Раскрытие неопределенностей правило лопиталя кратко

Обновлено: 02.07.2024

Ранее мы познакомились с примерами нахождения пределов отношения двух бесконечно малых или бесконечно больших функций, то есть раскрытия неопределенностей вида 0/0 и ∞/∞. Сейчас рассмотрим новое правило раскрытия этих неопределенностей.

Теорема (правило Лопиталя). Пусть функции f(x) и g(x) дифференцируемы в некоторой окрестности точки a, за исключением, быть может, самой точки a, и пусть или . Тогда, если существует предел отношения производных этих функций , то существует и предел отношения самих функций f(x)/g(x) при xа, причем

Таким образом, коротко правило Лопиталя можно сформулировать следующим образом: предел отношения двух бесконечно малых или двух бесконечно больших величин равен пределу отношения их производных.

Замечание. Отметим, что формула (1) справедлива только в том случае, если предел, стоящий справа, существует. Может случиться, что предел, стоящий слева существует, в то время как предел, стоящий в правой части равенства, не существует.

Например, найти . Этот предел существует . Но отношение производных (1+cosx)/1=1+cos x при x→∞ не стремится ни к какому пределу.

Заметим, что если отношение производных опять представляет собой неопределенность вида 0/0 или ∞/∞, то можно снова применить сформулированную теорему, то есть перейти к отношению вторых производных и так далее.

Вспомним, что к этим двум случаям сводятся случаи других неопределенностей: ∞·∞; 0·∞.

Для раскрытия неопределенностей 1 ∞ , 1 0 , ∞ 0 нужно прологарифмировать данную функцию и найти предел ее логарифма.

Прологарифмируем это равенство . Найдем .

Так как lny функция непрерывная, то . Следовательно, или .

ФОРМУЛА ТЕЙЛОРА

Пусть функция y= f(x) задана на (a, b) и x0 Î (a, b). Поставим следующую задачу: найти многочлен P(x), значения которого в окрестности точки x0 приближенно совпадали бы со значениями функции f(x) в соответствующих точках. Тогда можно будет считать, что f(x)≈P(x) и задачу вычисления значенийf(x) в окрестности точки x0 можно заменить более легкой задачей вычисления значений P(x).

Пусть искомый многочлен имеет степень n P(x) = Pn(x). Будем искать его в виде

В этом равенстве нам нужно найти коэффициенты .

Для того чтобы этот многочлен был "близок" к функции f(x) потребуем выполнения следующих равенств:

Пусть функция y= f(x) имеет производные до n-ого порядка. Найдем коэффициенты многочлена Pn(x) исходя из условия равенства производных.

Введем обозначение n! = 1·2·3…n, 0! = 1, 1! = 1.

Подставим в (1) x = x0 и найдем , но с другой стороны . Поэтому

Далее найдем производную и вычислим Следовательно, .

Учитывая третье условие и то, что

Далее . Значит, , т.е. .

Очевидно, что и для всех последующих коэффициентов будет верна формула

Подставляя найденные значения коэффициентов в формулу (1), получим искомый многочлен:

Обозначим и назовем эту разность n-ым остаточным членом функции f(x) в точке x0. Отсюда и, следовательно, если остаточный член будет мал.

Оказывается, что если x0 Î (a, b) при всех x Î (a, b) существует производная f (n+1) (x), то для произвольной точки x Î (a, b) существует точка, лежащая между x0 и x такая, что остаток можно представить в виде:

Это так называемая формула Лагранжа для остаточного члена.

где x Î (x0, x) называется формулой Тейлора.

Если в этой формуле положить x0 = 0, то она запишется в виде

где x Î ( x0, x). Этот частный случай формулы Тейлора называют формулой МакЛорена.

РАЗЛОЖЕНИЕ ПО ФОРМУЛЕ МАКЛОРЕНА НЕКОТОРЫХ ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ

    Рассмотрим функцию f(x)=e x . Представим ее по формуле МакЛорена в виде суммы многочлена и некоторого остатка. Для этого найдем производные до (n+1) порядка:

Таким образом, получаем

Используя эту формулу и придавая x различные значения, мы сможем вычислить значение e x .

Например, при x=1, ограничиваясь n=8, получим формулу, позволяющую найти приближенное значение числа e:

Отметим, что для любого x Î R остаточный член

Действительно, так как ξ Î (0; x), то величина e ξ ограничена при фиксированном x. При x> 0 e ξ x . Докажем, что при фиксированном x

Если x зафиксировано, то существует натуральное число N такое, что |x| N можем написать

Но , не зависящая от n, а так как q x с любой степенью точности.

Найдем последовательные производные от функции f(x)=sin x.

Подставляя полученные значения в формулу МакЛорена, получим разложение:

Несложно заметить, что преобразовав n-й член ряда, получим

Так как , то аналогично разложению e x можно показать, что для всех x.

Пример. Применим полученную формулу для приближенного вычисления sin 20°. При n=3 будем иметь:

Оценим сделанную погрешность, которая равна остаточному члену:

Таким образом, sin 20°= 0,342 с точностью до 0,001.

Здесь также для всех x. Докажите формулу самостоятельно.

Найдем формулу МакЛорена для данной функции.

Подставим все найденные производные в ряд МакЛорена.

Можно доказать, что если x Î (–1;1],то , т.е. выведенная формула справедлива при x Î ( –1;1].

При m≠Z данная функция определена при x> –1. Найдем формулу МакЛорена для этой функции:

Можно показать, что при |x| f(x2).

Функция, только возрастающая или только убывающая на отрезке, называется монотонной на этом отрезке.

Функция y=f(x) называется постоянной на некотором отрезке [a, b], если при изменении аргумента x она принимает одни и те же значения.

Рассмотрим график функции изображенной на рисунке и определим промежутки возрастания и убывания функции.

(-∞, a), (c, +∞) – убывает;

(a, b) – постоянная;

(b, c) – возрастает.

Применим понятие производной для исследования возрастания и убывания функции.

Теорема 1. (Необходимое и достаточное условия возрастания функции)

  1. Если дифференцируемая функция y=f(x) возрастает на [a, b], то ее производная неотрицательна на этом отрезке, f '(x)≥ 0.
  2. Обратно. Если функция y=f(x) непрерывна на [a, b], дифференцируема на (a, b) и ее производная положительна на этом отрезке,f ' (x)≥ 0 для a 0, то x 0. Но тогда и Аналогично, если Δx x+Δx и значит f(x+Δx)-f(x) 0при всех x Î (a,b). Рассмотрим два любых значения x1 и x2 таких, что x1 Î (x1, x2), что . По условию f '(x)>0,x1x2>0 Þ , а это и значит, что f(x) – возрастающая функция.

Аналогичная теорема имеет место и для убывающих функций.

Теорема 2. Если f(x) убывает на[a,b], то на этом отрезке. Если на (a; b), то f(x) убывает на [a, b],в предположении, чтоf(x) непрерывна на [a, b].

Доказанная теорема выражает очевидный геометрический факт. Если на [a, b] функция возрастает, то касательная к кривой y=f(x) в каждой точке этого отрезке образует острый угол с осью Ox или горизонтальна, т.е. tga≥0, а значит f '(x)≥0.

Аналогично иллюстрируется и вторая часть теоремы.

Таким образом, возрастание и убывание функции характеризуется знаком ее производной. Чтобы найти на каком промежутке функция возрастает или убывает, нужно определить, где производная этой функции только положительна или только отрицательна, то есть решить неравенства f '(x)>0 – для возрастания или f '(x) È (0; +∞).

. Следовательно, f(x) – убывает на (-∞; 0) и (0; +∞).

Найдем промежутки, на которых производная заданной функции положительна или отрицательна методом интервалов.

Итак, f(x) – убывает на (–∞; –1] и [1; +∞), возрастает на отрезке [–1; 1].

Используя метод интервалов, получим f(x) убывает на (0; 1) и (1; e], возрастает на [e; +∞).

Правило Лопиталя и раскрытие неопределённостей

Производная от функции недалеко падает, а в случае правил Лопиталя она падает точно туда же, куда падает исходная функция. Это обстоятельство помогает в раскрытии неопределённостей вида 0/0 или ∞/∞ и некоторых других неопределённостей, возникающих при вычислении предела отношения двух бесконечно малых или бесконечно больших функций. Вычисление значительно упрощается с помощью этого правила (на самом деле двух правил и замечаний к ним):

Как показывает формула выше, при вычислении предела отношений двух бесконечно малых или бесконечно больших функций предел отношения двух функций можно заменить пределом отношения их производных и, таким образом, получить определённный результат.

Перейдём к более точным формулировкам правил Лопиталя.

Правило Лопиталя для случая предела двух бесконечно малых величин. Пусть функции f(x) и g(x) имеют производные (то есть дифференцируемы) в некоторой окрестности точки a. А в самой точке a они могут и не иметь производных. При этом в окрестности точки a производная функции g(x) не равна нулю ( g'(x)≠0 ) и пределы этих функций при стремлении икса к значению функции в точке a равны между собой и равны нулю:

Тогда предел отношения этих функций равен пределу отношения их производных:

Правило Лопиталя для случая предела двух бесконечно больших величин. Пусть функции f(x) и g(x) имеют производные (то есть дифференцируемы) в некоторой окрестности точки a. А в самой точке a они могут и не иметь производных. При этом в окрестности точки a производная функции g(x) не равна нулю ( g'(x)≠0 ) и пределы этих функций при стремлении икса к значению функции в точке a равны между собой и равны бесконечности:

Тогда предел отношения этих функций равен пределу отношения их производных:

Иными словами, для неопределённостей вида 0/0 или ∞/∞ предел отношения двух функций равен пределу отношения их производных, если последний существует (конечный, то есть равный определённому числу, или бесконечный, то есть равный бесконечности).

Замечания.

1. Правила Лопиталя применимы и тогда, когда функции f(x) и g(x) не определены при x = a.

2. Если при вычисления предела отношения производных функций f(x) и g(x) снова приходим к неопределённости вида 0/0 или ∞/∞, то правила Лопиталя следует применять многократно (минимум дважды).

3. Правила Лопиталя применимы и тогда, когда аргумент функций (икс) стремится не к конечному числу a, а к бесконечности (x → ∞).

К неопределённостям видов 0/0 и ∞/∞ могут быть сведены и неопределённости других видов.

Раскрытие неопределённостей видов "ноль делить на ноль" и "бесконечность делить на бесконечность"

Пример 1. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

Решение. Подстановка в заданную функцию значения x=2 приводит к неопределённости вида 0/0. Поэтому производную каждой функции и получаем

В числителе вычисляли производную многочлена (применяя для этого формулы 1, 2 и 3 из таблицы производных), а в знаменателе - производную сложной логарифмической функции. Перед последним знаком равенства вычисляли обычный предел, подставляя вместо икса двойку.

Пример 2. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

Решение. Подстановка в заданную функцию значения x=0 приводит к неопределённости вида 0/0. Поэтому вычисляем производные функций в числителе и знаменателе и получаем:

Пример 3. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

Решение. Подстановка в заданную функцию значения x=0 приводит к неопределённости вида 0/0. Поэтому вычисляем производные функций в числителе и знаменателе и получаем:

Пример 4. Вычислить

Решение. Подстановка в заданную функцию значения икса, равного плюс бесконечности, приводит к неопределённости вида ∞/∞. Поэтому применим правило Лопиталя:

Замечание. Переходим к примерам, в которых правило Лопиталя приходится применять дважды, то есть приходить к пределу отношений вторых производных, так как предел отношения первых производных представляет собой неопределённость вида 0/0 или ∞/∞.

Пример 5. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных дают неопределённость вида ∞/∞.

Пример 6. Вычислить

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных дают неопределённость вида 0/0.

Пример 7. Вычислить

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных сначала дают неопределённость вида - ∞/∞, а затем неопределённость вида 0/0.

Пример 8. Вычислить

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных сначала дают неопределённость вида ∞/∞, а затем неопределённость вида 0/0.

Применить правило Лопиталя самостоятельно, а затем посмотреть решение

Пример 9. Вычислить

Подсказка. Здесь придётся попыхтеть несколько больше обычного над преобразованием выражений под знаком предела.

Пример 10. Вычислить

Подсказка. Здесь правило Лопиталя придётся применять трижды.

Раскрытие неопределённостей вида "ноль умножить на бесконечность"

Пример 11. Вычислить

(здесь неопределённость вида 0∙∞ мы преобразовали к виду ∞/∞, так как

а затем применили правила Лопиталя).

Пример 12. Вычислить

В этом примере использовано тригонометрическое тождество .

Раскрытие неопределённостей видов "ноль в степени ноль", "бесконечность в степени ноль" и "один в степени бесконечность"

Неопределённости вида , или обычно приводятся к виду 0/0 или ∞/∞ с помощью логарифмирования функции вида

Чтобы вычислить предел выражения , следует использовать логарифмическое тождество , частным случаем которого является и свойство логарифма .

Используя логарифмическое тождество и свойство непрерывности функции (для перехода за знак предела), предел следует вычислять следующим образом:

Отдельно следует находить предел выражения в показателе степени и возводить e в найденную степень.

Пример 13. Вычислить, пользуясь правилом Лопиталя

Вычисляем предел выражения в показателе степени

Пример 14. Вычислить, пользуясь правилом Лопиталя

Вычисляем предел выражения в показателе степени

Пример 15. Вычислить, пользуясь правилом Лопиталя

Вычисляем предел выражения в показателе степени

Раскрытие неопределённостей вида "бесконечность минус бесконечность"

Это случаи, когда вычисление предела разности функций приводит к неопределённости "бесконечность минус бесконечность": .

Вычисление такого предела по правилу Лопиталя в общем виде выглядит следующим образом:

В результате таких преобразований часто получаются сложные выражения, поэтому целесообразно использовать такие преобразования разности функций, как приведение к общему знаменателю, умножение и деление на одно и то же число, использование тригонометрических тождеств и т.д.

Правило Лопиталя облегчает вычисление пределов. Например, надо найти предел функции в точке x, которая является отношением функций стремящихся к 0, т.е. это неопределенность 0/0 - отношение двух бесконечно малых. Раскрыть ее можно используя правило Лопиталя. В пределе функции можно заменить их производными. Т.е. надо производную числителя разделить на производную знаменателя и от этой дроби взять предел.

Лопиталь (1661-1704) - автор первого печатного руководства по дифференциальному исчислению, где и сформулировал правило (в менее точной форме, чем здесь приведено). При составлении этого руководства он пользовался статьей, которую опубликовал его учитель Иван Бернулли. В работе содержалось и упомянутое правило. Поэтому его название исторически неточно.

Теорема Лопиталя (Бернулли-Лопиталя) - метод вычисления пределов, раскрывающий неопределенности 0/0 и ∞/∞. Обосновывающая метод теорема утверждает, что при некоторых условиях предел отношения функций равен пределу отношения их производных.

Первое правило Лопиталя 0/0

первое правило Лопиталя

Если f(x) и g(x) дифференцируемые в некоторой окрестности точки a и = 0, то , если последний существует.

Положим, что функции φ(x) и ψ(x) непрерывны при a ' (x) не обращается в нуль при указанных значениях x. Положим, кроме того, что limφ(x)=0 и limψ(x)=0 при x →a + 0. Полагая φ(a)=ψ(a) = 0, мы получим функции непрерывные вплоть до x = a, т.е. при a ≤ х ≤ a+k. При x → a + 0 к частному φ(x)/ψ(x), которое при x = a представляет собой неопределенность вида 0/0, не применима теорема о пределе частного. Укажем способ раскрытия такой неопределенности, т.е. способ нахождения lim φ(x)/ψ(x) при х → a + 0.

Докажем предварительно следующую теорему: если при сделанных выше предположениях φ(x) ' /ψ(x) ' стремится к b при х → a + 0, то к тому же пределу стремится и функций φ(x)/ψ(x).

Принимая во внимание, что φ(a) = ψ(a) = 0, и применяя формулу Коши получим, φ(x)/ψ(x) = [φ(x) - φ(a)]/[ψ(x) - ψ(a)] = φ(ξ) ' /ψ(ξ) ' (1) ( ξ между a и x).

Заметим, что при сделанных относительно φ(x) и ψ(x) предположениях применима формула Коши.

Если х → a + 0, то ξ, заключающееся между a и x и зависящее от x, стремится к a. При этом, по условию, правая часть равенства (1) стремится к b, а потому и левая часть имеет тот же lim. Отметим, что он может быть и бесконечным. Таким образом приходим к правилу позволяющему :

При разыскании lim частного φ(x)/ψ(x) в случае неопределенности 0/0 можно заменить отношение функций отношением их производных и отыскивать его lim. Правило французского математика Лопиталя и называется обычно его именем.

Если φ(ξ) ' /ψ(ξ) ' также приводит к неопределенности 0/0 и функции φ(ξ) ' и ψ(ξ) ' удовлетворяют тем условиям, которые выше сформулированы для φ(x) и ψ(x), то и к φ(ξ) ' /ψ(ξ) ' его можно применить, и т. д..

Мы рассмотрели односторонний случай a ∞ и 0 0 сводятся к 0/0 и ∞/∞ путем преобразований. Такая запись служит для краткого указания случая при решении. Каждая неопределенность раскрывается по своему. Правило Лопиталя можно применять несколько раз, пока не избавимся от неё. Применение правила приносит пользу тогда, когда отношение производных удается преобразовать к более удобному виду легче, чем исходное выражение.

  • 0⋅∞ произведение двух функций, первая стремится к нулю, вторая к ∞;
  • ∞ - ∞ разность функций, стремящихся к ∞;
  • 1 ∞ основание стремится к единице, а показатель к ∞;
  • ∞ 0 основание стремится к ∞, а степень к 0;
  • 0 0 основание стремится к 0 и показатель тоже стремятся к нулю.

Неопределенность вида ноль умножить на бесконечность 0⋅∞

0 на бесконечность

Пример 4. Раскрыть 0⋅∞ .

0⋅∞ преобразуем к ∞/∞, для этого х переносим в знаменатель в виде дроби 1/x , в числителе пишем производную от числителя, а в знаменателе производную от знаменателя.

Неопределенность вида ноль в степени ноль 0 0

0 в степени 0

Рассмотрим выражение f(x) g(x) , логарифмируем ln f(x) g(x) = g(x)lnf(x), это выражение приводится к неопределенности 0⋅∞. Вычислим предел логарифма, а затем е возведем в эту степень. Можно использовать логарифмическое тождество e lnb = b как сделано в данном примере.

∞ в степени ноль ∞ 0

Пример 5.Найти

Предел функции

Здесь ∞ 0 . Сначала логарифмируем,

Пример 5

В числителе производная сложной функции, в знаменателе производная логарифма, использование производных тригонометрических функций. Для получения ответа надо е возвести в степень -1, получим e -1 .

Единица в степени ∞

пример 7

Пример 6. Найти

обозначение

Решение. 1 ∞ . Обозначим A =

Тогда lnA = = = = 2.

Основание логарифма е, поэтому для получения ответа надо е возвести в квадрат, получим e 2 .

Неопределенность вида ∞ - ∞

Пример 5

Пример 7.Найти если x → 0

Решение. ∞ - ∞. Приведя дробь к общему знаменателю перейдем от ∞-∞ к 0/0. Найдем производные числителя и знаменателя, однако снова получим 0/0, поэтому его надо применить второй раз. Решение:

= = = =
= =

В случаях 5), 6) сначала логарифмируют и затем находят lim логарифма, а затем е возводим в полученную степень.

В этих заданиях производные числителя делим на производные знаменателя и подставляем предельное значение вместо х.

Иногда бывают случаи, когда отношение имеет предел, в отличие от отношения производных, которое не имеет его.

пример 8

Т.к. sinx ограничен, а х неограниченно растет, второй член равен 0.

предела нет

Эта функция не имеет предела, т.к. она постоянно колеблется между 0 и 2, в данном случае этот мощный метод не может устранить 0/0, здесь он неприменим. Этот результат не противоречит доказанной теореме , ибо в теореме утверждалось лишь то, что если отношение производных стремится к пределу, то к тому же пределу стремится и отношение функций, но не наоборот.


Мы уже начали разбираться с пределами и их решением. Продолжим по горячим следам и разберемся с решением пределов по правилу Лопиталя. Этому простому правилу по силам помочь Вам выбраться из коварных и сложных ловушек, которые преподаватели так любят использовать в примерах на контрольных по высшей математике и матанализу. Решение правилом Лопиталя – простое и быстрое. Главное – уметь дифференцировать.

Правило Лопиталя: история и определение

На самом деле это не совсем правило Лопиталя, а правило Лопиталя-Бернулли. Сформулировал его швейцарский математик Иоганн Бернулли, а француз Гийом Лопиталь впервые опубликовал в своем учебнике бесконечно малых в славном 1696 году. Представляете, как людям приходилось решать пределы с раскрытием неопределенностей до того, как это случилось? Мы – нет.

Кстати, о том, какой вклад внес в науку сын Иоганна Бернулли, читайте в статье про течение жидкостей и уравнение Бернулли.


Прежде чем приступать к разбору правила Лопиталя, рекомендуем прочитать вводную статью про пределы в математике и методы их решений. Часто в заданиях встречается формулировка: найти предел, не используя правило Лопиталя. О приемах, которые помогут Вам в этом, также читайте в нашей статье.

Если имеешь дело с пределами дроби двух функций, будь готов: скоро встретишься с неопределенностью вида 0/0 или бесконечность/бесконечность. Как это понимать? В числителе и знаменателе выражения стремятся к нулю или бесконечности. Что делать с таким пределом, на первый взгляд – совершенно непонятно. Однако если применить правило Лопиталя и немного подумать, все становится на свои места.

Но сформулируем правило Лопиталя-Бернулли. Если быть совершенно точными, оно выражается теоремой. Правило Лопиталя, определение:

Если две функции дифференцируемы в окрестности точки x=a обращаются в нуль в этой точке, и существует предел отношения производных этих функций, то при х стремящемся к а существует предел отношения самих функций, равный пределу отношения производных.

Запишем формулу, и все сразу станет проще. Правило Лопиталя, формула:


Так как нас интересует практическая сторона вопроса, не будем приводить здесь доказательство этой теоремы. Вам придется или поверить нам на слово, или найти его в любом учебнике по математическому анализу и убедится, что теорема верна.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Раскрытие неопределенностей по правилу Лопиталя

В раскрытии каких неопределенностей может помочь правило Лопиталя? Ранее мы говорили в основном о неопределенности 0/0. Однако это далеко не единственная неопределенность, с которой можно встретиться. Вот другие виды неопределенностей:


Рассмотрим преобразования, с помощью которых можно привести эти неопределенности к виду 0/0 или бесконечность/бесконечность. После преобразования можно будет применять правило Лопиталя-Бернулли и щелкать примеры как орешки.


Неопределенность вида бесконечность/бесконечность сводится к неопределенность вида 0/0 простым преобразованием:


Пусть есть произведение двух функций, одна из которых первая стремиться к нулю, а вторая – к бесконечности. Применяем преобразование, и произведение нуля и бесконечности превращается в неопределенность 0/0:


Для нахождения пределов с неопределенностями типа бесконечность минус бесконечность используем следующее преобразование, приводящее к неопределенности 0/0:


Для того чтобы пользоваться правилом Лопиталя, нужно уметь брать производные. Приведем ниже таблицу производных элементарных функций, которой Вы сможете пользоваться при решении примеров, а также правила вычисления производных сложных функций:


Теперь перейдем к примерам.

Пример 1

Найти предел по правилу Лопиталя:


Пример 2

Вычислить с использованием правила Лопиталя:


Важный момент! Если предел вторых и последующих производных функций существует при х стремящемся к а, то правило Лопиталя можно применять несколько раз.

Найдем предел (n – натуральное число). Для этого применим правило Лопиталя n раз:


Желаем удачи в освоении математического анализа. А если Вам понадобится найти предел используя правило Лопиталя, написать реферат по правилу Лопиталя, вычислить корни дифференциального уравнения или даже рассчитать тензор инерции тела, обращайтесь к нашим авторам. Они с радостью помогут разобраться в тонкостях решения.

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Раскрытие неопределенности по правилу Лопиталя

Изложен метод решения пределов, используя правило Лопиталя. Приводятся формулировки соответствующих теорем. Подробно разобраны примеры решения пределов, содержащих неопределенности ∞/∞, 0/0, 0 в степени 0 и ∞ – ∞, с помощью правила Лопиталя.

Метод решения

Одним из самых мощных методов раскрытия неопределенностей и вычисления пределов функций является использование правила Лопиталя. Оно позволяет раскрывать неопределенности вида 0/0 или ∞/∞ в конечной или бесконечно удаленной точке, которую мы обозначим как x 0 . Правило Лопиталя заключается в том, что мы находим производные числителя и знаменателя дроби. Если существует предел , то существует равный ему предел .
Если после дифференцирования мы опять получаем неопределенность, то процесс можно повторить, то есть применить правило Лопиталя уже к пределу . И так далее, до раскрытия неопределенности.

Для применения этого правила, должна существовать такая проколотая окрестность точки x 0 , на которой функции в числителе и знаменателе являются дифференцируемыми и функция в знаменателе и ее производная не обращается в нуль.

Применение правила Лопиталя состоит из следующих шагов.
1) Приводим неопределенность к виду 0/0 или ∞/∞ . Для этого, если требуется, выполняем преобразования и делаем замену переменной. В результате получаем предел вида .
2) Убеждаемся, что существует такая проколотая окрестность точки x 0 , на которой функции в числителе и знаменателе являются дифференцируемыми и знаменатель и его производная не обращаются в нуль.
3) Находим производные числителя и знаменателя.
4) Если имеется конечный или бесконечный предел , то задача решена: .
5) Если предела не существует, то это не означает, что не существует исходного предела. Это означает, что данную задачу решить с помощью правила Лопиталя нельзя. Нужно применить другой метод (см. пример ниже).
6) Если в пределе вновь возникает неопределенность, то к нему также можно применить правило Лопиталя, начиная с пункта 2).

Как указывалось выше, применение правила Лопиталя может привести к функции, предела которой не существует. Однако это не означает, что не существует исходного предела. Рассмотрим следующий пример.
.
Применяем правило Лопиталя. , .
Однако предела не существует. Не смотря на это, исходная функция имеет предел:
.

Правило Лопиталя. Формулировки теорем

Здесь мы приводим формулировки теорем, на которых основывается раскрытие неопределенностей по правилу Лопиталя.

Теорема о раскрытии неопределенности 0/0
Пусть функции f и g имеют производные в проколотой (двусторонней или односторонней) окрестности конечной или бесконечно удаленной ( ) точки , причем и не равны нулю в этой окрестности. И пусть
.
Тогда, если существует конечный или бесконечный предел
,
то существует равный ему предел
.
Здесь для двусторонней окрестности. Для односторонней окрестности, , или .

Теорема о раскрытии неопределенности ∞/∞
Пусть функции f и g имеют производные в проколотой (двусторонней или односторонней) окрестности конечной или бесконечно удаленной ( ) точки , причем не равна нулю в этой окрестности. И пусть
.
Тогда, если существует конечный или бесконечный предел
,
то существует равный ему предел
.
Здесь для двусторонней окрестности. Для односторонней окрестности, , или .

Примеры

Все примеры Далее мы приводим подробные решения следующих пределов с помощью правила Лопиталя.
⇓, ⇓, ⇓,
⇓, ⇓, ⇓.

Пример 1

Все примеры ⇑ Показать, что экспонента растет быстрее любой степенной функции, а логарифм – медленнее. То есть показать, что
А) ;
Б) ,
где .

Рассмотрим предел А). При . Это неопределенность вида . Для ее раскрытия применим правило Лопиталя. Пусть
.
Находим производные. . Тогда
.
Если , то неопределенность исчезает, поскольку при . По правилу Лопиталя,
.

Если , то применяем правило Лопиталя n раз, где – целая часть числа b .
;

.
Поскольку , то . Хотя мы привыкли читать слева направо, но эту серию равенств следует читать справа налево следующим образом. Поскольку существует предел , то существует равный ему предел . Поскольку существует предел , то существует равный ему предел . И так далее, пока не дойдем до предела .

Теперь рассмотрим предел Б):
. Сделаем замену переменной . Тогда ; при ; .

Пример 2

Все примеры ⇑ Найти предел с помощью правила Лопиталя:
.

Это неопределенность вида 0/0 . Находим по правилу Лопиталя.

.

Здесь, после первого применения правила мы снова получили неопределенность. Поэтому применили правило Лопиталя второй раз. Эту серию равенств нужно читать справа налево следующим образом. Поскольку существует предел , то существует равный ему предел . Поскольку существует предел , то существует равный ему исходный предел .

Пример 3

Все примеры ⇑ Вычислить предел, используя правило Лопиталя.
.

Найдем значения числителя и знаменателя при :
;

.
Числитель и знаменатель равны нулю. Мы имеем неопределенность вида 0/0 . Для ее раскрытия, применим правило Лопиталя.

Пример 4

Все примеры ⇑ Решить предел с помощью правила Лопиталя.
.

Здесь мы имеем неопределенность вида (+0) +0 . Преобразуем ее к виду +∞/+∞ . Для этого выполняем преобразования.
.

Находим предел в показателе степени, применяя правило Лопиталя.
.

Поскольку экспонента – непрерывная функция для всех значений аргумента, то
.

Пример 5

Все примеры ⇑ Найти предел используя правило Лопиталя:
.

Здесь мы имеем неопределенность вида ∞ – ∞ . Приводя дроби к общему знаменателю, приведем ее к неопределенности вида 0/0 :
.

Применяем правило Лопиталя.
;
;
.

Здесь у нас снова неопределенность вида 0/0 . Применяем правило Лопиталя еще раз.
;

;
.

Окончательно имеем:

.
Как и во всех пределах, вычисляемых с помощью правила Лопиталя, читать нужно с конца. Поскольку существует предел , то существует равный ему предел . Поскольку существует предел , то существует равный ему исходный предел .

Примечание. Можно упростить вычисления, если воспользоваться теоремой о замене функций эквивалентными в пределе частного. Согласно этой теореме, если функция является дробью или произведением множителей, то множители можно заменить на эквивалентные функции. Поскольку при , то

.

Использованная литература:
Л.Д. Кудрявцев, А.Д. Кутасов, В.И. Чехлов, М.И. Шабунин. Сборник задач по математическому анализу. Том 1. Москва, 2003.

Читайте также: