Сходство принципов построения клеток кратко

Обновлено: 02.07.2024

Клеточная теория — это обобщенные представления о строении клеток как единиц живого, об их размножении и роли в формировании многоклеточных организмов. Появлению и формулированию отдельных положений клеточной теории предшествовал довольно длительный (более трехсот лет) период накопления наблюдений о строении различных одноклеточных и многоклеточных организмов растений и животных. Этот период был связан с усовершенствованием различных оптических методов исследований и расширением их применения.

Создание клеточной теории стало важнейшим событием в биологии, одним из решающих доказательств единства всей живой природы. Клеточная теория оказала значительное влияние на развитие биологии, послужила главным фундаментом для развития таких дисциплин как эмбриология, гистология и физиология. Она дала основы для понимания жизни, для объяснения родственной взаимосвязи организмов, для понимания индивидуального развития.

Основные положения клеточной теории сохранили свое значение и на сегодняшний день, хотя за более чем сто пятьдесят лет были получены новые сведения о структуре, жизнедеятельности и развитии клеток. В настоящее время клеточная теория постулирует следующее:

1. Клетка — элементарная единица живого: вне клетки нет жизни.

2. Клетки сходны (гомологичны) по строению и по основным свойствам.

3. Клетки увеличиваются в числе путем деления исходной клетки после удвоения ее генетического материала (ДНК): клетка от клетки.

4. Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединенных и интегрированных в системы тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных (молекулярная регуляция).

Клетка — элементарная единица живого

Что же такое клетка, какое ей можно дать общее определение? Из школьного курса известно, что разнообразные клетки имеют совершенно несходную морфологию, их внешний вид и величины значительно расходятся. Действительно, что общего между звездчатой формой некоторых нервных клеток, шаровидной формой лейкоцита и трубкообразной формой клетки эндотелия. Такое же разнообразие форм встречается и среди микроорганизмов. Поэтому мы должны находить общность живых объектов не в их внешней форме, а в общности их внутренней организации.

Среди живых организмов встречаются два типа организации клеток. К наиболее простому типу строения можно отнести клетки бактерий и синезеленых водорослей (цианобактерий), к более высокоорганизованному — клетки всех остальных живых существ, начиная от низших растений и кончая человеком.

Принято называть клетки бактерий и синезеленых водорослей прокариотическими (доядерными клетками), а клетки всех остальных представителей живого — эукариотическими (собственно ядерными), потому что у последних обязательной структурой служит клеточное ядро, отделенное от цитоплазмы ядерной оболочкой. Клетки прокариот сильно отличаются от клеток эукариот: они не только не имеют оформленного ядра, но и не имеют многих органоидов (митохондрий, лизосом, аппарата Гольджи и так далее). Более подробно об этих различиях мы поговорим на соответствующем уроке. А пока что разберемся с тем, что объединяет эти организмы и почему же все-таки клетки всего живого сходны по строению.

Несмотря на четкие морфологические отличия, и прокариотические и эукариотические клетки имеют много общего, что и позволяет отнести их к одной, клеточной, системе организации живого. И те и другие одеты плазматической мембраной, обладающей сходной функцией активного переноса веществ из клетки и внутрь ее; синтез белка у них происходит на рибосомах; сходны и другие процессы, такие, как синтез РНК и репликация ДНК, похожи и биоэнергетические процессы. Исходя из вышесказанного, клетке можно дать общее определение.

Клетка — это ограниченная активной мембраной упорядоченная структурированная система биополимеров и их макромолекулярных комплексов, участвующих в единой совокупности метаболических и энергетических процессов, осуществляющих поддержание и воспроизведение всей системы в целом.

У многоклеточных организмов часть клеток утрачивает свойство размножаться, но они остаются клетками до тех пор, пока способны осуществлять синтетические процессы, регулировать транспорт веществ между клеткой и средой, использовать для этих процессов энергию. Есть примеры безъядерных клеток (эритроциты млекопитающих, некоторые мышечные клетки моллюсков), это скорее не собственно клетки, а их остатки — одетые мембраной участки цитоплазмы с ограниченными функциональными потенциями.

Одно время первый постулат клеточной теории подвергался многочисленным нападкам и критике. Некоторые авторы указывали, что в многоклеточных организмах, особенно у животных, кроме клеток существуют и межклеточные, промежуточные вещества, которые тоже, казалось бы, обладали свойствами живого. Однако было показано, что межклеточные вещества (так называемое основное вещество и волокна соединительной ткани) представляют собой не самостоятельные образования, а продукты активности отдельных групп клеток.

Гомологичность клеток

Это обобщение, сделанное еще Т. Шванном, нашло свое подтверждение и развитие в современной цитологии, использующей новые достижения техники, такие, как электронный микроскоп. Гомологичность строения клеток наблюдается внутри каждого из типов клеток: прокариотическом и эукариотическом. Хорошо известно разнообразие клеток как бактериальных, так и высших организмов. Такое одновременное сходство строения и разнообразие форм определяются тем, что клеточные функции можно грубо подразделить на две группы: обязательные и факультативные. Обязательные функции, направленные на поддержание жизнеспособности самих клеток, осуществляются специальными внутриклеточными структурами.

Та же картина наблюдается и для эукариотических клеток. При изучении клеток растений и животных бросается в глаза разительное сходство не только в микроскопическом строении этих клеток, но и в деталях строения их отдельных компонентов. У эукариот, как и у прокариот, клетки отделены друг от друга или от внешней среды активной плазматической мембраной, которая может принимать участие в выделении веществ из клетки и построении внеклеточных структур, что особенно выражено у растений. У всех эукариотических клеток от низших грибов до позвоночных всегда имеется ядро, принципиально сходное по построению у разных организмов. Строение и функции внутриклеточных структур также в принципе определяются гомологичностью общеклеточных функций, связанных с поддержанием самой живой системы (синтез нуклеиновых кислот и белков, биоэнергетика клетки и т.д.).

Одновременно мы видим и разнообразие клеток даже в пределах одного многоклеточного организма. Например, по форме мало похожи друг на друга такие клетки, как мышечная или нервная. Современная цитология показывает, что различие клеток связано со специализацией их функций, с развитием особых функциональных клеточных аппаратов. Так, если рассматривать мышечную клетку, то в ней кроме общеклеточных структур (мембранные системы ретикулума, аппарат Гольджи, рибосомы и др.) встречаются в большом количестве фибриллярные компоненты, обеспечивающие специальную функциональную нагрузку, характерную для этой клетки.

Структурное разнообразие клеток многоклеточного организма можно объяснить отличием их специальных функций, осуществляющихся данной клеткой как бы на фоне общих, обязательных клеточных функций. Другими словами, гомологичность в строении клеток определяется сходством общеклеточных функций, направленных на поддержание жизни самих клеток и на их размножение. Разнообразие же в строении клеток многоклеточных организмов — результат функциональной специализации.

Клетка от клетки

Размножение прокариотических и эукариотических клеток происходит только путем деления исходной клетки, которому предшествует воспроизведение ее генетического материала (редупликация ДНК).

У эукариотических клеток единственно полноценным способом деления является митоз (или мейоз при образовании половых клеток). При этом образуется специальный аппарат клеточного деления — клеточное веретено, с помощью которого равномерно и точно по двум дочерним клеткам распределяются хромосомы, до этого удвоившиеся в числе. Этот тип деления наблюдается у всех эукариотических (как растительных, так и животных) клеток.

Прокариотические клетки, делящиеся так называемым бинарным образом, также используют специальный аппарат разделения клеток, значительно напоминающий митотический способ деления эукариот.

Клетка и многоклеточный организм

Роль отдельных клеток в многоклеточном организме подвергалась неоднократному обсуждению и критике и претерпела наибольшие изменения. Т. Шванн представлял себе многогранную деятельность организма как сумму жизнедеятельности отдельных клеток. Действительно, какую бы сторону деятельности целого организма мы ни брали, будь то реакция на раздражение или движение, иммунные реакции, выделение и многое другое, каждая из них осуществляется специализированными клетками. Клетка — это единица функционирования в многоклеточном организме. Но клетки объединены в функциональные системы, в ткани и органы, которые находятся во взаимной связи друг с другом. Поэтому нет смысла в сложных организмах искать главные органы или главные клетки. Многоклеточные организмы представляют собой сложные ансамбли клеток, объединенные в целостные интегрированные системы тканей и органов, подчиненные и связанные межклеточными, гуморальными и нервными формами регуляции. Вот почему мы говорим об организме как о целом. Специализация частей многоклеточного единого организма, расчлененность его функций дают ему большие возможности приспособления для размножения отдельных индивидуумов, для сохранения вида.

В итоге можно сказать, что клетка в многоклеточном организме — это единица функционирования и развития. Кроме того, первоосновой всех нормальных и патологических реакций целостного организма является клетка. Действительно, все многочисленные свойства и функции организма выполняются клетками. Когда в организм попадают чужеродные белки, например бактериальные, то развивается иммунологическая реакция. При этом в крови появляются белки — антитела, которые связываются с чужими белками и их инактивируют. Эти антитела представляют собой продукты синтетической активности определенных клеток-плазмацитов. Но чтобы плазмациты начали вырабатывать специфические антитела, необходимы работа и взаимодействие целого ряда специализированных клеток-лимфоцитов и макрофагов. Другой пример, простейший рефлекс — слюноотделение в ответ на предъявление пищи. Здесь проявляется очень сложная цепь клеточных функций: зрительные анализаторы (клетки) передают сигнал в кору головного мозга, где активируется целый ряд клеток, передающих сигналы на нейроны, которые посылают сигналы к разным клеткам слюнной железы, где одни клетки вырабатывают белковый секрет, другие выделяют слизистый секрет, третьи, мышечные, сокращаясь, выдавливают секрет в протоки, а затем в полость рта. Такие цепи последовательных функциональных актов отдельных групп клеток можно проследить на множестве примеров функциональных отправлений организма.

Жизнь нового организма начинается с зиготы — клетки, получившейся в результате слияния женской половой клетки (ооцита) со спермием. При делении зиготы возникает клеточное потомство, которое также делится, увеличивается в числе и приобретает новые свойства, специализируется, дифференцируется. Рост организма, увеличение его массы есть результат размножения клеток и выработки ими разнообразных продуктов (например, вещества кости или хряща).

Подводя итог рассмотрению современного состояния клеточной теории, нужно сказать, что именно клетка является единицей развития многоклеточных, единицей их строения, функционирования и единицей патологических изменений организма.

Повторим положения теории:

1. Клетка — элементарная единица живого: вне клетки нет жизни.

2. Клетки сходны (гомологичны) по строению и по основным свойствам.

3. Клетки увеличиваются в числе путем деления исходной клетки после удвоения ее генетического материала (ДНК): клетка от клетки.

4. Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединенных и интегрированных в системы тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных (молекулярная регуляция).

Строение клетки


1. Перечислите царства живых организмов, клетки которых имеют ядро.
2. Трудами каких ученых была создана клеточная теория?
3. В чем основное отличие прокариотической клетки от эукариотической?
4. У всех ли эукариотических клеток есть ядро?
5. Каково строение клеточной мембраны?


Сходство принципов построения клеток.

Описывая клеточную теорию, мы уже говорили о том, что каждая клетка способна к самостоятельной деятельности: она может обмениваться веществами и энергией с внешней средой, расти, размножаться. Поэтому внутреннее строение клеток очень сложно и в большой степени зависит от тех функций, которые клетка выполняет в многоклеточном организме. Казалось бы, трудно сравнить форму и строение мышечной клетки, клетки ткани листа и стрекательной клетки гидры, и тем не менее принципы построения всех клеток едины. Разные клетки имеют гораздо больше общего, чем кажется на первый взгляд (рис. 22, 23).


Мембрана клетки.

Каждая клетка покрыта плазматической (цитоплазматической) мембраной, имеющей толщину 8—12 нм. Эта мембрана построена из двух слоев липидов (билипидный слой, или бислой) (рис. 24). Каждая молекула липида образована гидрофильной головкой и гидрофобным хвостом. В биологических мембранах молекулы липидов располагаются головками наружу, а хвостами внутрь (друг к другу). Двойной слой липидов обеспечивает барьерную функцию мембраны, не давая содержимому клетки растекаться и препятствуя проникновению в клетку опасных для нее веществ. В билипидный слой мембраны погружены многочисленные молекулы белков. Одни из них находятся на внешней стороне мембраны, другие — на внутренней, а третьи пронизывают всю мембрану насквозь. Мембранные белки выполняют целый ряд важнейших функций. Некоторые белки являются рецепторами, с помощью которых клетка воспринимает различные воздействия на свою поверхность.


Растительная клетка

Животная клетка


Другие белки образуют каналы, по которым осуществляется транспорт различных ионов в клетку и из нее. Третьи белки являются ферментами, обеспечивающими процессы жизнедеятельности в клетке. Как вы уже знаете, пищевые частицы не могут пройти через мембрану; они проникают в клетку путем фагоцитоза или пиноцитоза (рис. 25). Общее название фаго- и пиноцитоза — эндоцитоз. Существует и обратный эндоцитозу процесс — экзоцитоз, когда вещества, синтезированные в клетке (например, гормоны), упаковываются в мембранные пузырьки, которые подходят к клеточной мембране, встраиваются в нее, и содержимое пузырька выбрасывается из клетки. Таким же образом клетка может избавляться и от ненужных ей продуктов обмена.

Открытие клеток. Изучение клеток стало возможным благодаря изобретению микроскопа — прибора, предназначенного для получения увеличенных изображений. *Первый микроскоп появился в Европе в конце XVI в.*

Через несколько лет голландский натуралист А. ван Левенгук изготовил микроскоп, который обладал гораздо бóльшим увеличением. С его помощью исследователь обнаружил движущиеся микроскопические организмы — инфузории, амебы, подвижные бактерии. Также Левенгук впервые наблюдал клетки животных — эритроциты и сперматозоиды.


Микроскоп Левенгука представлял собой пластинку, в центре которой была одна линза (рис. 10.2). Наблюдателю нужно было смотреть через линзу на образец, закрепленный с другой стороны. Несмотря на простоту конструкции, микроскоп Левенгука позволял получить увеличение в несколько раз большее, чем у других микроскопов того времени. В течение жизни Левенгук изготовил не менее 25 микроскопов. Девять из них, сохранившиеся до наших дней, способны увеличивать изображение в 275 раз. Однако предполагается, что Левенгук создал микроскопы, которые могли давать увеличение до 500 раз.

*В XVIII в. было опубликовано много новых рисунков и описаний различных клеток, причем преимущественно растительных. Дело в том, что ткани животных легко повредить, вследствие чего ученым было трудно изготавливать препараты для исследования. Однако микроскоп в то время рассматривался главным образом как игрушка, поэтому большинство естествоиспытателей не придавало своим наблюдениям серьезного значения.*

* В 1825 г . чешский анатом и физиолог Я. Пуркине открыл ядро в яйцеклетке курицы. Позже он пришел к выводу, что именно внутреннее содержимое клеток, а не их оболочки, представляет собой живое вещество. Пуркине и его ученики исследовали микроскопическое строение ряда тканей и органов млекопитающих и человека. Однако, сравнивая клетки животных с клетками растений, Пуркине все же не пришел к выводу об их сопоставимости и единстве происхождения.

В 1838 г. немецкий ботаник М. Шлейден доказал, что различные органы растений состоят из клеток. Кроме того, ученый указал на значимость ядра для жизнедеятельности клетки.

*Главной ошибкой Шванна было высказанное вслед за Шлейденом мнение о том, что клетки растений и животных возникают из бесструктурного неклеточного вещества. Интересно, что именно этот ошибочный взгляд на способ образования клеток позволил Шванну прийти к выводу об их сходстве у растений и животных.*

В дальнейшем учение о клетке оказалось в центре внимания всей биологической науки и бурно развивалось. Для изучения клеток и их компонентов стали использовать разнообразные физические и биохимические методы. Это позволило понять сложность строения клеток и многообразие протекающих в них процессов.

Клеточная теория, главные положения которой были сформулированы в середине XIX в., является одной из основополагающих идей современной биологии. Она утверждает единство принципа строения и развития всех организмов, имеющих клеточное строение. Клеточная теория стала одной из предпосылок возникновения эволюционного учения, фундаментом для развития таких дисциплин, как гистология (наука о тканях), эмбриология (наука о зародышевом развитии организмов), физиология и др.

Современная клеточная теория включает следующие основные положения.

1. Клетка — элементарная структурно-функциональная единица живых организмов, обладающая всеми признаками и свойствами живого.

2. Клетки всех организмов сходны по химическому составу, строению и процессам жизнедеятельности.

3. Все клетки образуются только в результате деления исходных (материнских) клеток.

4. Клетки большинства многоклеточных организмов специализиру ются по функциям и образуют ткани. Из тканей состоят органы и системы органов.

Общий план строения клеток. Все клетки имеют единый принцип организации. Содержимое каждой из них отделено от внеклеточной среды цитоплазматической мембраной (плазмалеммой), а внутри находится цитоплазма с различными органоидами и генетический материал в виде ДНК. Однако в связи с особенностями строения клеток все клеточные формы жизни делятся на две группы — прокариоты, или доядерные, и эукариоты, или ядерные.

Как вы знаете, к прокариотам относятся бактерии, а к эукариотам — протисты, грибы, растения и животные. Клетки прокариот устроены сравнительно просто. Такие клетки не имеют ядра, их генетический материал (ДНК) находится непосредственно в цитоплазме. В эукариотических клетках есть ядро, отделенное от цитоплазмы двойной мембраной. Именно в нем содержатся молекулы ДНК.

Основными структурными компонентами клеток являются поверхностный аппарат, цитоплазма, а у эукариот также ядро (рис. 10.3, 10.4).



Поверхностный аппарат клетки является барьером, отделяющим ее содержимое от внеклеточной среды. Он обеспечивает обмен веществ, взаимодействие клетки с внешней средой и окружающими клетками. Поверхностный аппарат состоит из цитоплазматической мембраны и надмембранного комплекса.

Цитоплазматическая мембрана — основная часть поверхностного аппарата, характерная для всех клеток. Надмембранный комплекс клеток бактерий, грибов, растений и многих водорослей представлен прочной клеточной стенкой. Она обеспечивает защиту от внешних воздействий, придает клетке определенную форму. Надмембранным комплексом клеток животных является гликокаликс — тонкий слой, который состоит из молекул олиго- и полисахаридов, связанных с белками и липидами цитоплазматической мембраны.

Цитоплазма — это все внутреннее содержимое клетки, за исключением ядра, ограниченное цитоплазматической мембраной. Цитоплазма состоит из жидкой части — гиалоплазмы и погруженных в нее цитоскелета и органоидов. Гиалоплазма представляет собой раствор, содержащий различные органические и неорганические вещества. Она объединяет все клеточные структуры и обеспечивает их взаимодействие.

Цитоскелет эукариот является механическим каркасом цитоплазмы, обеспечивающим поддержание и изменение формы клеток, внутриклеточные движения и т. п. Долгое время считалось, что цитоскелетом обладают только эукариотические клетки, однако на сегодняшний день установлено, что он имеется и в прокариотических.

Органоиды (органеллы) — постоянные специализированные структуры цитоплазмы, которые осуществляют определенные функции, жизненно необходимые для клетки. В зависимости от строения выделяют немембранные, одномембранные и двумембранные органоиды. Мембранные органоиды характерны только для клеток эукариот.

Немембранными органоидами являются рибосомы, клеточный центр, миофибриллы, *жгутики и реснички*. К одномембранным органоидам относятся эндоплазматическая сеть, комплекс Гольджи, лизосомы, вакуоли, к двумембранным — митохондрии и пластиды.

Ядро — важнейшая структура эукариотической клетки, ее информационный центр. В ядре содержатся молекулы ДНК, обеспечивающие хранение и реализацию наследственной информации, а также ее передачу дочерним клеткам при делении .

*Необязательными компонентами клетки являются включения. Они могут появляться и исчезать в зависимости от внешних условий и характера обмена веществ. Включения могут находиться непосредственно в гиалоплазме или внутри органоидов, например вакуолей. Выделяют несколько типов включений. Трофические включения представляют собой запасные питательные вещества — капли липидов, крахмальные зерна, гранулы гликогена и т. д. Секреторными включениями называют биологически активные вещества, которые синтезируются клеткой и подлежат выведению из нее (гормоны, некоторые ферменты, слизь и др.). Пигментные включения придают клеткам определенную окраску, как, например, гранулы меланина. К экскреторным включениям относят такие конечные продукты клеточного метаболизма, как кристаллы мочевой кислоты, оксалата кальция и т. п.*

Многообразие клеток. Как уже отмечалось, клетки живых организмов имеют общий план строения. Однако они могут отличаться друг от друга размерами, формой, некоторыми особенностями строения (рис. 10.5).


Самыми маленькими являются прокариотические клетки, их диаметр обычно составляет 0,5—10 мкм. Большинство клеток эукариот имеет размер 10—100 мкм. Реже встречаются клетки еще бóльших размеров. Например, мышечные волокна животных и ситовидные трубки растений в длину могут достигать 1—10 мм. Диаметр яйцеклеток крупных птиц и акул составляет несколько сантиметров, а отростки нейронов бывают длиной более 1 м.

В многоклеточном организме отличия между клетками обусловлены тем, что разные клетки выполняют различные функции. Однако даже самым высокоспециализированным клеткам свойственно наличие тех же органоидов и веществ, которые характерны и для других клеток.


Клеточная теория является одним из основных обобщений современной биологии. Согласно этой теории элементарными структурно-функциональными единицами организмов являются клетки. Они обладают всеми признаками и свойствами живого и образуются только в результате деления исходных клеток. В связи с особенностями строения клеток организмы делятся на две группы — прокариоты и эукариоты. Все клетки имеют общий принцип организации: их основными компонентами являются поверхностный аппарат, цитоплазма и ядро (у эукариот).

Р. Вирхов, М. Шлейден, Р. Гук, Т. Шванн, А. ван Левенгук.

3. До 1840-х гг. было распространено мнение о том, что клетки — это мешочки с питательным соком, при этом главной частью клетки считалась ее оболочка. Чем могло быть обусловлено такое представление о клетках? Какие открытия способствовали изменению представлений о строении и функционировании клеток?

4. Сформулируйте основные положения клеточной теории. Какой вклад внесла клеточная теория в развитие естественнонаучной картины мира?

5. Назовите основные компоненты клеток. Какие из них свойственны только клеткам эукариот?

6. О чем свидетельствует тот факт, что клетки различных организмов имеют общий план строения?

7*. Используя знания, полученные при изучении биологии в 6—10-м классах, на примерах докажите справедливость четвертого положения клеточной теории.

8*. В связи с чем некоторые клетки достигают сравнительно крупных размеров (яйцеклетки птиц и акул, клетки мякоти плодов и эндосперма семян, нейроны с отростками более 1 м)? Как вы думаете, есть ли пределы увеличению (уменьшению) размеров клеток? Чем они могут быть обусловлены?


Повторение открытия Гука

● Сравните ваши наблюдения с изображением Гука, сделанным более трех с половиной веков назад (см. рис. 10.1, б).

● Вспомните из курса биологии 7-го класса, какими клетками (живыми или мертвыми) образована пробка. Как вы думаете, почему пробка не тонет в воде?


Основой любого живого организма является клетка. Она способна к самовоспроизведению и регенерации, несёт в себе генетическую информацию, обеспечивает важные обменные процессы. Клетки характерны для животных и растений. Их объединяют общие свойства и строение, но при этом каждая из них обладает уникальными особенностями. Различия растительной и животной клетки лежат в основе удивительного многообразия живого мира нашей планеты.

Сходства в строении растительной и животной клетки

Каждая клетка, независимо от своего происхождения, включает в себя стандартный набор органелл, играющих ключевую роль в процессах жизнедеятельности самой клетки. К таким органеллам относят:

  • Ядро — важнейший компонент клетки, содержащий генетическую информацию и обеспечивающий её передачу потомкам. Ядро окружено двойной мембраной, благодаря чему полностью изолировано от цитоплазмы.
  • Цитоплазма — вязкая прозрачная среда, заполняющая все пространство клетки. Цитоплазма позволяет органеллам свободно перемещаться внутри клетки, а также обеспечивает транспорт синтезированных веществ.
  • Клеточная мембрана — оболочка, отделяющая клетку от внешней среды. Обеспечивает поступление веществ в клетку и вывод продуктов жизнедеятельности.
  • Комплекс Гольджи — пластинчатый комплекс, предназначенный для синтеза белков и последующего их транспорта из клетки.
  • Эндоплазматическая сеть — система плоских цистерн, канальцев и пузырьков, ограниченных мембранами. Участвует в обменных процессах, обеспечивая транспорт веществ из окружающей среды в цитоплазму.
  • Митохондрии — микроскопические мембранные органоиды, которые обеспечивают клетку энергией. Поэтому их называют энергетическими станциями (аккумулятором) клеток. Также выполняют дыхательную функцию (поглощают кислород и выделют углекислый газ).

Принципиальное сходство в особенностях строения и молекулярного состава клеток растений и животных указывает на родство и единство их происхождения. Отличаться они стали в ходе эволюции, под воздействием разных сред обитания и образа жизни.

Сравнительная характеристика клеток

Помимо общих признаков, растительные и животные клетки имеют ряд существенных отличий в строении и выполняемых функциях.

Главное отличие растительных и животных клеток заключается в их способе питания. Клетки растений способны синтезировать органические вещества из неорганических за счёт энергии солнечного света в процессе фотосинтеза. Источником энергии для животных клеток служат органические вещества, поступающие вместе с пищей.

Схема процесса фотосинтеза

Рис. 2. Схема процесса фотосинтеза.

Отличие растительной клетки от животной можно кратко подать в виде таблицы, которая пригодится на уроке биологии в 10 классе.

Автотрофный (фототрофный, хемотрофный). Способный получать органические вещества из неорганических (фотосинтез)

Гетеротрофный (хемотрофный, сапротрофный, паразитический). Не способны самостоятельно производить органические вещества

Способ хранения питательных веществ

В клеточном соке вакуоли

В цитоплазме в виде клеточных включений

Основной запасной углевод

Крахмал — твёрдое нерастворимое в воде вещество

Гликоген — быстрорастворимое в воде вещество

В хлоропластах и митохондриях

В хлоропластах и всех частях клетки, где тратится энергия

Во всех частях клетки, где тратится энергия

Между дочерними клетками образуется перегородка

Между дочерними клетками образуется перетяжка

Только у низших растений

Есть клеточный центр с центриолями

Только у низших растений

Клетка покрыта целлюлозной клеточной стенкой, которая расположена снаружи от мембраны. Толстая плотная стенка сохраняет постоянную форму клетки

Клетка лишена плотной оболочки и может менять свою форму

Деление растительной и животной клетки

Рис. 3. Деление растительной и животной клетки.

Что мы узнали?

Растительная и животная клетки имеют много общего во внутреннем строении, но принципиально отличаются способами питания и деления, наличием тех или иных органелл. Сравнение растительной и животной клетки позволяет убедиться в том, что они имеют общее происхождение.

каких клеток, конкретнее? ? Строение растительной и животной клеток. Признаки сходства в строении этих клеток: наличие ядра, цитоплазмы, клеточной мембраны, митохондрий, рибосом, комплекса Гольджи и др. Признаки сходства — доказательство родства растений и животных. Отличия: только растительные клетки имеют твердую оболочку из клетчатки, пластиды, вакуоли с клеточным соком.

различия свидетельствуют о разных функциях, которые они выполняют, а также от местоположения в организме.
соответственно сходство говорит о принадлежности к одной и той же группе клеток.

Читайте также: