Радиотелескопы примеры характеристики таблица кратко

Обновлено: 08.07.2024

Космическое радиоизлучение впервые было обнаружено в 1931 г. американским инженером Карлом Янским (1905— 1950) при изучении им атмосферных радиопомех. В апреле 1933 г. Янский установил, что это радиоизлучение исходит от Млечного Пути. В те годы на открытие Янского никто не обратил внимания, кроме американского радиоинженера Гроута Рёбера, который вскоре построил самодельный радиотелескоп диаметром 9,5 м и подтвердил открытие Янским радиоизлучения Млечного Пути. В 1942 г. Рёбер опубликовал первую радиокарту неба, указав на ней расположение радиоисточников, а в 1944 г. сообщил об открытии им радиоизлучения Солнца. И лишь с 1946 г. началось строительство и установка в астрономических обсерваториях радиотелескопов для приема радиоизлучения небесных объектов.


Принцип действия радиотелескопа

Радиотелескопы состоят из антенны и чувствительного радиоприемника с усилителем (радиометра). Доходящее до Земли радиоизлучение подавляющего большинства небесных тел настолько мало, что для его приема необходимы антенны с полезной площадью в тысячи и десятки тысяч квадратных метров. Конструкции антенн весьма разнообразны. Так, сравнительно небольшими антеннами (до 100 м в диаметре) служат металлические вогнутые зеркала, а также каркасы параболической и цилиндрической формы, покрытые металлической сеткой. Они отражают сфокусированные радиоволны на облучатель, и наведенные в нем электрические токи передаются по проводам на усилитель и далее на самопишущие регистрационные приборы. Антенны устанавливаются на колоннах или решетчатых опорах, могут быть направлены на различные участки неба и автоматически поворачиваться за ними. Эти радиотелескопы могут служить и радиолокаторами, направляющими к Луне и планетам мощные импульсы радиосигналов.

Радиотелескоп состоит из антенной системы, радиометра (приемника радиосигнала) и регистратора сигналов. Радиометр – это приемное устройство, с помощью которого измеряют мощность излучения малой интенсивности в диапазоне радиоволн (длины волн от 0,1 мм до 1000 м). Другими словами радиотелескоп принимает наиболее низкочастотное излучение по сравнению с другими приборами, с помощью которых исследуется электромагнитное излучение (например, инфракрасный телескоп, рентгеновский телескоп и т. д.).

Отражатели наиболее крупных радиотелескопов собираются из плоских металлических зеркал, расположенных сплошной полосой параболического сегмента. Такие радиотелескопы неподвижны (стационарны), а их облучатели способны перемещаться в небольших пределах. Однако это не ограничивает возможностей радиотелескопов, так как в суточном вращении неба каждый небесный объект обязательно проходит в поле их обзора, а радиотелескопы способны принимать радиоизлучение в любое время суток. Один из крупнейших стационарных радиотелескопов был изготовлен в Советском Союзе и установлен вблизи станции Зеленчукской Ставропольского края. Его отражатель собран из 900 плоских металлических зеркал размерами 2×7,4 м и имеет вид замкнутого кольца диаметром 600 м.

У крупного стационарного радиотелескопа диаметром 300 м, установленного в Аресибо (Пуэрто-Рико), антенной параболической формы служит кратер потухшего вулкана; кратер забетонирован и сверху покрыт металлическим слоем.

В Китае недавно создали радиотелескоп, получивший название FAST (Five hundred meter Aperture Spherical Telescope). По диаметру он несколько меньше Российского, размер устройства составляет 500 м, но зато он имеет 4,450 тыс. металлических отражателей, что делает его крупнейшим в мире по общей площади антенн. По своей конструкции он аналогичен обсерватории Аресибо, где для установки конструкции использована естественная природная впадина.

Особенности радиотелескопов

Разрешающая способность радиотелескопов тоже зависит от диаметра их антенн и длины воспринимаемых радиоволн. Однако она всегда ниже, чем у оптических телескопов, так как длина радиоволн значительно больше длины световых волн. Но если два радиотелескопа установлены на значительном расстоянии друг от друга, одновременно воспринимают радиоизлучение одного и того же источника и подают сигналы на общий радиометр, то разрешение резко повышается. Два таких спаренных радиотелескопа называются радиоинтерферометром, а при расстоянии между радиотелескопами в тысячи километров — радиоинтерферометром со сверхдлинной базой. Разрешение такого радиоинтерферометра достигает 0,0001″, т. е. в сотни раз превышает разрешение оптических телескопов.


Радиотелескопы предпочтительно располагать далеко от главных населённых пунктов, чтобы максимально уменьшить электромагнитные помехи от вещательных радиостанций, телевидения, радаров и др. излучающих устройств. Размещение радиообсерватории в долине или низине ещё лучше защищает её от влияния техногенных электромагнитных шумов.

Содержание

Устройство

Радиотелескоп состоит из двух основных элементов: антенного устройства и очень чувствительного приёмного устройства — радиометра. Радиометр усиливает принятое антенной радиоизлучение и преобразует его в форму, удобную для регистрации и обработки. [3]

Конструкции антенн радиотелескопов отличаются большим разнообразием, что обусловлено очень широким диапазоном длин волн, используемых в радиоастрономии (от 0,1 мм до 1000 м). Антенны радиотелескопов, принимающих мм, см, дм и метровые волны, чаще всего представляют собой параболические отражатели, подобные зеркалам обычных оптических рефлекторов. В фокусе параболоида устанавливается облучатель — устройство, собирающее радиоизлучение, которое направляется на него зеркалом. Облучатель передаёт принятую энергию на вход радиометра, и, после усиления и детектирования, сигнал регистрируется на ленте самопишущего электроизмерительного прибора [4] . На современных радиотелескопах аналоговый сигнал с выхода радиометра преобразуется в цифровой и записывается на жёсткий диск в виде одного или нескольких файлов.

Для направления антенн в исследуемую область неба их устанавливают обычно на Азимутальных монтировках, обеспечивающих повороты по азимуту и высоте (полноповоротные антенны). Существуют также антенны, допускающие лишь ограниченные повороты, и даже полностью неподвижные. Направление приёма в антеннах последнего типа (обычно очень большого размера) достигается путём перемещения облучателей, которые воспринимают отражённое от антенны радиоизлучение.

Принцип работы

Ввиду дифракции радиоволн на апертуре телескопа, измерение направления на точечный источник происходит с некоторой ошибкой, которая определяется диаграммой направленности антенны и накладывает фундаментальное ограничение на разрешающую способность инструмента:

\theta_<min></p>
<p>= \frac<\lambda>
,

где — длина волны, — диаметр апертуры. Высокая разрешающая способностью позволяет наблюдать более мелкие пространственные детали исследуемых объектов. Чтобы улучшить разрешающую способность, нужно либо уменьшить длину волны, либо увеличить апертуру. Однако использование малых длин волн повышает требования к качеству поверхности зеркала (см. критерий Релея). Поэтому обычно идут по пути увеличения апертуры. Увеличение апертуры также позволяет улучшить ещё одну важную характеристику — чувствительность. Радиотелескоп должен обладать высокой чувствительностью, чтобы обеспечить надёжную регистрацию как можно более слабых источников. Чувствительность определяется уровнем флюктуаций плотности потока :

 \Delta P = \frac<P></p>
>
,

где — мощность собственных шумов радиотелескопа, — эффективная площадь (собирающая поверхность) антенны, — полоса частот и — время накопления сигнала. Для повышения чувствительности радиотелескопов увеличивают их собирающую поверхность и применяют малошумящие приёмники и усилители на основе мазеров, параметрических усилителей и т. д.

Радиоинтерферометры

\lambda /d

Помимо увеличения диаметра апертуры, существует ещё один способ увеличить разрешающую способность (или сузить диаграмму направленности). Если взять две антенны, расположенных на расстоянии d (база) друг от друга, то сигнал от источника до одной из них будет приходить чуть раньше, чем до другой. Если затем сигналы с двух антенн проинтерферировать, то из результирующего сигнала с помощью специальной математической процедуры редукции можно будет восстановить информацию об источнике с эффективным разрешением . Такая процедура редукции называется апертурным синтезом. Интерференция может проводиться как аппаратно, путём подачи сигнала по кабелям и волноводам в общий смеситель, так и на ЭВМ с предварительно оцифрованными по меткам точного времени и сохраненными на носитель сигналами. Современные технические средства позволили создать систему РСДБ, которая включает в себя телескопы расположенные на разных материках и разнесенные на несколько тысяч километров.

Первые радиотелескопы

Начало — Карл Янский



История радиотелескопов берёт своё начало в 1931 году, с экспериментов Карла Янского на полигоне фирмы Bell Telephone Labs. Для исследования направления прихода грозовых помех он построил вертикально поляризованную однонаправленную антенну типа полотна Брюса. Размеры конструкции составляли 30.5 м в длину и 3.7 м в высоту. Работа велась на волне 14.6 м (20.5 МГц). Антенна была соединена с чувствительным приёмником, на выходе которого стоял самописец с большой постоянной времени [5] .



Запись излучений, полученная Янским 24 февраля 1932 года. Максимумы (стрелки) повторяются через 20 мин. — период полного оборота антенны.

Янский сознавал, что прогресс в радиоастрономии потребует антенн больших размеров с более острыми диаграммами, которые должны быть легко ориентируемы в различных направлениях. Он сам предложил конструкцию параболической антенны с зеркалом 30.5 м в диаметре для работы на метровых волнах. Однако его предложение не получило поддержки в США [5] .

Второе рождение — Гроут Ребер


В 1937 году Гроут Ребер, радиоинженер из Уэтона (США, штат Иллинойс) заинтересовался работой Янского и сконструировал в заднем дворе дома своих родителей антенну с параболическим рефлектором диаметром 9,5 м. Эта антенна имела меридианную монтировку, то есть была управляема лишь по углу места, а изменение положения лепестка диаграммы по прямому восхождению достигалось за счёт вращения Земли. Антенна Ребера была меньше, чем у Янского, но работала на более коротких волнах, и её диаграмма направленности была значительно острее. У антенны Ребера луч имел коническую форму с шириной 12° по уровню половинной мощности, в то время как у луча антенны Янского была веерообразная форма шириной 30° по уровню половинной мощности в наиболее узком сечении [5] .

Весной 1939 года Ребер обнаружил на волне 1,87 м (160 МГц) излучение с заметной концентрацией в плоскости Галактики и опубликовал некоторые результаты [9] [10] .



Совершенствуя свою аппаратуру [12] , Ребер предпринял систематический обзор неба и в 1944 году опубликовал первые радиокарты небосвода на волне 1,87 м [11] . На картах отчётливо видны центральные области Млечного Пути и яркие радиоисточники в созвездии Стрельца, Лебедь A, Кассиопея A, Большого Пса и Кормы. Карты Ребера достаточно хороши даже по сравнению с современными картами, метровых длин волн. [5]

После Второй мировой войны были сделаны существенные технологические улучшения в области радиоастрономии учёными в Европе, Австралии и США. Таким образом начался расцвет радиоастрономии, который привёл к освоению миллиметровых и субмиллиметровых длин волн, позволяющих достичь значительно больших разрешений.

Классификация радиотелескопов

Широкий диапазон длин волн, разнообразие объектов исследований в радиоастрономии, быстрые темпы развития радиофизики и радиотелескопостроения, большое число независимых коллективов радиоастрономов привели к большому разнообразию типов радиотелескопов. Наиболее естественно классифицировать радиотелескопы по характеру заполнения их апертуры и по методам фазирования СВЧ поля (рефлекторы, рефракторы, независимая запись полей) [13] :

Антенны с заполненной апертурой

Антенны этого типа похожи на зеркала оптических телескопов и является наиболее простыми и привычными в использовании. Антенны с заполненой апертурой просто собирают сигнал от наблюдаемого объекта и фокусируют его на приёмнике. Записанный сигнал уже несет в себе научную информацию и не нуждается в синтезе. Недостатком таких антенн является низкая разрешающая способность. Антенны с незаполненной апертурой можно разделить на несколько классов по форме их поверхности и методу монтирования.

Параболоиды вращения

Практически все антенны такого типа устанавливаются на Альт-азимутальных монтировках и являются полноповоротным. Главным их преимуществом является то, что такие радиотелескопы могут, как и оптические, наводиться на объект и вести его. Таким образом, наблюдения могут проводиться в любое время, пока исследуемый объект находится над горизонтом. Типичные представители: Радиотелескоп Грин-Бэнк, РТ-70, калязинский радиотелескоп.

Параболические цилиндры

Строительство полноповоротных антенн сопряжено с определёнными трудностями, связанными с огромной массой таких конструкций. Поэтому строят неподвижные и полуподвижные системы. Стоимость и сложность таких телескопов растет гораздо медленнее с их ростом размеров. Параболический цилиндр собирает лучи не в точке, а на прямой, параллельной его образующей (фокальная линия). Из-за этого телескопы данного типа имеют несимметричную диаграмму направленности и различное разрешение по разным осям. Ещё одним недостатком таких телескопов является то, что ввиду ограниченной подвижности для наблюдения им доступна только часть неба. Представители: радиотелескоп Иллинойского университета [14] , индийский телескоп в Ути [15] .


Антенны с плоскими отражателями

Земляные чаши

Стремление удешевить конструкцию привело астрономов к мысли об использовании природного рельефа в качестве зеркала телескопа. Представителем этого типа стал 300-метровый радиотелескоп Аресибо. Он расположен в карстовой воронке, дно которой вымощено алюминиевыми листами в форме сфероида. приёмник на специальных опорах подвешивается над зеркалом. Недостатком данного инструмента является то, что ему доступна область неба в пределах 20° от зенита.

Антенные решётки (синфазные антенны)

Такой телескоп состоит из множества элементарных облучателей (диполей или спиралей) расположенных на расстоянии меньшем, чем длина волны. Благодаря точному управлению фазой каждого элемента, удается добиться высокой разрешающей способности и эффективной площади. Недостатком таких антенн является то, что они изготавливаются под строго определённую длину волны. Представители: радиотелескоп БСА в Пущино.

Антенны с незаполненной апертурой

Наиболее важными для целей астрономии являются две характеристики радиотелескопов: разрешающая способность и чувствительность. При этом чувствительность пропорциональна площади антенны, а разрешение — максимальному размеру. Таким образом, самые распространенные круглые антенны дают наихудшее разрешение при той же эффективной площади. Поэтому в радиоастрономии появились телескопы с малой



Крупные массивы типа VLA часто относят к последовательному синтезу. Однако, ввиду большого количества антенн, практически все базы уже представлены, и дополнительных перестановок обычно не требуется.


Радиотелескоп — астрономический инструмент для приёма собственного радиоизлучения небесных объектов (в Солнечной системе, нашей Галактике и Вселенной) и исследования их характеристик, таких как: координаты, пространственная структура, интенсивность излучения, спектр и поляризация.

Радиотелескоп занимает начальное, по диапазону частот, положение среди астрономических инструментов для исследования электромагнитного излучения — более высокочастотными являются телескопы теплового, видимого, ультрафиолетового, рентгеновского и гамма излучения.

Радиотелескопы предпочтительно располагать далеко от главных населённых пунктов, чтобы максимально уменьшить электромагнитные помехи от вещательных радиостанций, телевидения, радаров и др. излучающих устройств. Размещение радиообсерватории в долине или низине ещё лучше защищает её от влияния техногенных электромагнитных шумов.

Устройство

Радиотелескоп состоит из двух основных элементов: антенного устройства и очень чувствительного приёмного устройства — радиометра. Радиометр усиливает принятое антенной радиоизлучение и преобразует его в форму, удобную для регистрации и обработки.

Конструкции антенн радиотелескопов отличаются большим разнообразием, что обусловлено очень широким диапазоном длин волн, используемых в радиоастрономии (от 0,1 мм до 1000 м). Антенны радиотелескопов, принимающих мм, см, дм и метровые волны, чаще всего представляют собой параболические отражатели, подобные зеркалам обычных оптических рефлекторов. В фокусе параболоида устанавливается облучатель — устройство, собирающее радиоизлучение, которое направляется на него зеркалом. Облучатель передаёт принятую энергию на вход радиометра, и, после усиления и детектирования, сигнал регистрируется на ленте самопишущего электроизмерительного прибора. На современных радиотелескопах аналоговый сигнал с выхода радиометра преобразуется в цифровой и записывается на жёсткий диск в виде одного или нескольких файлов.

Для калибровки полученных измерений (приведения их к абсолютным значениям плотности потока излучения) ко входу радиометра вместо антенны подключается генератор шума известной мощности.

В зависимости от конструкции антенны и методики наблюдений, радиотелескоп может либо заранее наводиться на заданную точку небесной сферы (через которую вследствие суточного вращения Земли пройдёт наблюдаемый объект), либо работать в режиме слежения за объектом.

Для направления антенн в исследуемую область неба их устанавливают обычно на Азимутальных монтировках, обеспечивающих повороты по азимуту и высоте (полноповоротные антенны). Существуют также антенны, допускающие лишь ограниченные повороты, и даже полностью неподвижные. Направление приёма в антеннах последнего типа (обычно очень большого размера) достигается путём перемещения облучателей, которые воспринимают отражённое от антенны радиоизлучение.

Принцип работы

Ввиду дифракции радиоволн на апертуре телескопа, измерение направления на точечный источник происходит с некоторой ошибкой, которая определяется диаграммой направленности антенны и накладывает фундаментальное ограничение на разрешающую способность инструмента:

где — длина волны, — диаметр апертуры. Высокая разрешающая способностью позволяет наблюдать более мелкие пространственные детали исследуемых объектов. Чтобы улучшить разрешающую способность, нужно либо уменьшить длину волны, либо увеличить апертуру. Однако использование малых длин волн повышает требования к качеству поверхности зеркала. Поэтому обычно идут по пути увеличения апертуры. Увеличение апертуры также позволяет улучшить ещё одну важную характеристику — чувствительность. Радиотелескоп должен обладать высокой чувствительностью, чтобы обеспечить надёжную регистрацию как можно более слабых источников. Чувствительность определяется уровнем флюктуаций плотности потока :

где — мощность собственных шумов радиотелескопа, — эффективная площадь антенны, — полоса частот и — время накопления сигнала. Для повышения чувствительности радиотелескопов увеличивают их собирающую поверхность и применяют малошумящие приёмники и усилители на основе мазеров, параметрических усилителей и т. д.

Радиоинтерферометры

Помимо увеличения диаметра апертуры, существует ещё один способ увеличить разрешающую способность (или сузить диаграмму направленности). Если взять две антенны, расположенных на расстоянии d (база) друг от друга, то сигнал от источника до одной из них будет приходить чуть раньше, чем до другой. Если затем сигналы с двух антенн проинтерферировать, то из результирующего сигнала с помощью специальной математической процедуры редукции можно будет восстановить информацию об источнике с эффективным разрешением . Такая процедура редукции называется апертурным синтезом. Интерференция может проводиться как аппаратно, путём подачи сигнала по кабелям и волноводам в общий смеситель, так и на ЭВМ с предварительно оцифрованными по меткам точного времени и сохраненными на носитель сигналами. Современные технические средства позволили создать систему РСДБ, которая включает в себя телескопы расположенные на разных материках и разнесенные на несколько тысяч километров.

Первые радиотелескопы

Начало — Карл Янский

радиотелескоп Янского

Копия радиотелескопа Янского

История радиотелескопов берёт своё начало в 1931 году, с экспериментов Карла Янского на полигоне фирмы Bell Telephone Labs. Для исследования направления прихода грозовых помех он построил вертикально поляризованную однонаправленную антенну типа полотна Брюса. Размеры конструкции составляли 30.5 м в длину и 3.7 м в высоту. Работа велась на волне 14.6 м (20.5 МГц). Антенна была соединена с чувствительным приёмником, на выходе которого стоял самописец с большой постоянной времени.

KarlJansky_MilkyWay[1]

Запись излучений, полученная Янским 24 февраля 1932 года. Максимумы (стрелки) повторяются через 20 мин. — период полного оборота антенны.

Янский сознавал, что прогресс в радиоастрономии потребует антенн больших размеров с более острыми диаграммами, которые должны быть легко ориентируемы в различных направлениях. Он сам предложил конструкцию параболической антенны с зеркалом 30.5 м в диаметре для работы на метровых волнах. Однако его предложение не получило поддержки в США.

Второе рождение — Гроут Ребер

Меридианный радиотелескоп Гроута Ребера

В 1937 году Гроут Ребер, радиоинженер из Уэтона (США, штат Иллинойс) заинтересовался работой Янского и сконструировал в заднем дворе дома своих родителей антенну с параболическим рефлектором диаметром 9,5 м. Эта антенна имела меридианную монтировку, то есть была управляема лишь по углу места, а изменение положения лепестка диаграммы по прямому восхождению достигалось за счёт вращения Земли. Антенна Ребера была меньше, чем у Янского, но работала на более коротких волнах, и её диаграмма направленности была значительно острее. У антенны Ребера луч имел коническую форму с шириной 12° по уровню половинной мощности, в то время как у луча антенны Янского была веерообразная форма шириной 30° по уровню половинной мощности в наиболее узком сечении.

Весной 1939 года Ребер обнаружил на волне 1,87 м (160 МГц) излучение с заметной концентрацией в плоскости Галактики и опубликовал некоторые результаты.

1280px-Reber.ever_first_radiomap_1944[1]

Радиокарта небосвода, полученная Гроутом Ребером в 1944 г.

Совершенствуя свою аппаратуру, Ребер предпринял систематический обзор неба и в 1944 году опубликовал первые радиокарты небосвода на волне 1,87 м. На картах отчётливо видны центральные области Млечного Пути и яркие радиоисточники в созвездии Стрельца, Лебедь A, Кассиопея A, Большого Пса и Кормы. Карты Ребера достаточно хороши даже по сравнению с современными картами, метровых длин волн.

После Второй мировой войны были сделаны существенные технологические улучшения в области радиоастрономии учёными в Европе, Австралии и США. Таким образом начался расцвет радиоастрономии, который привёл к освоению миллиметровых и субмиллиметровых длин волн, позволяющих достичь значительно больших разрешений.

Классификация радиотелескопов

Широкий диапазон длин волн, разнообразие объектов исследований в радиоастрономии, быстрые темпы развития радиофизики и радиотелескопостроения, большое число независимых коллективов радиоастрономов привели к большому разнообразию типов радиотелескопов. Наиболее естественно классифицировать радиотелескопы по характеру заполнения их апертуры и по методам фазирования СВЧ поля (рефлекторы, рефракторы, независимая запись полей) :

Антенны с заполненной апертурой

Антенны этого типа похожи на зеркала оптических телескопов и являются наиболее простыми и привычными в использовании. Антенны с заполненной апертурой просто собирают сигнал от наблюдаемого объекта и фокусируют его на приёмнике. Записанный сигнал уже несет в себе научную информацию и не нуждается в синтезе. Недостатком таких антенн является низкая разрешающая способность. Антенны с заполненной апертурой можно разделить на несколько классов по форме их поверхности и методу монтирования.

Параболоиды вращения

Практически все антенны такого типа устанавливаются на Альт-азимутальных монтировках и являются полноповоротным. Главным их преимуществом является то, что такие радиотелескопы могут, как и оптические, наводиться на объект и вести его. Таким образом, наблюдения могут проводиться в любое время, пока исследуемый объект находится над горизонтом. Типичные представители: Радиотелескоп Грин-Бэнк, РТ-70, Калязинский радиотелескоп.

Параболические цилиндры

Строительство полноповоротных антенн сопряжено с определёнными трудностями, связанными с огромной массой таких конструкций. Поэтому строят неподвижные и полуподвижные системы. Стоимость и сложность таких телескопов растет гораздо медленнее с их ростом размеров. Параболический цилиндр собирает лучи не в точке, а на прямой, параллельной его образующей (фокальная линия). Из-за этого телескопы данного типа имеют несимметричную диаграмму направленности и различное разрешение по разным осям. Ещё одним недостатком таких телескопов является то, что ввиду ограниченной подвижности для наблюдения им доступна только часть неба. Представители: радиотелескоп Иллинойского университета, индийский телескоп в Ути.

Ход лучей в телескопе Нансэ

Антенны с плоскими отражателями

Земляные чаши

Стремление удешевить конструкцию привело астрономов к мысли об использовании природного рельефа в качестве зеркала телескопа. Представителем этого типа стал 300-метровый радиотелескоп Аресибо. Он расположен в карстовой воронке, дно которой вымощено алюминиевыми листами в форме сфероида. приёмник на специальных опорах подвешивается над зеркалом. Недостатком данного инструмента является то, что ему доступна область неба в пределах 20° от зенита.

Антенные решётки (синфазные антенны)

Такой телескоп состоит из множества элементарных облучателей (диполей или спиралей) расположенных на расстоянии меньшем, чем длина волны. Благодаря точному управлению фазой каждого элемента, удается добиться высокой разрешающей способности и эффективной площади. Недостатком таких антенн является то, что они изготавливаются под строго определённую длину волны. Представители: радиотелескоп БСА в Пущино.

Антенны с незаполненной апертурой

Крупные массивы типа VLA часто относят к последовательному синтезу. Однако, ввиду большого количества антенн, практически все базы уже представлены, и дополнительных перестановок обычно не требуется.


Зеркальная параболическая антенна радиотелескопа имеет диаметр в 10метров, состоит из 27 лепестков и 3-х метрового цельного зеркала.

Полная масса полезного научного груза — приблизительно 2600 кг. Она включает массу антенны(1500кг), электронного комплекса, содержащего приёмники, малошумящие усилители, синтезаторы частот, блоки управления, преобразователи сигналов, стандарты частоты, высокоинформативную систему передачи научных данных — около 900 кг.

В настоящий момент для сеансов двусторонней связи используются крупнейшие в России антенные комплексы П-2500 (диаметр 70 м) в приморском городе Уссурийск и ТНА-1500 (диаметр 64 м) в подмосковном посёлке Медвежьи Озера.

Второй режим связи — сброс радиоинтерферометрических данных через узконаправленную антенну высокоинформативного радиокомлекса (ВИРК).

Заключение

Я считаю, что данная работа в достаточной мере описываетимеющиеся методы получения космического радиоизлучения. При помощь данной работы можно проследить за тенденциями в развитии радиотелескопов. Можно заметить, что ученые акцентировали свои усилия в улучшении телескопов больше на увеличении характеристики углового расширения, чем на увеличении чувствительности радиотелескопов. Это, скорее всего, связано с тем, что увеличение чувствительности требует увеличения площади,следовательно и диаметра, антенн(2.5), что делать после определенного порога(150м) очень сложно. Так как наблюдения, проводимые при помощи ‘Радиоастрона’ оказались очень результативными, я думаю, что радиоастрономия будут продолжать развитие в этом направлении(увеличение разрешения за счет увеличения апертуры) путем размещения новых орбитальных обсерватории, которые будут подобны ‘Радиоастрону’. Мою мысль подтверждает наличие такого проекта как SNAP(SuperNova Acceleration Probe), который планируют запустить в 2020 году. /5/

Список используемых источников

1.Краус Д. Д. 1.2. Краткая история первых лет радиоастрономии // Радиоастрономия / Под ред. В. В. Железнякова. — М.: Советское радио, 1973. — С. 14—21. — 456 с.

3. Вокруг света.-М.:Науч.-попул. 2006-2007

5. Информация о проекте SNAP [Электронный ресурс ] // Supernova Acceleration Probe:

Приложение

Фотографии радиоинтерфероматра VLA и фотография получаемых с них изображений


Рис. 1VeryLargeArray(видсземли)

Читайте также: