Роль силы тяжести в природе кратко

Обновлено: 08.07.2024

В природе одни тела действуют на другие с определенными силами. К каким последствиям это приводит? Рассмотрим на конкретных примерах.

С гор текут реки, срываются камни и снежные лавины, из об­лаков падает дождь, снег, град, с деревьев на землю опадают листья и зрелые плоды (рис. 97). Эти явления происходят благо­даря существованию силы тяжести. Вследствие действия этой силы все живое и неживое притягивается к поверхности Земли. Например, самое легкое перышко, покружив в воздухе, несом­ненно опустится на землю.

Человек, как и все другие живые организмы, приспособился к действию силы тяжести. Однако пренебрежение ее действием часто приводит к травмам и повреждениям. Вспомните, как во время бега или игры из-за резких движений мы падаем и оказы­ваемся на земле.

Благодаря силе тяжести тела удерживаются на поверхности Земли.

Что собой представляет и какую роль оказывает сила тяжести? Есть ли и какая сила тяжести на других планетах Солнечной системы? На какой планете самая маленькая и самая большая сила тяжести?

В данной статье мы рассмотрим, если сила тяжести на других планетах нашей Солнечной системы. А также узнаем, какие ее минимальные и максимальные показатели.

Ответы на некоторые вопросы, связанные с силой тяжести, интересно узнать не только физикам и астрономам. Даже значительной части обычных людей хотелось бы получить ответы на вопросы о существовании и особенностях силы тяжести на разных планетах.

Но прежде необходимо ознакомиться с базовыми понятиями для этого физического явления. Поэтому давайте рассмотрим именно силу тяжести и ее роль для природы не только на нашей Земле, но и на других планетах Солнечной системы.

Что собой представляет сила тяжести?

Сила тяжести – это довольно удивительная фундаментальная сила. Она является естественным эффектом, в котором все вещи, обладающие массой, притягиваются друг к другу. Будь то астероиды, планеты, звезды, галактики и т. д.

  • Чем больше масса объекта, тем большую силу он будет оказывать на объекты вокруг него. Сила объекта также зависит от расстояния — то есть влияние, которое он оказывает на другой объект, уменьшается с увеличением расстояния между ними.
  • Силу тяготения называют притягивающей, потому что она всегда пытается объединить массы и никогда не отталкивает их. Фактически, каждый объект живой и неживой природы тянется ко всем другим объектам во Вселенной.
  • Сила тяжести также является одной из четырех основных сил, которые регулируют все взаимодействия в природе. Она находится наряду со слабой и сильной ядерной силой, а также электромагнетизмом.
  • Из этих сил гравитация является самой слабой. Она слабее примерно в 1038 раз сильной ядерной силы и в 1036 раз слабее электромагнитной силы. Также слабее она и слабой ядерной силы в 1029 раз.
  • Лучшим средством описания поведения силы тяжести остается общая теория относительности Эйнштейна. Согласно теории, сила тяготения не является силой. Это следствие кривизны пространства и времени, что вызвана неравномерным распределением массы или энергии.
  • С этой теорией согласуются взаимодействия в природе. Энергия и масса эквивалентны, а это значит, что все формы энергии также вызывают силу тяжести и находятся под ее влиянием.
  • Однако, большинство способов применения этой силы лучше всего объясняет Закон всемирного тяготения Ньютона. В нем говорится, что сила тяжести существует как притяжение двух тел. Сила этого притяжения может вычисляться математически, где сила тяготения прямо пропорциональна произведению их масс. Также она обратно пропорциональна квадрату расстояния между телами.
  • Сила тяготения высчитывается по общепринятой формуле:

Естественно, что m – это масса любого нужного тела, а вот g – это ускорение свободного падения.

В каждой точке планеты действует силя тяжести

В каждой точке планеты действует сила тяжести, что есть и на других планетах

Какая роль силы тяжести в природе?

Если бы не было силы тяжести, то мы все выплыли в космос. Без нее все наши наземные виды медленно увядали и умирали. В то же время, наши мышцы дегенерировали, кости у людей и животных становились хрупкими и слабыми, а органы переставали функционировать должным образом.

  • Поэтому без преувеличений можно сказать, что сила тяготения — это не только факт жизни на Земле, но и предпосылка для этого. Однако порой люди намерены выйти из сферы влияния этой силы.
  • Сила тяжести оказывает незначительное влияние на материю в наименьшем из масштабов, то есть на субатомные единицы. Однако она имеет большое значение для развития объектов на макроуровне.
  • Поскольку на макроскопическом уровне, то есть на уровне планет, звезд и галактик, она является доминирующей силой, влияющей на взаимодействие материй. Она вызывает формирование и влияет на траекторию астрономических тел, управляя астрономическим поведением. Сила тяготения сыграла важную роль в эволюции ранней Вселенной.
  • Именно сила тяжести отвечала за совокупление материи, чтобы образовать облака газа, которые подверглись гравитационному коллапсу. Облака образовывали первые звезды, которые затем формировали первые галактики. Кстати, без нее, например, звезды превращаются в черные дыры.
  • В пределах отдельных звездных систем это заставило пыль и газ слиться. В результате образовывались планеты. Сила тяжести управляет движениями орбит планет вокруг звезд, вращением звезд вокруг центра их галактики и слиянием галактик.
  • Но нельзя недооценивать всю ее важность – именно сила тяжести и создает необходимую для жизни атмосферу. Именно от нее и зависит атмосферное или гидростатическое давление. А также она закладывает основу нашего скелета и вестибулярного аппарата.

Есть ли сила тяжести на других планетах Солнечной системы?

Что на Земле присутствует сила тяготения, знают все жители нашей планеты. Убедиться в этом можно на собственном опыте. Но вот, есть ли эта сила на Юпитере, Марсе, Венере и других планетах, проверить достаточно проблематично. Возможно, не все пытаются найти ответ на этот вопрос. Но для развития общего кругозора и удовлетворения своего любопытства, предлагаем все же выяснить эту информацию.

Важно: В принципе, гравитация зависит от массы, где все вещи притягиваются друг к другу. Но не забывайте, что размер, масса и плотность объекта также влияют на гравитационную силу.

Поэтому расчеты свободного падения для каждой планеты должны проводиться по отдельности за следующей формулой:

g = GM/R2, где M – это масса планеты, а R2 – это ее радиус.

Но вот с гравитационной постоянной величиной (G) могут возникнуть некие трудности, а точнее еще одни дополнительные расчеты. С 2014 года ее формула выглядит следующим образом:

Теперь можно приступать к расчетам силы тяжести на других планетах. Кстати, не забывайте, что это только математическая и физическая теория.

  • Меркурий — наименьшая и наименее массивная планета, что открывает нашу систему. Выделяется планета, кстати, нестабильными перепадами температуры. Ведь днем она доходит до отметки +350 °C, а ночью превышает даже -150 °C.
    • Сила тяжести такой контрастной планеты среди остальных планет земной группы и, конечно же, газовых гигантов имеет наименьшие показатели – 3,7 м/с².
    • Кстати, радиус Венеры от земного меньше лишь на 0,85%. Но вот погулять на такой планете не получится, ведь вас может сдуть ветром с силой в 300 м/с или вы просто сгорите от ее минимальной температуры в 475°C. Но и это еще не все, сверху еще пойдет серный дождь, что будет смешан с хлорным железом.
    • И вот наглядный пример, когда плотность сыграла свою роль – ведь Марс значительно больше по размерам за Меркурий, но сила тяготения не слишком отличается.
    • Юпитер — самая большая и самая массивная планета в Солнечной системе. Кстати, это еще и ветреная планета, что характеризуется постоянными штормами и грозами. А будучи газовым гигантом, Юпитер, естественно, менее плотный, чем Земля и другие земные планеты.
      • Более того, его плотность и основной состав из гелия и водорода обеспечили то, что Юпитер не имеет истинной оболочки. Если бы кто-то стоял на нем, он просто тонул бы, пока не достиг твердого ядра. В результате поверхностная сила тяготения Юпитера определяется, как сила на вершинах его облаков. И составляет 24,79 м/с².
      • Для сравнения: планета со знаменитым поясом из колец имеет диаметр 57350 км, а вот земля меньше практически в 5 раз — 12742 км. Но вот сила тяжести на Сатурне всего 10,44 м/с². То есть, для таких габаритов это очень мало.

      Понимание влияния силы тяжести на организм человека существенно поможет для осуществления космических путешествий, особенно там, где были заданы вопросы о длинных выездных миссиях на орбиту и на Международную космическую станцию. И, конечно же, знание того, насколько сильной является сила тяготения на других планетах, имеет важное значение для пилотируемых миссий. Благодаря этим знаниям возможно даже поселения землян на других планетах.

      Важно: Можно сделать вывод, что сила тяжести присутствует на всех планетах Солнечной системы, но не везде ее можно измерить на поверхности планеты. На Юпитере, Сатурне, Уране, Нептуне сила тяжести измеряется на вершинах облаков. Серьезные отличия на разных планетах есть и в мощности этой силы.

      На какой планете наименьшая сила тяжести?

      • Если брать во внимание все астрономические тела в Солнечной системе, где присутствует сила тяготения, то самая маленькая сила тяжести не на поверхности планеты нашей системы. Это астрономическое тело – карликовая планета Цецер с силой тяжести всего в 0,27 м/с².
      • Если сравнивать силу тяжести только на поверхности планет, то наименьшая сила на планете Плутоне, что охватывает только 0,61 м/с². Но поскольку его лишили звания планеты, то эта должность снова переходит Меркурию. Напомним, что для Меркурия она составляет 3,7 м/с². Этот факт не вызывает удивления, ведь Меркурий является самой маленькой планетой Солнечной системы.

      Планета с наибольшей силой тяжести

      • Если изучать силу тяготения на всех астрономических объектах, то наибольшее значение этой силы можно выявить на поверхности звезды. Название этой звезды – Солнце. Сила тяжести на звезде огромная — 274 м/с². Это почти в тридцать раз больше, чем на поверхности Земли.
      • Что касается планет, то самая большая сила тяжести на наибольшей из планет. Это гигант – Юпитер. Повторится, что он обладает невероятной силой тяжести — 24,79 м/с². Это почти в 2,53 раза больше того, что мы испытываем на планете Земля. Предмет, который весит 100 грамм на Земле, весил бы 236,4 грамма на Юпитере.

      Теперь мы знаем, что на Меркурии и других планетах с малой силой тяжести мы бы улетели в космос. А вот, например, на Юпитере нас бы вдавливало в землю. В данном случае в газ. Кстати, в первом случае мы бы с вами были высокими и худыми, а во второй вариации — низкими и коренастыми. И, конечно же, вес по-разному бы ощущался. С низкой силой тяжести все предметы были бы до невозможности легкими, а вот при больших показателям даже перышко стало бы весом с грузовую машину.

      Решение задач по физике на взаимодействие тел связано с силой тяжести. Чтобы ее определить, следует знать условия возникновения физического явления, основные формулы и соотношения, необходимые для расчетов, а также величины, от которых она зависит. Однако перед началом обучения следует ознакомиться с понятиями и терминами.

      Ускорение силы тяжести

      Общие сведения

      Силой тяжести (Fт) называется величина, действующая на физическое тело, которое находится на поверхности Земли или другого астрономического объекта. Последним может быть любая планета, астероид, звезда и даже черная дыра. Следует отметить, что Fт Земли отличается от других, поскольку все зависит от следующих факторов:

      Сила тяжести

      1. Гравитационного поля.
      2. Центробежной силы инерции при вращении.

      Необходимо отметить, что Fт является векторной величиной. Иными словами, она имеет направление. Единицей измерения является ньютон (Н).

      Существуют также и другие классы составляющих (сила притяжения Солнца и Луны), однако они не учитываются, поскольку являются очень малыми величинами. Fт сообщает физическим телам ускорение свободного падения, которое считается величиной постоянной (константой) для отдельного астрономического тела. Она не зависит от его массы.

      Гравитационное притяжение

      Гравитационным притяжением, или силой Всемирного тяготения, называется величина взаимодействия двух физических тел с массами M и m, зависящая также от расстояния между ними (причем M > m). Кроме того, следует обратить внимание на константу, называемую гравитационной постоянной G.

      Гравитационная составляющая играет важную роль не только для выполнения расчетов в физике, но и в сохранении жизни. С помощью этой силы строятся Солнечные системы, которые объединяются в Галактики. В Солнечной системе Земля находится на нужном расстоянии от Солнца, тем самым на первой существует жизнь. Кроме того, постоянно происходит расширение Вселенной. На основании этого явления осуществляется образование новых Галактик.

      Впервые закон всемирного тяготения огласил Исаак Ньютон. У него следующая формулировка: сила взаимодействия двух тел с массами m1 и m2, совершающих работу в пространстве и находящихся на расстоянии r друг от друга, прямо пропорциональна произведению их масс на гравитационную постоянную G и обратно пропорциональна квадрату расстояния между ними.

      Сила тяжести формула

      Запись в виде формулы выглядит таким образом: F = (G * m1 * m2) / r 2 . Если тело находится над поверхностью Земли, то нужно записать соотношение с учетом радиуса планеты R и его высоты над поверхностью h таким способом: F = (G * m1 * m2) / [R + h]^2.

      Коэффициент G равен примерно 6,67 * 10^(-11) м 3 / (кг * с 2 ). Следует отметить, что существует определенное условие, при котором можно воспользоваться этой формулой. В этом случае следует учитывать скорость света c = 3 * 10 8 м/с, а также радиус астрономического тела R. Соотношение имеет такой вид: G * M / (R * c 2 ) 2 * r, где m — масса тела, а r — расстояние между физическим телом или материальной точкой и земной осью. Когда величина r является меньше радиуса Земли, тогда соотношение приобретает такой вид: Fc = m * w 2 * R * cos (q), где q — географическая широта, на которой расположено тело.

      Ускорение свободного падения

      Центробежная сила

      Fт определяется по такому равенству: Fт = m * g. Для Земли величина g примерно равна 9,81 м/с 2 . По формуле видно, что g не зависит от массы тела, а обратно пропорционально зависит от квадрата расстояния искомого тела до центра Земли. Однако на поверхности планеты не всегда одинаковое ускорение. Сила тяжести увеличивается на полюсах Земного шара, а уменьшается на экваторе. Следовательно, увеличивается или уменьшается величина g. Это явление объясняется тем, что шар немного сплюснут по полюсам. Радиус экватора на 21,25 км больше, чем на последних.

      Однако g зависит не только от широты. Следующим фактором является тип системы. Они бывают инерциальными и неинерциальными. Примером первой считается гелиоцентрическая система, а второй — Земля. В последнем случае она движется по орбите вокруг Солнца, а не стоит на месте.

      Еще одним фактором, от которого зависит g, является плотность (p) залегания пород. Если p больше средней плотности Земли (залежи железной руды), то g становится больше. Далее следует разобраться в физическом смысле g.

      Ускорение свободного падения

      Этот процесс проще понять на примере падающего тела с высоты 50 метров:

      1. На начальном уровне его скорость эквивалентна 0. Ее следует определять по такой формуле: v = g * t
      2. На 1 секунде (t = 1): 9,81 * 1 = 9,81 (м/с).
      3. При t = 2: 9,81 * 2 = 19,62 (м/с).
      4. t = 3: 9,81 * 3 = 29,43 (м/с).
      5. t = 4: 9,81 * 4 = 39,24 (м/с).
      6. t = 5: 9,81 * 5 = 49,05 (м/с).

      Иными словами, оно равномерно разгоняется до определенной скорости с течением времени. Такое движение называется равноускоренным. Если перевести скорость на пятой секунде в км/ч, то значение будет эквивалентно величине 176,58. Однако при падении тела необходимо учитывать сопротивляемость воздуха, поскольку перо и яблоко падают не с одинаковыми показателями.

      Вес тела

      Весом тела (P) называется сила действия тела на опору или подвес в результате притяжения Земли. Для демонстрации этого явления необходимо рассмотреть пример взаимодействия пружины и тела, прикрепленного к ней. Под действием Fт пружина деформируется и появляется новая величина, называемая силой упругости Fупр. Необходимо отметить, что векторы Fупр и Fт направлены в противоположные стороны. Направление силы тяжести, а точнее ее вектора, осуществляется всегда вниз, а Fупр — вверх.

      Вес тела

      При использовании опоры, на которой лежит физическое тело, величина P будет равна реакции опоры, направленной вверх. Следовательно, модули N и Fт равны, поскольку тело не падает. Значит P определяется по следующей формуле: P = N = |Fт| = m * g. Однако природа возникновения P и Fт различна, поскольку первая приложена к подвесу или опоре. Она является результатом взаимодействия тела и последней. Вторая — взаимодействие тела и силы тяготения. Кроме того, она приложена только к телу. В этих ключевых аспектах и заключается основная разница между P и Fт.

      Вес тела обладает некоторыми особенностями. Сила тяжести — составляющая P. Первый состоит из совокупности сил (реакция опоры или сила упругости, сила тяжести и тяги). А также P зависит от скорости движения подвеса или выталкивающей силы в жидкостях.

      Понятие невесомости

      Для понимания явления невесомости следует проделать опыт с весами и телом. Если держать весы, к которым привязано тело, то можно увидеть вес последнего, равного по модулю Fт = m * g. Однако при выпускании весов из рук показание начнет стремительно приближаться к нулевому значению. Это связано с тем, что P и Fт компенсируют друг друга, поскольку в одном и другом случаях величина g одинакова.

      Понятие невесомости

      Математически такое явление можно записать следующим образом: P = m * (g — g) = 0. Запись показывает, что физическое тело не деформируется, поскольку движется в одном направлении с вектором Fт. Далее следует рассмотреть Космос. В нем также присутствует невесомость, но другого вида. Если космический корабль находится далеко от Земли, то силы притяжения на него практически не действуют, а, следовательно, значение Fт стремится к 0. Расчет выполняется по такой методике:

      1. Записывается формула силы тяжести Fт: Fт = m * g.
      2. Величина параметра g стремится к бесконечно малому значению, равному 0 (g -> 0), поскольку находится из уравнения: 0 = m * g. Из равенства можно вычислить g = 0 / m = 0.
      3. Подставив g -> 0 в формулу веса тела, можно получить такое тождество: P = m * g = m * 0 = 0.

      Методика позволяет при помощи математических преобразований находить любые значения физических величин. Выражение g -> 0 показывает, что g практически равно 0. Очень важную роль сила тяжести играет в природе, поскольку влияет на некоторые необходимые для жизни процессы.

      Значение в природе

      Ученые установили, что без Fт невозможно существование жизни и Вселенной, поскольку она необходима для термоядерного синтеза на Солнце. Если бы не было ее, то звезды в процессе своей эволюции на конечных стадиях взрывались, распыляя в космическое пространство мощные потоки радиоактивной энергии, губительной для всего живого.

      Кроме того, с ее участием формируется структура внутренней оболочки Земли. Следует обратить внимание на метеориты, которые образуются в космическом пространстве в результате уничтожения звезд или других элементов Галактики. Планеты, обладающие большей силой гравитации, помогают отвести нежелательные космические тела от нашей планеты. Например, при помощи мощного телескопа можно рассмотреть поверхность Юпитера, на которой заметно множество кратеров. Подобные изменения рельефа присутствуют также и на Марсе. Несмотря на меньшие размеры, он обладает большей массой, чем Земля, а, следовательно, и гравитационное поле мощнее.

      Круговорот вещества и энергии

      Круговорот вещества и энергии зависит от потенциальной энергии Fт, которая постоянно переходит в кинетическую и обратно. Кроме того, при помощи этой силы удерживается атмосфера, влияющая на жизнь и защищающая от губительного излучения космического пространства и близлежащей звезды — Солнца. В результате этого существует такая характеристика, как атмосферное давление. Оно является результатом воздействия Fт на слои атмосферы.

      Благодаря Fт живые организмы ориентируются в пространстве при помощи определенных рецепторов. У человека за это отвечает вестибулярный аппарат. Кроме того, постоянное воздействие Fт стало причиной образования прочного скелета у позвоночных.

      Таким образом, сила тяжести играет важную роль в существовании жизни на Земле, поскольку от нее зависит множество явлений и процессов, а также в построении Вселенной.


      Абсолютно все тела, которые обладают конечной массой, взаимодействуют друг с другом благодаря так называемой силе притяжения или гравитации. Дадим в статье определение силы тяжести, а также рассмотрим, какую роль она играет в природе и космосе.

      Что такое сила тяжести или гравитациия?

      В физике определение силы тяжести или гравитации дают следующее: это сила, с которой два тела, имеющие массу, притягиваются друг к другу. Это означает, что каждый человек притягивается к любому предмету, который встречает в своей жизни. Однако эта сила является настолько маленькой, что она не ощущается.

      Проявление гравитации заметно, когда среди взаимодействующих тел имеется объект с огромной массой, например, наша планета. Во многих задачах по физике определение силы тяжести сводят до понятия притяжения объектов к Земле. В последнем случае говорят о весе тела, который вычисляют по формуле P = m*g. Здесь m и g - масса тела и ускорение свободного падения, которое приблизительно равно 9,81 м/с 2 .

      Сэр Исаак Ньютон и всемирное тяготение

      Ньютон и сила тяжести

      Согласно Ньютону, все тела притягиваются друг к другу с силой, которая записывается следующей формулой

      F = G*m1*m2/R 2 , где

      m1 и m2 - массы тел,

      R - расстояние между ними,

      G=6,674*10 -11 Н*м 2 /кг 2 - универсальная гравитационная постоянная.

      Сила тяжести (гравитации) F действует на абсолютно любых расстояниях, направлена к центру масс тел и быстро убывает с увеличением дистанции между ними.

      Если в отмеченную формулу подставить значение для массы и радиуса Земли, то можно получить названное выше ускорение g.

      Эффекты, обусловленные существованием гравитации

      Невесомость - отсутствие силы тяжести

      Выше было дано определение силы тяжести, но не было сказано, какую роль она играет в нашей жизни. Во-первых, благодаря ее существованию мы не парим в воздухе, а твердо стоим на поверхности, и сам воздух не улетает в космическое пространство. Во-вторых, любое подброшенное тело падает обратно на землю. В-третьих, при расчете траекторий полета свободных тел учет влияния этой силы является принципиальным. Наконец, сила всемирного тяготения является главным фактором, который определяет особенности движения нашей планеты вокруг Солнца, и вообще движение любых космических тел.

      В настоящее время ученые всего мира пытаются объединить гравитацию с другими фундаментальными взаимодействиями, чтобы создать единую физическую теорию нашей Вселенной.

      Читайте также: