Роль клеточных мембран в электрической активности клетки кратко

Обновлено: 05.07.2024

Клеточная мембрана (или цитолемма, или плазмалемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулирует обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определённые условия среды.

Функции клеточной или плазматической мембраны

1) Избирательное проникновение в клетку и из нее молекул и ионов, необходимых для выполнения специфических функций клеток;
2) Избирательный транспорт ионов через мембрану, поддерживая трансмембранную разницу электрического потенциала;
3) Специфику межклеточных контактов.

Благодаря наличию в мембране многочисленных рецепторов, воспринимающих химические сигналы — гормоны, медиаторы и другие биологически активные вещества, она способна изменять метаболическую активность клетки. Мембраны обеспечивают специфику иммунных проявлений, благодаря наличию на них антигенов — структур, вызывающих образование антител, способных специфически связываться с этими антигенами.
Ядро и органеллы клетки также отделены от цитоплазмы мембранами, которые предупреждают свободное движение воды и растворенных в ней веществ из цитоплазмы в них и наоборот. Это создает условия для разделения биохимических процессов, протекающих в различных отсеках (компартментах) внутри клетки.

Структура мембраны клетки

Мембрана клетки — эластичная структура, толщиной от 7 до 11 нм (рис.1.1). Она состоит, в основном, из липидов и белков. От 40 до 90% всех липидов составляют фосфолипиды — фосфатидилхолин, фосфатидилэтаноламин, фосфатидилсерин, сфингомиелин и фосфатидилинозит. Важным компонентом мембраны являются гликолипиды, представленные церебризидами, сульфатидами, ганглиозидами и холестерином.

Основной структурой мембраны клетки является двойной слой фосфолипидных молекул. За счет гидрофобных взаимодействий углеводные цепочки липидных молекул удерживаются друг возле друга в вытянутом состоянии. Группы же фосфолипидных молекул обоих слоев взаимно действуют с белковыми молекулами, погруженными в липидную мембрану. Благодаря тому, что большинство липидных компонентов бислоя находится в жидком состоянии, мембрана обладает подвижностью, совершает волнообразные движения. Ее участки, а также белки, погруженные в липидный бислой, перемешаются из одной ее части в другую. Подвижность (текучесть) мембран клеток облегчает процессы транспорта веществ через мембрану.

Белки мембраны клеток представлены, в основном, гликопротеинами.

интегральные белки, проникающие через всю толщу мембраны и

периферические белки, прикрепленные только к поверхности мембраны, в основном, к внутренней ее части.

Периферические белки почти все функционируют как энзимы (ацетилхолинестераза, кислая и щелочная фосфатазы и др.). Но некоторые энзимы также представлены интегральными белками — АТФ-аза.

Интегральные белки обеспечивают селективный обмен ионов через каналы мембран между экстрацеллюлярной и интрацеллюлярной жидкостью, а также действуют как белки — переносчики крупных молекул.

Рецепторы и антигены мембраны могут быть представлены как интегральными, так и периферическими белками.

Белки, примыкающие к мембране с цитоплазматической стороны, относятся к цитоскелету клетки. Они могут прикрепляться к мембранным белкам.

Так, белок полосы 3 (номер полосы при электрофорезе белков) эритроцитарных мембран объединяется в ансамбль с другими молекулами цитоскелета — спектрином через низкомолекулярный белок анкирин

Спектрин является основным белком цитоскелета, составляющим двумерную сеть, к которой прикрепляется актин.

Актин образует микрофиламенты, представляющие собой сократительный аппарат цитоскелета.

Цитоскелет позволяет клетке проявлять гибкоэластические свойства, обеспечивает дополнительную прочность мембраны.

Большинство интегральных белков — гликопротеины. Их углеводная часть выступает из клеточной мембраны наружу. Многие гликопротеины обладают большим отрицательным зарядом из-за значительного содержания сиаловой кислоты (например, молекула гликофорина). Это обеспечивает поверхности большинства клеток отрицательный заряд, способствуя отталкиванию других отрицательно заряженных объектов. Углеводные выступы гликопротеинов являются носителями антигенов групп крови, других антигенных детерминант клетки, они действуют как рецепторы, связывающие гормоны. Гликопротеины образуют адгезивные молекулы, обуславливающие прикрепление клеток одна к другой, т.е. тесные межклеточные контакты.




Таблица №2

Клеточная мембрана (или цитолемма, или плазмалемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулирует обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определённые условия среды.

Функции клеточной или плазматической мембраны

1) Избирательное проникновение в клетку и из нее молекул и ионов, необходимых для выполнения специфических функций клеток;
2) Избирательный транспорт ионов через мембрану, поддерживая трансмембранную разницу электрического потенциала;
3) Специфику межклеточных контактов.

Благодаря наличию в мембране многочисленных рецепторов, воспринимающих химические сигналы — гормоны, медиаторы и другие биологически активные вещества, она способна изменять метаболическую активность клетки. Мембраны обеспечивают специфику иммунных проявлений, благодаря наличию на них антигенов — структур, вызывающих образование антител, способных специфически связываться с этими антигенами.
Ядро и органеллы клетки также отделены от цитоплазмы мембранами, которые предупреждают свободное движение воды и растворенных в ней веществ из цитоплазмы в них и наоборот. Это создает условия для разделения биохимических процессов, протекающих в различных отсеках (компартментах) внутри клетки.

Структура мембраны клетки

Мембрана клетки — эластичная структура, толщиной от 7 до 11 нм (рис.1.1). Она состоит, в основном, из липидов и белков. От 40 до 90% всех липидов составляют фосфолипиды — фосфатидилхолин, фосфатидилэтаноламин, фосфатидилсерин, сфингомиелин и фосфатидилинозит. Важным компонентом мембраны являются гликолипиды, представленные церебризидами, сульфатидами, ганглиозидами и холестерином.

Основной структурой мембраны клетки является двойной слой фосфолипидных молекул. За счет гидрофобных взаимодействий углеводные цепочки липидных молекул удерживаются друг возле друга в вытянутом состоянии. Группы же фосфолипидных молекул обоих слоев взаимно действуют с белковыми молекулами, погруженными в липидную мембрану. Благодаря тому, что большинство липидных компонентов бислоя находится в жидком состоянии, мембрана обладает подвижностью, совершает волнообразные движения. Ее участки, а также белки, погруженные в липидный бислой, перемешаются из одной ее части в другую. Подвижность (текучесть) мембран клеток облегчает процессы транспорта веществ через мембрану.

Белки мембраны клеток представлены, в основном, гликопротеинами.

интегральные белки, проникающие через всю толщу мембраны и

периферические белки, прикрепленные только к поверхности мембраны, в основном, к внутренней ее части.

Периферические белки почти все функционируют как энзимы (ацетилхолинестераза, кислая и щелочная фосфатазы и др.). Но некоторые энзимы также представлены интегральными белками — АТФ-аза.

Интегральные белки обеспечивают селективный обмен ионов через каналы мембран между экстрацеллюлярной и интрацеллюлярной жидкостью, а также действуют как белки — переносчики крупных молекул.

Рецепторы и антигены мембраны могут быть представлены как интегральными, так и периферическими белками.

Белки, примыкающие к мембране с цитоплазматической стороны, относятся к цитоскелету клетки. Они могут прикрепляться к мембранным белкам.

Так, белок полосы 3 (номер полосы при электрофорезе белков) эритроцитарных мембран объединяется в ансамбль с другими молекулами цитоскелета — спектрином через низкомолекулярный белок анкирин

Спектрин является основным белком цитоскелета, составляющим двумерную сеть, к которой прикрепляется актин.

Актин образует микрофиламенты, представляющие собой сократительный аппарат цитоскелета.

Цитоскелет позволяет клетке проявлять гибкоэластические свойства, обеспечивает дополнительную прочность мембраны.

Большинство интегральных белков — гликопротеины. Их углеводная часть выступает из клеточной мембраны наружу. Многие гликопротеины обладают большим отрицательным зарядом из-за значительного содержания сиаловой кислоты (например, молекула гликофорина). Это обеспечивает поверхности большинства клеток отрицательный заряд, способствуя отталкиванию других отрицательно заряженных объектов. Углеводные выступы гликопротеинов являются носителями антигенов групп крови, других антигенных детерминант клетки, они действуют как рецепторы, связывающие гормоны. Гликопротеины образуют адгезивные молекулы, обуславливающие прикрепление клеток одна к другой, т.е. тесные межклеточные контакты.

Клеточная мембрана (плазмалемма или плазмолемма)

Определение понятия

Клеточная мембрана (синонимы: плазмалемма, плазмолемма, цитоплазматическая мембрана, биомембрана) - это тройная липопротеиновая (т.е. "жиро-белковая") оболочка, отделяющая клетку от окружающей среды и осуществлящая управляемый обмен и связь между клеткой и окружающей её средой.

Главное в этом определении - не то, что мембрана отделяет клетку от среды, а как раз то, что она соединяет клетку с окружающей средой. Мембрана - это активная структура клетки, она постоянно работает.

Биологическая мембрана - это ультратонкая бимолекулярная пленка фосфолипидов, инкрустированная белками и полисахаридами. Эта клеточная структура лежит в основе барьерных, механических и матричных свойств живого организма (Антонов В.Ф., 1996).

Образное представление о мембране

Мне клеточная мембрана представляетсся в виде решетчатого забора с множеством дверей в нём, который окружает некую территорию. Всякая мелкая живность может через этот забор свободно перемещаться туда и обратно. Но более крупные посетители могут входить только через двери, да и то не всякие. У разных посетителей ключи только от своих дверей, и через чужие двери они проходить не могут. Так вот через этот забор постоянно идут потоки посетителей туда и обратно, потому что главная функция мембраны-забора двойная: отделять территорию от окружающего пространства и в то же время соединять её с окружающим пространством. Для этого и существует в заборе множество отверстий и дверей - транспортных механизмов мембраны!

Свойства мембраны

2. Полупроницаемость (частичная проницаемость).

3. Избирательная (синоним: селективная) проницаемость.

4. Активная проницаемость (синоним: активный транспорт).

5. Управляемая проницаемость.

Как видим, основное свойство мембраны - это её проницаемость по отношению к различным веществам.

6. Фагоцитоц и пиноцитоз.

8. Наличие электрических и химических потенциалов, точнее разности потенциалов между внутренней и наружной сторонами мембраны. Образно можно сказать, что "мембрана превращает клетку в "электрическую батарейку" с помощью управления ионными потоками" . Подробности: смотреть тут .

9. Изменения электрического и химического потенциала.

10. Раздражимость. Специальные молекулярные рецепторы, находящиеся на мембране, могут соединяться с сигнальными (управляющими) веществами, вследствие чего может меняться состояние мембраны и всей клетки. Молекулярные рецепторы запускают биохимические реакции в ответ на соединение с ними лигандов (управляющих веществ). Важно отметить, что сигнальное вещество воздействует на рецептор снаружи, а изменения продолжаются внутри клетки. Получается, что мембрана передала информацию из окружающей среды во внутреннюю среду клетки.

11. Каталитическая ферментативная активность. Ферменты могут быть встроены в мембрану или связаны с её поверхностью (как внутри, так и снаружи клетки), и там они осуществляют свою ферментативную деятельность.

12. Изменение формы поверхности и её площади. Это позволяет мембране образовывать выросты наружу или, наоборот, впячивания внутрь клетки.

13. Способность образовывать контакты с другими клеточными мембранами.

14. Адгезия - способность прилипать к твёрдым поверхностям.

Краткий список свойств мембраны

  • Проницаемость.
  • Эндоцитоз, экзоцитоз, трансцитоз.
  • Потенциалы.
  • Раздражимость.
  • Ферментная активность.
  • Контакты.
  • Адгезия.

Функции мембраны

1. Неполная изоляция внутреннего содержимого от внешней среды.

2. Главное в работе клеточной мембраны - это обмен различными веществами между клеткой и межклеточной средой. Этому служит такое свойство мембраны как проницаемость. Кроме того, мембрана регулирует этот обмен за счёт того, что регулирует свою проницаемость.

3. Ещё одна важная функция мембраны - создание разности химических и электрических потенциалов между её внутренней и наружной сторонами. За счёт этого внутри клетка имеет отрицательный электрический потенциал - потенциал покоя.

4. Через мембрану осуществляется также информационный обмен между клеткой и окружающей её средой. Специальные молекулярные рецепторы, расположенные на мембране, могут связываться с управляющими веществами (гормонами, медиаторами, модуляторами) и запускать в клетке биохимические реакции, приводящие к различным изменениям в работе клетки или в её структурах.

Видео: Строение мембраны клетки

Видеолекция: Подробно о строении мембраны и транспорте

Строение мембраны

Клеточная мембрана имеет универсальное трёхслойное строение. Её срединный жировой слой является сплошным, а верхний и нижний белковые слои покрывают его в виде мозаики из отдельных белковых участков. Жировой слой является основой, обеспечивающей обособление клетки от окружающей среды, изолирующей её от окружающей среды. Сам по себе он очень плохо пропускает водорастворимые вещества, но легко пропускает жирорастворимые. Поэтому проницаемость мембраны для водорастворимых веществ (например, ионов), приходится обеспечивать специальными белковыми структурами - транспортёрами и ионными каналами. Зато важнейшие для всего живого газы - кислород и углекислый газ - легко перемещаются через мембрану как внутрь клетки, так и наружу.

Ниже представлены микрофотографии реальных клеточных мембран контактирующих клеток, полученные с помощью электронного микроскопа, а также схематический рисунок, показывающий трёхслойность мембраны и мозаичность её белковых слоёв. Для увеличения изображения кликните на него.

На фото контактируют две мембраны (PM), разделённые полоской светлого межклеточного вещества,, именно они имеют трёхслойное строение: два тёмных белковых слоя и между ними светлый липидный слой.

На фото видны две мембраны, разделённые слоем межклеточного вещества. Видно, что каждая мембрана состоит из трёх слоёв: двух тёмных и одного светлого между ними..

Схема трёх слоёв мембраны: 1) зелёным цветом показаны белки, образующие верхний (наружный) слой, 2) светлым цветом изображён двойной слой липидов, 3) зелёным цветом обозначены белки нижнего (внутреннего) слоя. Розоватые - интегральные, пронизывающие мембрану, белки.

Отдельное изображение внутреннего липидного (жирового) слоя клеточной мембраны, пронизанного интегральными встроенными белками. Верхний и нижний белковые слои удалены, чтобы не мешать рассмотрению липидного двойного слоя



Рисунок выше: Неполное схематичное изображение клеточной мембраны (клеточной оболочки), приведённое в Википедии.

Учтите, что наружный и внутренний слои поверхностных белков здесь с мембраны сняты, чтобы нам лучше был виден центральный жировой двойной липидный слой. В реальной клеточной мембране сверху и снизу по жировой плёночке (мелкие шарики на рисунке) плавают большие белковые "острова", и мембрана получается более толстой, трёхслойной: белок-жир-белок. Так что она на самом деле похожа на сэндвич из двух белковых "кусков хлеба" с жирным слоем "масла" посередине, т.е. имеет трёхслойное строение, а не двухслойное.

Стенки этого мешочка образованы двойной жировой (липидной) плёночкой, облепленной изнутри и снаружи белками — клеточной мембраной. Поэтому говорят, что мембрана имеет трёхслойное строение: белки-жиры-белки. Внутри клетки также есть множество подобных жировых мембран, которые делят её внутреннее пространство на отсеки (=компартменты). Такими же мембранами окружены клеточные органеллы: ядро, митохондрии, хлоропласты. Так что мембрана - это универсальная молекулярная структура, свойственная всем клеткам и всем живым организмам.

Модель липидного бислоя, где зелёные

Слева - уже не реальная, а искусственная модель кусочка биологической мембраны: это мгновенный снимок жирового фосфолипидного бислоя (т.е. двойного слоя) в процессе его молекулярно-динамического моделирования. Показана расчётная ячейка модели - 96 молекул ФХ (фосфатидилхолина) и 2304 молекулы воды, всего 20544 атомов.

Молекула типичного

Справа - наглядная модель одиночной молекулы того самого липида, из которых как раз и собирается мембранный липидный бислой. Вверху у него гидрофильная (водолюбивая) головка, а снизу - два гидрофобных (боящихся воды) хвостика. У этого липида есть простое название: 1-стероил-2-докозагексаеноил-Sn-глицеро-3-фосфатидилхолин (18:0/22:6(n-3)cis ФХ), но вам нет нужды его запоминать, если вы только не планируете довести своего преподавателя до обморока глубиной своих познаний.

Можно дать и более точное научное определение клетке:

Клетка – это ограниченная активной мембраной, упорядоченная, структурированная неоднородная система биополимеров, участвующих в единой совокупности обменных, энергетических и информационных процессов, и также осуществляющих поддержание и воспроизведение всей системы в целом.

Внутри клетка также пронизана мембранами, а между мембранами находится не вода, а вязкий гель/золь изменяемой плотности. Поэтому взаимодействующие молекулы в клетке не плавают свободно, как в пробирке с водным раствором, а в основном сидят (иммобилизованы) на полимерных структурах цитоскелета или внутриклеточных мембранах. И химические реакции поэтому проходят внутри клетки почти как в твердом теле, а не в жидкости. Наружная мембрана, окружающая клетку, также облеплена ферментами и молекулярными рецепторами, что делает её очень активной частью клетки.

Клеточная мембрана (плазмалемма, плазмолемма) - это активная оболочка, отделяющая клетку от окружающей среды и связывающая её с окружающей средой. © Сазонов В.Ф., 2016.

Из этого определения мембраны следует, что она не просто ограничивает клетку, а активно работает , связывая её с окружающей её средой.

Мембранные липиды

В состав липидов мембран входят в основном фосфолипиды, сфингомиелины и холестерин, а также в меньших количествах гликолипиды.

С химической точки зрения фосфолипид состоит из четырёх частей: глицерина, двух жирных кислот с длинной углеводородной цепью, фосфорной кислоты и особой для каждого фосфолипида группы, которую принято называть характеристической группой. Трёхатомный спирт глицерин связывает через сложно-эфирную связь две жирные кислоты и остаток фосфорной кислоты, к которой присоединена характеристическая группа (например, этаноламин).

fosfolipid.jpg

Фосфолипид

Рис. ___. Структурная формула фосфатидилэтаноламина как пример амфифильной (гидрофобной/гидрофильной) молекулы фосфолипида. Кроме этаноламина характеристической группой фосфолипида может быть также холин, инозитол, серин и некоторые другие молекулы.

fosfatidilholin.jpg

Фосфатидилхолин

Мембранная плёночка является двойной, т. е. она состоит из двух липидных плёночек, слипшихся друг с другом с помощью своих липидных "хвостиков". Поэтому в учебниках пишут, что основа клеточной мембраны состоит из двух липидных слоёв (или из "бислоя", т.е. двойного слоя). У каждого отдельно взятого липидного слоя одна сторона может смачиваться водой, а другая — не может. Так вот, эти плёночки слипаются друг с другом именно своими несмачивающимися сторонами. Примерно так можно соединить две щётки, направив их щетиной друг к другу и слегка придавив.

Мембранные белки

Белки мембраны включены в липидный двойной слой двумя способами:

  1. Гидрофильные радикалы аминокислот поверхностных мембранных белков связаны нековалентными связями с гидрофильной поверхностью липидного бислоя.
  2. Интегральные мембранные белки погружены в гидрофобную область бислоя.

Интегральные белки различаются по степени погруженности в гидрофобную часть бислоя. Они могут располагаться по обеим сторонам мембраны и при этом либо частично погружаются в мембрану, либо располагаются трансмембранно. Погруженная часть интегральных белков содержит большое количество аминокислот с гидрофобными радикалами, которые обеспечивают гидрофобное взаимодействие с липидами мембран. Гидрофобные взаимодействия поддерживают определенную ориентацию белков в мембране. Гидрофильная выступающая часть белка не может переместиться в гидрофобный слой. Часть мембранных белков ковалентно связана с моносахаридными остатками или олигосахаридными цепями и представляет собой гликопротеины. В отличие от нерастворимых фибриллярных белков растворимые белки имеют почти сферическую (глобулярную) форму. Глобулярным белкам свойственна высокоупорядоченная пространственная структура (конформация), которая способствует выполнению специфических биологических функций (Албертс и соавт., 1994).

Мембрана бактерий

Оболочка прокариотической клетки грамотрицательных бактерий состоит из нескольких слоёв, показанных на рисунке ниже.
Слои оболочки грамотрицательных бактерий:
1. Внутренняя трёхслойная цитоплазматическая мембрана, которая соприкасается с цитоплазмой.
2. Клеточная стенка, которая состоит из муреина.
3. Наружная трёхслойная цитоплазматическая мембрана, которая имеет такую же систему липидов с белковыми комплексами, как и внутренняя мембрана.
Общение грамотрицательных бактериальных клеток с внешним миром через такую сложную трёхступенчатую структуру не даёт им преимущества в выживании в суровых условиях по сравнению с грамположительным бактериями, имеющими менее мощную оболочку. Они точно так же плохо переносят высокие температуры, повышенную кислотность и перепады давления.

MembranaBacterij

BactMevbr

Рафтовая схема мембраны

Мембрана-композит

Видеолекция: Плазматическая мембрана. Е.В. Шеваль, к.б.н.

Видеолекция: Мембрана как клеточная граница. А. Иляскин

Важность ионных каналов мембраны

Легко понять, что через мембранную жировую плёнку могут проникать в клетку только жирорастворимые вещества. Это жиры, спирты, газы. Например, в эритроцитх прямо через мембрану легко проходят внутрь и наружу кислород и углекислый газ. А вот вода и водорастворимые вещества (например, ионы) просто так через мембрану не могут пройти внутрь любой клетки. Это значит, что для них нужны специальные отверстия. Но если просто сделать отверстие в жировой плёнке, то оно тут же затянется обратно. Что же делать? Выход в природе был найден: надо сделать специальные белковые транспортные структуры и протянуть их сквозь мембрану. Именно так и получаются каналы для пропускания не растворимых в жире веществ - ионные каналы мембраны клетки.

Итак, для придания своей мембране дополнительных свойства проницаемости для полярных молекул (ионов и воды) клетка синтезирует в цитоплазме специальные белки, которые затем встраиваются в мембрану. Они бывают двух типов: белки-транспортёры (например, транспортные АТФазы) и белки-каналоформеры (образователи каналов). Эти белки встраиваются в двойной жировой слой мембраны и формируют транспортные структуры в виде транспортёров или в виде ионных каналов . Через эти транспортные структуры теперь могут проходить различные водорастворимые вещества, которые по-другому проходить сквозь жировую мембранную плёнку не могут.

Выводы

1. В целом, мембрана получается трёхслойной:

Но есть ещё рыхлый наружный слой - гликокаликс, который образуют торчащие из мембраны гликопротеины. Они являются молекулярными рецепторами, с которыми связываются сигнальные управляющие вещества.

2. В мембрану встроены специальные белковые структуры, обеспечивающие её протицаемость для ионов или других веществ. Не надо забывать, что в некоторых местах жировое море пронизано интегральными белками насквозь. И именно интегральные белки образуют специальные транспортные структуры клеточной мембраны (смотрите раздел 1_2 Транспортные механизмы мембраны). Через них вещества попадают внутрь клетки, а также выводятся из клетки наружу.

3. С любой стороны мембраны (наружной и внутренней), а также внутри мембраны могут располагаться белки-ферменты, которые влияют и на состояние самой мембраны и на жизнь всей клетки.

Так что мембрана клетки - это активная изменчивая структура, которая активно работает в интересах всей клетки и связывает её с окружающим миром, а не просто является "защитной оболочкой". Это - самое важное, что надо знать про клеточную мембрану.

В медицине мембранные белки зачастую используются как “мишени” для лекарственных средств. В качестве таких мишеней выступают рецепторы, ионные каналы, ферменты, транспортные системы. В последнее время кроме мембраны мишенью для лекарственных веществ становятся также гены, спрятанные в клеточном ядре.

Видео: Введение в биофизику клеточной мембраны: Структура мембран 1 (Владимиров Ю.А.)

Видео: История, строение и функции клеточной мембраны: Структура мембран 2 (Владимиров Ю.А.)


Обзор

Потенциал покоя. В мембране открыты калиевые ионные каналы постоянного тока, закрыты натриевые каналы, работает насос-обменник (Na + /K + -АТФаза).

Автор
Редакторы


Давайте разбираться подробнее.

Зачем нам нужно знать, что такое потенциал покоя и как он возникает?

На эти вопросы можно ответить только в том случае, если узнать, как клетка создаёт себе разность электрических потенциалов (потенциал покоя) на мембране.

Совершенно очевидно, что для понимания того, как работает нервная система, необходимо вначале разобраться, как работает её отдельная нервная клетка — нейрон. Главное, что лежит в основе работы нейрона — это перемещение электрических зарядов через его мембрану и появление вследствие этого на мембране электрических потенциалов. Можно сказать, что нейрон, готовясь к своей нервной работе, вначале запасает энергию в электрической форме, а затем использует ее в процессе проведения и передачи нервного возбуждения.

Таким образом, наш самый первый шаг к изучению работы нервной системы — это понять, каким образом появляется электрический потенциал на мембране нервных клеток. Этим мы и займёмся, и назовём этот процесс формированием потенциала покоя.

В норме, когда нервная клетка находится в физиологическом покое и готова к работе, у неё уже произошло перераспределение электрических зарядов между внутренней и наружной сторонами мембраны. За счёт этого возникло электрическое поле, и на мембране появился электрический потенциал — мембранный потенциал покоя.

Таким образом, мембрана оказывается поляризованной. Это означает, что она имеет разный электрический потенциал наружной и внутренней поверхностей. Разность между этими потенциалами вполне возможно зарегистрировать.

В этом можно убедиться, если ввести внутрь клетки микроэлектрод, соединённый с регистрирующей установкой. Как только электрод попадает внутрь клетки, он мгновенно приобретает некоторый постоянный электроотрицательный потенциал по отношению к электроду, расположенному в окружающей клетку жидкости. Величина внутриклеточного электрического потенциала у нервных клеток и волокон, например, гигантских нервных волокон кальмара, в покое составляет около −70 мВ. Эту величину называют мембранным потенциалом покоя (МПП). Во всех точках аксоплазмы этот потенциал практически одинаков.

Ноздрачёв А.Д. и др. Начала физиологии [5].

Ещё немного физики. Макроскопические физические тела, как правило, электрически нейтральны, т.е. в них в равных количествах содержатся как положительные, так и отрицательные заряды. Зарядить тело можно, создав в нем избыток заряженных частиц одного вида, например, трением о другое тело, в котором при этом образуется избыток зарядов противоположного вида. Учитывая наличие элементарного заряда (e), полный электрический заряд любого тела можно представить как q = ±N×e, где N — целое число.

Потенциал электростатического поля φ определяется как отношение потенциальной энергии W пробного заряда q к величине этого заряда: φ = W/q, откуда следует, что потенциал численно равен потенциальной энергии, которой обладает в данной точке поля единичный положительный заряд. Единицей измерения потенциала служит вольт (1 В) [4]. В некоторых случаях потенциал электрического поля нагляднее определяется как физическая величина, численно равная работе внешних сил против сил электрического поля E при перемещении единичного положительного точечного заряда из бесконечности в данную точку. Последнее определение удобно записать следующим образом:


В электрофизиологии кроме потенциала покоя рассматриваются и другие электрические потенциалы: локальные постсинаптические и рецепторные потенциалы (возбуждающие и тормозные), электротонические и следовые потенциалы, миниатюрные потенциалы концевой пластинки, концентрационный потенциал и потенциал действия [5].

Потенциал покоя — это разность электрических потенциалов, имеющихся на внутренней и наружной сторонах мембраны, когда клетка находится в состоянии физиологического покоя. Его величина измеряется изнутри клетки, она отрицательна и составляет в среднем −70 мВ (милливольт), хотя в разных клетках может быть различной: от −35 мВ до −90 мВ.

Важно учитывать, что в нервной системе электрические заряды представлены не электронами, как в обычных металлических проводах, а ионами — химическими частицами, имеющими электрический заряд. И вообще в водных растворах в виде электрического тока перемещаются не электроны, а ионы. Поэтому все электрические токи в клетках и окружающей их среде — это ионные токи.

Итак, изнутри клетка в покое заряжена отрицательно, а снаружи — положительно. Это свойственно всем живым клеткам, за исключением, разве что, эритроцитов, которые, наоборот, заряжены отрицательно снаружи. Если говорить конкретнее, то получается, что снаружи вокруг клетки будут преобладать положительные ионы (катионы Na + и K + ), а внутри — отрицательные ионы (анионы органических кислот, не способные свободно перемещаться через мембрану, как Na + и K + ).

Теперь нам всего лишь осталось объяснить, каким же образом всё получилось именно так. Хотя, конечно, неприятно сознавать, что все наши клетки кроме эритроцитов только снаружи выглядят положительными, а внутри они — отрицательные.

Сущность формирования потенциала покоя

Попробуем разобраться, откуда берётся электрический заряд нервных клеток, хотя их никто не трёт, как это делают физики в своих опытах с электрическими зарядами.

Здесь исследователя и студента поджидает одна из логических ловушек: внутренняя отрицательность клетки возникает не из-за появления лишних отрицательных частиц (анионов), а, наоборот, из-за потери некоторого количества положительных частиц (катионов)!

Так куда же деваются из клетки положительно заряженные частицы? Напомню, что это покинувшие клетку и скопившиеся снаружи ионы натрия — Na + — и калия — K + .

Главный секрет появления отрицательности внутри клетки

Сразу откроем этот секрет и скажем, что клетка лишается части своих положительных частиц и заряжается отрицательно за счёт двух процессов:

Эти два процесса нам и надо объяснить.

Первый этап создания внутренней отрицательности: обмен Na + на K +

Но ведь при обмене одного положительного заряда (Na + ) на другой такой же положительный заряд (K + ) никакого дефицита положительных зарядов в клетке возникать не может! Правильно. Но, тем не менее, из-за этого обмена в клетке остаётся очень мало ионов натрия, потому что они почти все ушли наружу. И в то же время клетка переполняется ионами калия, которые в неё накачали молекулярные насосы. Если бы мы могли попробовать на вкус цитоплазму клетки, мы бы заметили, что в результате работы насосов-обменников она превратилась из солёной в горько-солёно-кислую, потому что солёный вкус хлорида натрия сменился сложным вкусом довольно-таки концентрированного раствора хлорида калия. В клетке концентрация калия достигает 0,4 моль/л. Растворы хлорида калия в пределах 0,009–0,02 моль/л имеют сладкий вкус, 0,03–0,04 — горький, 0,05–0,1 — горько-солёный, а начиная с 0,2 и выше — сложный вкус, состоящий из солёного, горького и кислого [8].

Кстати, интересно, что клетка не рождается с готовым потенциалом покоя. Ей его ещё надо создать. Например, при дифференцировке и слиянии миобластов потенциал их мембраны изменяется от −10 до −70 мВ, т.е. их мембрана становится более отрицательной — поляризуется в процессе дифференцировки. А в экспериментах на мультипотентных мезенхимальных стромальных клетках костного мозга человека искусственная деполяризация, противодействующая потенциалу покоя и уменьшающая отрицательность клеток, даже ингибировала (угнетала) дифференцировку клеток [1].

  1. любовь клетки к калию (поэтому клетка насильно затаскивает его к себе);
  2. любовь калия к свободе (поэтому калий покидает захватившую его клетку).

Механизм насыщения клетки калием мы уже объяснили (это работа насосов-обменников), а механизм ухода калия из клетки объясним ниже, когда перейдём к описанию второго этапа создания внутриклеточной отрицательности. Итак, результат деятельности мембранных ионных насосов-обменников на первом этапе формирования потенциала покоя таков:

  1. Дефицит натрия (Na + ) в клетке.
  2. Избыток калия (K + ) в клетке.
  3. Появление на мембране слабого электрического потенциала (−10 мВ).

Можно сказать так: на первом этапе ионные насосы мембраны создают разность концентраций ионов, или градиент (перепад) концентрации, между внутриклеточной и внеклеточной средой.

Второй этап создания отрицательности: утечка ионов K + из клетки

Итак, что начинается в клетке после того, как с ионами поработают её мембранные натрий-калиевые насосы-обменники?

Из-за образовавшегося дефицита натрия внутри клетки этот ион при каждом удобном случае норовит устремиться внутрь: растворённые вещества всегда стремятся выровнять свою концентрацию во всём объёме раствора. Но это у натрия получается плохо, поскольку ионные натриевые каналы обычно закрыты и открываются только при определённых условиях: под воздействием специальных веществ (трансмиттеров) или при уменьшении отрицательности в клетке (деполяризации мембраны).

В то же время в клетке имеется избыток ионов калия по сравнению с наружной средой — потому что насосы мембраны насильно накачали его в клетку. И он, тоже стремясь уравнять свою концентрацию внутри и снаружи, норовит, напротив, выйти из клетки. И это у него получается!

Ионы калия K + покидают клетку под действием химического градиента их концентрации по разные стороны мембраны (мембрана значительно более проницаема для K + , чем для Na + ) и уносят с собой положительные заряды. Из-за этого внутри клетки нарастает отрицательность.

К + -каналы утечки постоянно открыты при нормальных значениях мембранного потенциала покоя и проявляют взрывы активности при сдвигах мембранного потенциала, которые длятся несколько минут и наблюдаются при всех значениях потенциала. Усиление К + -токов утечки ведёт к гиперполяризации мембраны, тогда как их подавление — к деполяризации. . Однако, существование канального механизма, ответственного за токи утечки, долгое время оставалось под вопросом. Только сейчас стало ясно, что калиевая утечка — это ток через специальные калиевые каналы.

Зефиров А.Л. и Ситдикова Г.Ф. Ионные каналы возбудимой клетки (структура, функция, патология) [7].

От химического — к электрическому

А теперь — ещё раз самое главное. Мы должны осознанно перейти от движения химических частиц к движению электрических зарядов.

Для этой составной части потенциала покоя есть даже специальное название — концентрационный потенциал [5]. Концентрационный потенциал — это часть потенциала покоя, созданная дефицитом положительных зарядов внутри клетки, образовавшимся за счёт утечки из неё положительных ионов калия.

Ну, а теперь немного физики, химии и математики для любителей точности.

Электрические силы связаны с химическими по уравнению Гольдмана. Его частным случаем является более простое уравнение Нернста, по формуле которого можно рассчитать трансмембранную диффузионную разность потенциалов на основе различной концентрации ионов одного вида по разные стороны мембраны. Так, зная концентрацию ионов калия снаружи и внутри клетки, можно рассчитать калиевый равновесный потенциал EK:


где Ек — равновесный потенциал, R — газовая постоянная, Т — абсолютная температура, F — постоянная Фарадея, К + внеш и K + внутр — концентрации ионов К + снаружи и внутри клетки, соответственно. По формуле видно, что для расчёта потенциала между собой сравниваются концентрации ионов одного вида — K + .

Более точно итоговая величина суммарного диффузионного потенциала, который создаётся утечкой нескольких видов ионов, рассчитывается по формуле Гольдмана-Ходжкина-Катца. В ней учтено, что потенциал покоя зависит от трех факторов: (1) полярности электрического заряда каждого иона; (2) проницаемости мембраны Р для каждого иона; (3) [концентраций соответствующих ионов] внутри (внутр) и снаружи мембраны (внеш). Для мембраны аксона кальмара в покое отношение проводимостей РK : PNa :PCl = 1 : 0,04 : 0,45 [5].


Заключение

Итак, поте нциал покоя состоит из двух частей:

Вот теперь мембранный потенциал покоя окончательно сформирован.

Клеточная мембрана

Все живые организмы на Земле состоят из клеток, а каждая клетка окружена защитной оболочкой – мембраной. Однако функции мембраны не ограничиваются защитой органоидов и отделением одной клетки от другой. Клеточная мембрана представляет собой сложнейший механизм, напрямую участвующий в размножении, регенерации, питании, дыхании и многих других важных функциях клетки.

Клеточная мембрана (цитолемма, плазмалемма) – это трехслойная липопротеиновая (жиро-белковая) оболочка, отделяющая каждую клетку от соседних клеток и окружающей среды, и осуществляющая управляемый обмен между клетками и окружающей средой.

Решающее значение в этом определении имеет не то, что клеточная оболочка отделяет одну клетку от другой, а то, что она обеспечивает её взаимодействие другими клетками и окружающей средой. Мембрана – весьма активная, постоянно работающая структура клетки, на которую природой возложено множество функций. Из нашей статьи вы узнаете все о составе, строении, свойствах и функциях клеточной мембраны, а также о той опасности, которую представляют для здоровья человека нарушения в работе клеточных мембран.

История исследования клеточной мембраны

Однако в ходе эксперимента было допущено две грубейших ошибки:

Использование ацетона не позволяет выделить из мембран абсолютно все липиды;

Поскольку первая ошибка давала минус в расчетах, а вторая – плюс, общий результат оказался на удивление точным, и немецкие ученые принесли в научный мир важнейшее открытие – липидный бислой клеточной мембраны.

В 1935 году другая пара исследователей, Даниэлли и Доусон, после долгих экспериментов над билипидными пленками пришли к выводу о присутствии в клеточных мембранах белков. Иначе никак нельзя было объяснить, почему эти пленки обладают таким высоким показателем поверхностного натяжения. Ученые представили вниманию общественности схематическую модель клеточной мембраны, похожую на сэндвич, где роль кусочков хлеба играют однородные липидно-белковые слои, а между ними вместо масла – пустота.

В 1950 году с помощью первого электронного микроскопа теорию Даниэлли-Доусона удалось частично подтвердить – на микрофотографиях клеточной мембраны были отчетливо видны два слоя, состоящих из липидных и белковых головок, а между ними прозрачное пространство, заполненное лишь хвостиками липидов и белков.

В 1972 году микробиологи С.Д. Сингер и Г.Л. Николсон смогли объяснить все нестыковки теории Робертсона с помощью новой, жидкостно-мозаичной модели клеточной мембраны. Ученые установили, что мембрана неоднородна, ассиметрична, наполнена жидкостью, и её клетки пребывают в постоянном движении. А белки, входящие в её состав, имеют разное строение и назначение, кроме того, они по-разному располагаются относительно билипидного слоя мембраны.

В составе клеточных мембран присутствуют белки трех видов:

Периферические – крепятся на поверхности пленки;

Полуинтегральные – частично проникают внутрь билипидного слоя;

Интегральные – полностью пронизывают мембрану.

Периферические белки связаны с головками мембранных липидов посредством электростатического взаимодействия, и они никогда не образуют сплошной слой, как принято было считать ранее.А полуинтегральные и интегральные белки служат для транспортировки внутрь клетки кислорода и питательных веществ, а также для вывода из нее продуктов распада и ещё для нескольких важных функций, о которых вы узнаете далее.

Свойства и функции клеточной мембраны

Свойства и функции клеточной мембраны

Клеточная мембрана выполняет следующие функции:

Барьерную – проницаемость мембраны для разных типов молекул неодинакова.Чтобы миновать оболочку клетки, молекула должна иметь определенный размер, химические свойства и электрический заряд. Вредные или неподходящие молекулы, благодаря барьерной функции клеточной мембраны, просто не могут проникнуть внутрь клетки. Например, с помощью реакции пероксиса мембрана защищает цитоплазму от опасных для нее пероксидов;

Транспортную – сквозь мембрану проходит пассивный, активный, регулируемый и избирательный обмен. Пассивный обмен подходит для жирорастворимых веществ и газов, состоящих из очень маленьких молекул. Такие вещества проникают внутрь и выходят из клетки без затрат энергии, свободно, методом диффузии. Активная транспортная функция клеточной мембраны задействуется тогда, когда в клетку или из нее нужно провести необходимые, но трудно транспортируемые вещества. Например, обладающие большим размером молекул, или неспособные пересечь билипидный слой из-за гидрофобности. Тогда начинают работать белки-насосы, в том числе АТФаза, которая отвечает за всасывание в клетку ионов калия и выбрасывание из нее ионов натрия. Регулируемый транспортный обмен необходим для осуществления функций секреции и ферментации, например, когда клетки производят и выделяют гормоны или желудочный сок. Все эти вещества выходят из клеток через специальные каналы и в заданном объеме. А избирательная транспортная функция связана с теми самыми интегральными белками, которые пронизывают мембрану и служат каналом для входа и выхода строго определенных типов молекул;

Матричную – клеточная мембрана определяет и фиксирует расположение органоидов относительно друг друга (ядра, митохондрий, хлоропластов) и регулирует взаимодействие между ними;

Механическую – обеспечивает ограничение одной клетки от другой, и, в то же время,— правильное соединение клеток в однородную ткань и устойчивость органов к деформации;

Защитную – как у растений, так и у животных, клеточная мембрана служит основой для построения защитного каркаса. Примером могут служить твердая древесина, плотная кожура, колючие шипы. В животном мире тоже много примеров защитной функции клеточных мембран – черепаший панцирь, хитиновая оболочка, копыта и рога;

Энергетическую — процессы фотосинтеза и клеточного дыхания были бы невозможны без участия белков клеточной мембраны, ведь именно с помощью белковых каналов клетки обмениваются энергией;

Рецепторную— белки, встроенные в клеточную мембрану, могут обладать ещё одной важной функцией. Они служат рецепторами, благодаря которым клетка получает сигнал от гормонов и нейромедиаторов. А это, в свою очередь, необходимо для проведения нервных импульсов и нормального течения гормональных процессов;

Ферментативную — ещё одна важная функция, присущая некоторым белкам клеточных мембран. Например, в эпителии кишечника с помощью таких белков синтезируются пищеварительные ферменты;

Биопотенциальную – концентрация ионов калия внутри клетки значительно выше, чем снаружи, а концентрация ионов натрия, наоборот, снаружи больше, чем внутри. Этим и объясняется разность потенциалов: внутри клетки заряд отрицательный, в снаружи положительный, что способствует движению веществ внутрь клетки и наружу при любом из трех типов обмена – фагоцитозе, пиноцитозе и экзоцитозе;

Клеточный обмен происходит через мембраны, и может осуществляться с помощью трех основных типов реакций:

Фагоцитоз – клеточный процесс, при котором встроенные в мембрану клетки-фагоциты захватывают и переваривают твердые частички питательных веществ. В человеческом организме фагоцитоз осуществляется мембранами двух типов клеток: гранулоцитов (зернистых лейкоцитов) и макрофагов (иммунных клеток-убийц);

Экзоцитоз – обратный процесс, при котором внутри клетки образуются пузырьки с секреторной функциональной жидкостью (ферментом, гормоном), и её необходимо как-то вывести из клетки в окружающую среду. Для этого пузырек сначала сливается с внутренней поверхностью клеточной мембраны, затем выпячивается наружу, лопается, исторгает содержимое и снова сливается с поверхностью мембраны, на этот раз уже с внешней стороны. Экзоцитоз проходит, например, в клетках кишечного эпителия и коры надпочечников.

Строение клеточной мембраны

Клеточные мембраны содержат липиды трех классов:

Фосфолипиды (комбинация жиров и фосфора) и гликолипиды (комбинация жиров и углеводов), в свою очередь, состоят из гидрофильной головки, от которой отходят два длинных гидрофобных хвостика. А вот холестерол иногда занимает пространство между этими двумя хвостиками и не даёт им изгибаться, что делает мембраны некоторых клеток жесткими. Кроме того, молекулы холестерола упорядочивают структуру клеточных мембран и препятствуют переходу полярных молекул из одной клетки в другую.

Структура клеточной мембраны трехслойна. Посередине пролегает относительно однородный жидкий билипидный слой, а белки покрывают его с обеих сторон подобием мозаики, частично проникая в толщу. То есть, неправильно было бы думать, что внешние белковые слои клеточных мембран непрерывны. Белки, помимо своих сложных функций, нужны в мембране для того, чтобы пропускать внутрь клеток и транспортировать из них наружу те вещества, которые не способны проникнуть сквозь жировой слой. К примеру, ионы калия и натрия. Для них предусмотрены специальные белковые структуры – ионные каналы, подробнее о которых мы расскажем далее.

Клетка – это структурированная и отграниченная с помощью мембран совокупность органоидов, которая участвует в комплексе энергетических, метаболических, информационных и репродуктивных процессов, обеспечивающих жизнедеятельность организма.

Ионные каналы клеточных мембран

Рассмотрим более подробно принцип работы ионных каналов. Для чего они нужны? Дело в том, что сквозь липидную мембрану беспрепятственно могут проникать только жирорастворимые вещества – это газы, спирты и сами жиры. Так, например, в красных кровяных тельцах постоянно происходит обмен кислорода и углекислого газа, и для этого нашему организму не приходится прибегать ни к каким дополнительным ухищрениям. Но как же быть, когда возникает необходимость в транспортировке сквозь клеточную мембрану водных растворов, таких, как соли натрия и калия?

Проложить в билипидном слое путь для таких веществ было бы невозможно, поскольку отверстия бы тут же затянулись и слиплись обратно, такова уж структура любой жировой ткани. Но природа, как всегда, нашла выход из ситуации, и создала специальные белковые транспортные структуры.

Существует два типа проводящих белков:

Транспортеры – полуинтегральные белки-насосы;

Каналоформеры – интегральные белки.

Белки первого типа частично погружены в билипидный слой клеточной мембраны, а головкой выглядывают наружу, и в присутствии нужного вещества они начинают вести себя, как насос: притягивают молекулу и всасывают её внутрь клетки. А белки второго типа, интегральные, имеют вытянутую форму и располагаются перпендикулярно билипидному слою клеточной мембраны, пронизывая её насквозь. По ним, как по тоннелям, в клетку и из клетки движутся вещества, неспособные проходить сквозь жир. Именно через ионные каналы внутрь клетки проникают ионы калия и накапливаются в ней, а ионы натрия, наоборот, выводятся наружу. Возникает разность электрических потенциалов, так необходимая для правильной работы всех клеток нашего организма.

[Учебное видео] Строение плазматической мембраны клетки:


Важнейшие выводы о строении и функциях клеточных мембран

вывод

Теория всегда выглядит интересной и перспективной, если её можно с пользой применить на практике. Открытие строения и функций клеточных мембран человеческого организма позволило ученымсовершить настоящий прорыв в науке в целом, и в медицине в частности. Мы не случайно так подробно остановились на ионных каналах, ведь именно здесь кроется ответ на один из важнейших вопросов современности: почему люди все чаще заболевают онкологией?

Рак ежегодно уносит около 17 миллионов жизней во всем мире, и является четвертой по частоте причиной всех смертей. По данным ВОЗ, заболеваемость онкологией неуклонно увеличивается, и к концу 2020 года может достигнуть 25 миллионов в год.

Чем объясняется настоящая эпидемия рака, и причем тут функции клеточных мембран? Вы скажете: причина в плохой экологической обстановке, неправильном питании, вредных привычках и тяжелой наследственности. И, конечно, будете правы, но если говорить о проблеме более предметно, то причина в закисленности человеческого организма. Перечисленные выше негативные факторы приводят к нарушению работы клеточных мембран, угнетают дыхание и питание.

Там, где должен быть плюс, образуется минус, и клетка не может нормально функционировать. А вот раковым клеткам не нужны ни кислород, ни щелочная среда – они способны использовать анаэробный тип питания. Поэтому в условиях кислородного голодания и зашкаливающего уровня pH здоровые клетки мутируют, желая приспособиться к окружающей среде, и становятся раковыми клетками. Так человек и заболевает онкологией. Чтобы этого избежать, нужно всего лишь употреблять достаточное количество чистой воды ежедневно, и отказаться от канцерогенов в пище. Но, как правило, люди прекрасно знают о вредных продуктах и потребности в качественной воде, и ничего не предпринимают – надеются, что беда обойдет их стороной.

Антибиотики последнего поколения при попадании в кровь не убивают все клетки подряд, а ищут именно клетки возбудителя, ориентируясь на маркеры в его клеточных оболочках. Новейшие препараты против мигрени, триптаны, сужают только воспаленные сосуды головного мозга, при этом почти никак не влияя на сердце и периферическую кровеносную систему. И узнают они нужные сосуды именно по белкам их клеточных мембран. Таких примеров множество, поэтому можно с уверенностью сказать, что знания о строении и функциях клеточных оболочек лежит в основе развития современной медицинской науки, и спасает миллионы жизней каждый год.

Мочалов Павел Александрович

Автор статьи: Мочалов Павел Александрович | д. м. н. терапевт

Образование: Московский медицинский институт им. И. М. Сеченова, специальность - "Лечебное дело" в 1991 году, в 1993 году "Профессиональные болезни", в 1996 году "Терапия".
Наши авторы

Читайте также: