графике, робототехнике.

Каса́тельная пряма́я — прямая, проходящая через точку кривой и совпадающая с ней в этой точке с точностью до первого порядка.

Пове́рхность в геометрии и топологии — двумерное топологическое многообразие. Наиболее известными примерами поверхностей являются границы геометрических тел в обычном трёхмерном евклидовом пространстве. С другой стороны, существуют поверхности (например, бутылка Клейна), которые нельзя вложить в трёхмерное евклидово пространство без привлечения сингулярности или самопересечения.

Разме́рность — количество независимых параметров, необходимых для описания состояния объекта, или количество степеней свободы системы.

Сферические функции представляют собой угловую часть семейства ортогональных решений уравнения Лапласа, записанную в сферических координатах. Они широко используются для изучения физических.

В математике индекс точки или порядок точки относительно замкнутой кривой на плоскости — это целое число, представляющее число полных оборотов, которое делает кривая вокруг заданной точки против часовой стрелки. Иногда говорят о порядке кривой относительно точки. Индекс зависит от ориентации кривой и принимает отрицательное значение, если обход кривой происходит по часовой стрелке.

У́гол — геометрическая фигура, образованная двумя лучами (сторонами угла), выходящими из одной точки (которая называется вершиной угла).

В математике особой точкой векторного поля называется точка, в которой векторное поле равно нулю. Особая точка векторного поля является положением равновесия или точкой покоя динамической системы, определяемой данным векторным полем: фазовая траектория с началом в особой точке состоит в точности из этой особой точки, а соответствующая ей интегральная кривая представляет собой прямую, параллельную оси времени.

Обобщённые координаты — параметры, описывающие конфигурацию динамической системы относительно некоторой эталонной конфигурации в аналитической механике, а конкретно исследовании динамики твёрдых тел в системе многих тел. Эти параметры должны однозначно определять конфигурацию системы относительно эталонной конфигурации. Обобщённые скорости — производные по времени обобщённых координат системы.

Длина кривой (или, что то же, длина дуги кривой) — числовая характеристика протяжённости этой кривой. Исторически вычисление длины кривой называлось спрямлением кривой (от лат. rectificatio, спрямление).

Поворо́т (враще́ние) — движение, при котором по крайней мере одна точка плоскости (пространства) остаётся неподвижной.

Расстоя́ние, в широком смысле, степень удалённости объектов друг от друга. Расстояние является фундаментальным понятием геометрии. Термин часто используется в других науках и дисциплинах: астрономия, география, геодезия, навигация и др.

Однородные координаты ― система координат, используемая в проективной геометрии, подобно тому, как декартовы координаты используются в евклидовой геометрии.

Касательный вектор — элемент касательного пространства, например элемент касательной прямой к кривой, касательной плоскости к поверхности так далее.

Асимпто́та или аси́мптота (от др.-греч. ἀσύμπτωτος — несовпадающий, не касающийся кривой с бесконечной ветвью) — прямая, обладающая тем свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви в бесконечность. Термин впервые появился у Аполлония Пергского, хотя асимптоты гиперболы исследовал ещё Архимед.

Особая точка кривой — точка, в окрестности которой не существует гладкой параметризации. Точное определение зависит от типа изучаемой кривой.

Трёхмерная сфера, или трёхмерная гиперсфера, иногда 3-сфера, — трёхмерный аналог двумерной сферы. Состоит из множества точек, равноудалённых от фиксированной центральной точки в четырёхмерном евклидовом пространстве. Так же, как двумерная сфера, которая образует границу шара в трёх измерениях, 3-сфера имеет три измерения и является границей четырёхмерного шара.

Абсолю́тно твёрдое те́ло — второй опорный объект механики наряду с материальной точкой. Механика абсолютно твёрдого тела полностью сводима к механике материальных точек (с наложенными связями), но имеет собственное содержание (полезные понятия и соотношения, которые могут быть сформулированы в рамках модели абсолютно твёрдого тела), представляющее большой теоретический и практический интерес.

Конформное отображение — непрерывное отображение, сохраняющее углы между кривыми, а значит и форму бесконечно малых фигур.

Грани́ца мно́жества A — множество всех точек, расположенных сколь угодно близко как к точкам во множестве A, так и к точкам вне множества A.

Многомерный анализ (также известный как многомерное или многовариантное исчисление) является обобщением дифференциального и интегрального исчислений для случая нескольких переменных.

Теорема косинусов — теорема евклидовой геометрии, обобщающая теорему Пифагора на произвольные плоские треугольники.

Криволине́йная систе́ма координа́т, или криволине́йные координа́ты, — система координат в евклидовом (аффинном) пространстве, или в области, содержащейся в нём. Криволинейные координаты не противопоставляются прямолинейным, последние являются частным случаем первых. Применяются обычно на плоскости (n=2) и в пространстве (n=3); число координат равно размерности пространства n.

Пара́бола (греч. παραβολή — приложение) — геометрическое место точек, равноудалённых от данной прямой (называемой директрисой параболы) и данной точки (называемой фокусом параболы).

Упоминания в литературе (продолжение)

Для графического изображения дискретного вариационного ряда строится xmin полигон распределения xmin в прямоугольной системе координат . На оси абсцисс проставляются варианты, на оси ординат – частоты. На пересечении каждой абсциссы и ординаты строятся точки, которые затем соединяются отрезками прямой. Крайние точки соединяются с осью абсцисс в точках, отстоящих от минимального и максимального варианта на одно деление. Полигоном частот называют ломаную, отрезки которой соединяют точки (x1, f1, …,(xnfn). Иногда крайние точки соединяют с точками, имеющими нулевую ординату. Полигоном относительных частот называют ломаную, отрезки которой соединяют точки (x1, w1), …, (xn, wn), где

Особенности объекта. Эллипс практически вырожден, так как его параметры (оси эллипса и фокальный отрезок) устремлены к нулю, что фактически превращает эллипс в точку. Однако направления осей и центр эллипса способны задать мнимую (не существующую) систему координат , основанную на данном эллипсе (человеке, создателе эллипса), относительно которой весь мир становится несовершенным, требующим перестройки, изменения, модификации и даже разрушения. Однако окружающий мир не может быть перестроенным, так как выбранные координатные оси имеют отношение исключительно к эллипсу, а значит, все идеальное может находиться только внутри эллипса, тогда как все внешнее становится несовершенным, лишним, ненужным, подлежащим разрушению.

Экваториальную систему координат , которая строится на небесном экваторе, астрологи тоже применяют. Прямое восхождение (ά) и склонение (δ) – это две координаты, которые в данной системе определяют местонахождение небесного тела.

Размеры астероида составляют 4,60 × 2,40 × 1,92 км. Его ось вращения постоянно меняет свое направление как в теле астероида, так и относительно неподвижной системы координат . Кувыркания астероида могут быть приближенно описаны как вращение его тела вокруг длинной оси с периодом 5,367 ? 0,01 суток и равномерной прецессией этой оси вокруг постоянного направления в пространстве – направления вектора момента количества движения астероида относительно его центра инерции – с периодом 7,420 ? 0,05 суток [Ostro et al., 1999].

Следует отметить, что метод главных компонент осуществляет переход к новой системе координат у1…, уm в исходном пространстве факторов Z1, Z2, Zm, которая является системой ортонормированных линейных комбинаций. Линейная комбинация – это собственные векторы корреляционной матрицы. Первая главная компонента – это линейная комбинация, обладающая наибольшей дисперсией. Вторая главная компонента имеет наибольшую дисперсию среди всех, оставшихся линейных преобразований, некоррелированных с первой главной компонентой и т. д.

Координаты, которые для данной системы считаются выходными могут быть связаны между собой и со входными воздействиями за счет внутренних связей подсистем системы. Указанное обстоятельство не влияет на выбор системы функций модели. Именно поэтому функциональная модель не может претендовать на вскрытие скрытых механизмов, действующих в системе. Таким образом, для построения функциональной модели нет необходимости задумываться над сутью процессов, протекающих в процессе. Важно лишь удачно подобрать функциональное преобразование входов в выходные координат. Функциональная модель строится на всем доступном массиве входных воздействий и выходных координат. Выходные координаты, которые являются переменными модели, доступны измерению. Координаты системы , которые влияют на выходные, но не доступны измерению, не принимаются в расчет. Это условие позволяет поставить в корректной форме задачу поиска коэффициентов модели, что очень важно для строгого математического решения задачи синтеза модели.

Конечный результат каждого цикла используется в качестве начального значения для расчета последующего, т. е. процесс повторения процедуры также является рекурсивным. Один из способов визуализации алгебраических фракталов состоит в том, что действительная часть каждого z0 изображается в виде точки в прямоугольной системе координат и окрашивается в определенный цвет в зависимости от номера итерации, на которой значение z может считаться бесконечным. Фрактальное подобие в получившихся визуализациях может быть не столь очевидным, но оно, несомненно, присутствует и выявляется визуально или аналитически.

Остаётся добавить, что в отличие от привычной однонаправленной модели эволюции, где периоды относительно плавного развития и скачковые ускорения располагаются на одной линии, здесь горизонтальное и вертикальное направления всегда действуют одновременно направлены в разные стороны. Причём действуют не в приложении к уже готовым и пассивно живущим формам, но сами перманентно инициируют и определяют характер формо-и структурообразования. Всякая форма есть застывший слепок противоборства вертикального и горизонтального эволюционных направлений, где последние представлены в разных доминантно-компонентных соотношениях. Иными словами, каждая форма (структура) может быть помещена в двухосевую систему координат , где горизонтальная ось показывает историю адаптационно-приспособительного морфогенеза, а вертикальная – стадиальное, с точки зрения ГЭВ, положение формы в прогрессии системной эволюции. Формы и структуры здесь понимаются предельно широко: к ним относятся не только физические образования, но психика (для животных) и психика/ментальность для человека. Так, для приматов и, в особенности для антропоидов, движение вертикального эволюционного вектора, выраженное развитием когнитивных потенций, закономерным образом невостребованных в их обезьяньей жизни, на каком-то этапе формообразования было остановлено и побеждено вектором горизонтальным и в таком виде зафиксировано в качестве устойчиво воспроизводящейся биологической формы.

Reference Coordinate System (Выбор системы координат) – позволяет выбрать одну из восьми глобальных или локальных систем координат . Подробно о каждой из систем координат можно прочесть в руководстве пользователя 3ds Max 2009.

Для решения большинства задач в прикладных науках необходимо знать местоположение объекта или точки, которое определяется с помощью применения одной из принятых систем координат. Кроме того, имеются системы высот, которые также определяют высотное местонахождение точки на поверхности Земли.

Что такое координаты

Координаты – числовые или буквенные значения, с помощью которых можно определить место, где расположена точка на местности. Как следствие, система координат – это совокупность однотипных значений, имеющих одинаковый принцип нахождения точки или объекта.

Нахождение местоположения точки требуется для решения многих практических задач. В такой науке, как геодезия, определение местонахождения точки в заданном пространстве – главная цель, на достижении которой строится вся последующая работа.

системы координат применяемые в геодезии

Большинство систем координат, как правило, определяют расположение точки на плоскости, ограниченной только двумя осями. Для того чтобы определить позицию точки в трехмерном пространстве, применяется также система высот. С ее помощью можно узнать точное местонахождение искомого объекта.

Кратко о системах координат, применяемых в геодезии

Системы координат определяют местоположение точки на территории земной поверхности, задавая ей три значения. Принципы их расчета различны для каждой координатной системы.

какие системы координат применяют в геодезии

Основные пространственные системы координат, применяемые в геодезии:

  1. Геодезические.
  2. Географические.
  3. Полярные.
  4. Прямоугольные.
  5. Зональные координаты Гаусса-Крюгера.

Все системы имеют свою начальную точку отсчета, величины для местонахождения объекта и области применения.

Геодезические координаты

Основной фигурой, применяемой для отсчета геодезических координат, является земной эллипсоид.

Эллипсоид – трехмерная сжатая фигура, которая наилучшим образом представляет собой фигуру земного шара. Ввиду того что земной шар – математически неправильная фигура, вместо нее для определения геодезических координат используют именно эллипсоид. Это облегчает осуществление многих расчетов для определения положения тела на поверхности.

системы координат применяемые в инженерной геодезии

Геодезические координаты определяются тремя значениями: геодезической широтой, долготой и высотой.

  1. Геодезическая широта – это угол, начало которого лежит на плоскости экватора, а конец - у перпендикуляра, проведенного к искомой точке.
  2. Геодезическая долгота – это угол, который отсчитывают от нулевого меридиана до меридиана, на котором находится искомая точка.
  3. Геодезическая высота – величина нормали, проведенной к поверхности эллипсоида вращения Земли от данной точки.

Географические координаты

Для решения высокоточных задач высшей геодезии необходимо различать геодезические и географические координаты. В системе, применяемой в инженерной геодезии, таких различий, ввиду небольшого пространства, охватываемого работами, как правило, не делают.

Для определения геодезических координат в качестве плоскости отсчета используют эллипсоид, а для определения географических – геоид. Геоид является математически неправильной фигурой, более приближенной к фактической фигуре Земли. За его уровненную поверхность принимают ту, что продолжена под уровнем моря в его спокойном состоянии.

системы координат и высот применяемые в геодезии

Географическая система координат, применяемая в геодезии, описывает позицию точки в пространстве с указанием трех значений. Определение географической долготы совпадает с геодезической, так как точкой отсчета также будет нулевой меридиан, называемый Гринвичским. Он проходит через одноименную обсерваторию в городе Лондоне. Географическая широта определяется от экватора, проведенного на поверхности геоида.

Высота в системе местных координат, применяемой в геодезии, отсчитывается от уровня моря в его спокойном состоянии. На территории России и стран бывшего Союза отметкой, от которой производят определение высот, является Кронштадтский футшток. Он расположен на уровне Балтийского моря.

Полярные координаты

Полярная система координат, применяемая в геодезии, имеет другие нюансы произведения измерений. Она применяется на небольших участках местности для определения относительного местоположения точки. Началом отсчета может являться любой объект, отмеченный как исходный. Таким образом, с помощью полярных координат нельзя определить однозначное местонахождение точки на территории земного шара.

системы координат применяемые в геодезии кратко

Полярные координаты определяются двумя величинами: углом и расстоянием. Угол отсчитывается от северного направления меридиана до заданной точки, определяя ее положение в пространстве. Но одного угла будет недостаточно, поэтому вводится радиус-вектор – расстояние от точки стояния до искомого объекта. С помощью этих двух параметров можно определить местоположение точки в местной системе.

Как правило, эта система координат используется для выполнения инженерных работ, проводимых на небольшом участке местности.

Прямоугольные координаты

Прямоугольная система координат, применяемая в геодезии, также используется на небольших участках местности. Главным элементом системы является координатная ось, от которой происходит отсчет. Координаты точки находятся как длина перпендикуляров, проведенных от осей абсцисс и ординат до искомой точки.

местные системы координат применяемые в геодезии

Северное направление оси Х и восточное оси У считаются положительными, а южное и западное – отрицательными. В зависимости от знаков и четвертей определяют нахождение точки в пространстве.

Координаты Гаусса-Крюгера

Координатная зональная система Гаусса-Крюгера схожа с прямоугольной. Различие в том, что она может применяться для всей территории земного шара, а не только для небольших участков.

Прямоугольные координаты зон Гаусса-Крюгера, по сути, являются проекцией земного шара на плоскость. Она возникла в практических целях для изображения больших участков Земли на бумаге. Искажения, возникающие при переносе, считаются незначительными.

Согласно этой системе, земной шар делится по долготе на шестиградусные зоны с осевым меридианом посередине. Экватор находится в центре по горизонтальной линии. В итоге насчитывается 60 таких зон.

пространственные системы координат применяемые в геодезии

Каждая из шестидесяти зон имеет собственную систему прямоугольных координат, отсчитываемую по оси ординат от осевого меридиана Х, а по оси абсцисс – от участка земного экватора У. Для однозначного определения местоположения на территории всего земного шара перед значениями Х и У ставят номер зоны.

Значения оси Х на территории России, как правило, являются положительными, в то время как значения У могут быть и отрицательными. Для того чтобы избежать знака минус в величинах оси абсцисс, осевой меридиан каждой зоны условно переносят на 500 метров на запад. Тогда все координаты становятся положительными.

Система координат была предложена Гауссом в качестве возможной и рассчитана математически Крюгером в середине двадцатого века. С тех пор она используется в геодезии в качестве одной из основных.

Система высот

Системы координат и высот, применяемые в геодезии, используются для точного определения положения точки на территории Земли. Абсолютные высоты отсчитываются от уровня моря или другой поверхности, принятой за исходную. Кроме того, имеются относительные высоты. Последние отсчитываются как превышение от искомой точки до любой другой. Их удобно применять для работы в местной системе координат с целью упрощения последующей обработки результатов.

Применение систем координат в геодезии

Помимо вышеперечисленных, имеются и другие системы координат, применяемые в геодезии. Каждая из них имеет свои преимущества и недостатки. Есть также свои области работы, для которых актуален тот или иной способ определения местоположения.

Именно цель работы определяет, какие системы координат, применяемые в геодезии, лучше использовать. Для работы на небольших территориях удобно использовать прямоугольную и полярную системы координат, а для решения масштабных задач необходимы системы, позволяющие охватить всю территорию земной поверхности.

Читайте также: