Радиоактивные изотопы определение кратко

Обновлено: 02.07.2024

В постиндустриальную эпоху развития человечества все больше стало отдавать предпочтение новым технология получения энергии. Изотопы являются субстратом в энергетическом производстве (топливный компонент ядерного реактора). Также данные видоизменные химические атомы используются и других областях человеческой деятельности: медицина, патологическая физиология, отрасль изготовление ядерного оружия.

  • Что такое изотоп?
  • Обозначения изотопов
  • Изотопы водорода
  • Изотопы урана
  • Нуклиды
  • Изотопы галлия
  • Превращения изотопов
  • Применение радиоактивных изотопов

Что такое изотоп?

Изотопами называют видоизменные элементы периодической таблицы Менделеева, которые имеют один и тот же порядковый номер, но различную атомную массу. Название характеризует нахождение подобных структур в одной клеточке периодической таблицы с нормальными элементами (изо – равное, топ – положение, место – в переводе с английского). Состав изотопов представляет собой совокупность протонов, электронов и нейтронов (количество нейтронов обычно больше, чем в обычных элементах периодической таблицы).

Обозначения изотопов

Видоизмененные элементы периодической таблицы Менделеева обозначаются следующим образом: к символу химического элемента, к которому принадлежит изотоп, подписывается верхний левый индекс с обозначением массового числа. Так, например, изотоп кислорода, обладающий массовым числом равным восемнадцати атомных единиц, будет обозначаться следующим образом: 18 O. Имеется также другое обозначение подобных атомов (например, кислород – 18).

изотопы химических элементов

Изотопы водорода

Выделяют три видоизменённых атома водорода, обладающих разными массовыми числами:

протий (Н) – одна атомная единица массы;

дейтерий (D) – две атомные единицы массы;

тритий (Т) – три атомные единицы массы.

В природе чаще всего встречается протий (в 99,98 процентах случаев), именно поэтому среднее массовое число водорода будет равняться приблизительно 1 а.е.м. Стоит, отметить, что бета-распад трития составляет порядка 12 лет, после чего он переходит в форму Гелий - 3.

Отдельно необходимо выделить, видоизменённые атомы водорода, массовое число которого может колебаться в районе 4 – 7 а.е.м.

изотоп нейтрона

Изотопы урана

Изотопный ряд урана включает в себя изотопы, имеющие массу от 219 а.е.м. до 243 а.е.м. Элементы, обладающие наибольшей изотопной распространенностью – это уран – 235 и уран – 238.

Изотопные атомные урана с массовыми числами 235 и 238 представляют собой основной компонент для производства плутония – 239 (основного компонента ядерного оружия и ядерного топлива для реакторов нового поколения).

Нуклиды

Нуклиды подразделяются на две больших категории:

Химический элемент периодической таблицы ртуть (гидраргирум) обладает наибольшей изотопной распространенностью стабильных нуклидов. Так, стабильные нуклиды ртути – это вещества изотопного ряда гидраргиума, обладающие атомной массой от 170 а.е.м. до 219 а.е.м.

Термин нуклид (в понятии радионуклид) был предложен в двадцатом веке американцем Трумэном Команом. Радионуклиды отличаются длительным периодом полураспада, который в большинстве случаев имеет значение порядка 5*10 8 лет. Таким образом, радионуклиды населяют Землю с момента ее зарождения как планеты. В зависимости от массового числа нуклиды могут подвергать различным видам превращения, обозначим некоторые из них:

альфа-распад (для большинства радионуклидов подобный вид распада не наблюдается и из-за большого периода полураспада);

нейтронный и двухнейтронный распады.

Изотопы галлия

Изотопный ряд галлия представлен элементами, обладающими промежутком массовых числен от 49 а.е.м. до 71 а.е.м. Наиболее часто в природе встречаются следующие изотопные атомы: галлий – 69, галлий -71. Природный галлий обычно представлен смесью двух данных видоизмененных атомов, имеющих малый период полураспада (порядка 68 минут). Для представителей изотопного ряда галлия характерные следующие виды ядерных превращений:

электронный захват (наблюдается в 13% случаев);

позитронный распад (наблюдается в 87% случаев).

Превращения изотопов

Превращения изотопов могут протекать двумя способами:

при участии технологий, созданных человеком (используется в промышленности);

самопроизвольно (протекает в природе).

Выделяют следующие виды ядерных превращений, связанных со изменением атомной массы химических элементов: распад (альфа, бета, двойной бета, нейтронный, позитронный), электронный захват (происходит присоединение электрона, вследствие чего изменяется заряд и состав нуклида).

состав изотопа

Применение радиоактивных изотопов

Изотопы химических элементов представляют собой элементы периодической таблицы Менделеева, обладающие нестабильными ядрами и свойством подвергаться различного ядерному распаду. В научной терминологии подобные атомы называют также радионуклидами. Радиоактивные изотопы применяются в различных сферах человеческой деятельности.

В сельском хозяйстве использования радиоизотопов необходимо для изучения особенностей роста, развития и функционирования корневых систем растений (такой способ изучения получил название – метод меченных атомов).

В авиастроительстве радионуклиды применяют для испытания авиационных конструкций на предмет износостойкости.

В сфере градостроительстве радиоактивные изотопы нашли свое применение как универсальные измерители плотности почвы.

В области коммунального хозяйства видоизмененные химические элементы, обладающие радиоактивной способностью, применяют в целях стерилизации постельного белья.

В текстильной промышленности радионуклиды используются для удаления электрических зарядов с поверхности одежды.

В машиностроительной отрасли радионуклиды используются для определения толщины металлического покрытия.

Особое место в этом списке занимает использование радиоактивных изотопов в химической промышленности и в сфере медицинских услуг. Так, получение различных полимерных соединений, которые составляют основу большинства современных предметов обихода, письменных принадлежностей, резиновых изделий того или иногда вида использования происходит при помощи взаимодействия y-излучения с различными химическими соединениями органической природы. В медицине радиоизотопы применяются в лечебных целях в рамках радиационной терапии (процедура, при которой под воздействием радионуклидов происходит разрушение любого типа живой ткани). Радиотерапия нашла свое применения в области лечения онкологических заболеваний (на данный момент, по эффективности радиотерапия уступает только химиотерапии, но зачастую данные способы лечения составляют две стадии одного процесса).

В заключении, стоит отметить, что научный прогресс в области получения новых видов изотопов тех или иных химических элементов не стоит на месте, поэтому возможно в будущем при помощи грамотного и целесообразного использования видоизмененных атомов можно будет лечить неизлечимые на данный момент заболеваний и строить космические корабли для покорения других планет и галактик.

Радиоакти́вные изото́пы — изотопы, ядра которых нестабильны и испытывают радиоактивный распад. Большинство известных изотопов радиоактивны (стабильными являются лишь около 300 из более чем 3000 нуклидов, известных науке). У любого химического элемента есть хотя бы несколько радиоактивных изотопов, в то же время далеко не у всех элементов есть хотя бы один стабильный изотоп; так, все известные изотопы всех элементов, которые в таблице Менделеева идут после свинца, радиоактивны.



Поскольку бета-распад любого типа не изменяет массовое число A изотопа, среди изотопов с одинаковым значением массового числа (изобаров) существует как минимум один бета-стабильный изотоп, отвечающий минимуму на зависимости избытка массы атома от заряда ядра Z при данном A (изобарической цепочке); бета-распады происходят по направлению к этому минимуму. Обычно для изотопов с нечётным A такой минимум один, тогда как для чётных значений A бета-стабильных изотопов может быть 2 и даже 3. Лёгкие бета-стабильные изотопы стабильны также и по отношению к другим видам радиоактивного распада и, таким образом, являются абсолютно стабильными (если не принимать во внимание до сих пор никем не обнаруженный распад протона, предсказываемый многими современными теориями-расширениями Стандартной Модели). Начиная с А=36 на чётных изобарических цепочках появляется второй минимум. Бета-стабильные ядра в локальных минимумах изобарических цепочек способны испытывать двойной бета-распад в глобальный минимум цепочки, хотя периоды полураспада по этому каналу очень велики (10 19 лет и более). Тяжёлые бета-стабильные ядра могут испытывать альфа-распад (начиная с A≈140), кластерный распад и спонтанное деление.

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Радиоактивные изотопы" в других словарях:

Радиоактивные изотопы — см. Изотопы радиоактивные EdwART. Словарь терминов МЧС, 2010 … Словарь черезвычайных ситуаций

РАДИОАКТИВНЫЕ ИЗОТОПЫ — нестабильные (см.) хим. элементов, обладающие различными видами радиоактивности. Широко используются в научных исследованиях, в промышленности, измерительных и контрольных приборах, индикаторах, сельском хозяйстве, медицине и т. д … Большая политехническая энциклопедия

радиоактивные изотопы — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN radioactive species … Справочник технического переводчика

Радиоактивные изотопы — неустойчивые изотопы химических элементов, которые в процессе радиоактивного распада, сопровождающегося ионизирующим излучением, самопроизвольно превращаются в другие изотопы (обычно другого элемента). Различают Р. и. природные и искусственные,… … Словарь военных терминов

РАДИОАКТИВНЫЕ ИЗОТОПЫ — неустойчивые изотопы хим. элементов, к рые самопроизвольно превращаются в другие нуклиды. Различают Р. и. природные (ок. 300) и искусственные (св. 1500), получаемые в лабораторных условиях в результате разл. ядерных реакций. Р. и. используются в… … Большой энциклопедический политехнический словарь

ИЗОТОПЫ — (от изо. и греческого topos место), разновидности химических элементов, у которых ядра атомов (нуклидов) отличаются числом нейтронов, но содержат одинаковое число протонов и поэтому занимают одно и то же место в периодической системе химических … Современная энциклопедия

Изотопы — (от изо. и греческого topos место), разновидности химических элементов, у которых ядра атомов (нуклидов) отличаются числом нейтронов, но содержат одинаковое число протонов и поэтому занимают одно и то же место в периодической системе химических … Иллюстрированный энциклопедический словарь

ИЗОТОПЫ — (от изо. и греч. topos место) разновидности химических элементов, у которых ядра атомов отличаются числом нейтронов, но содержат одинаковое число протонов и поэтому занимают одно и то же место в периодической системе элементов. Различают… … Большой Энциклопедический словарь

ИЗОТОПЫ КОС МОГЕНН ЫЕ — стабильные и радиоактивные изотопы, образующиеся в природных объектах под действием космического излучения, напр., по схеме: XАz + Р → YAZ + an + bр, в которой А = A1+ an + (b 1)р; Z = Z1.+ (b 1)p, где ХAz исходное ядро, Р быстрый… … Геологическая энциклопедия

изотопы — ов; мн. (ед. изотоп, а; м.). [от греч. isos равный и topos место] Спец. Разновидности одного и того же химического элемента, различающиеся массой атомов. Радиоактивные изотопы. Изотопы урана. ◁ Изотопный, ая, ое. И. индикатор. * * * изотопы (от… … Энциклопедический словарь

Изотопы — это разновидности любого химического элемента периодической системы Д.И. Менделеева, обладающие разным атомным весом. Различные изотопы любого химического элемента имеют одно и то же число протонов в ядре и такое же число электронов на оболочках атома, имеют одинаковый атомный номер и занимают определенные, свойственные данному химическому элементу, места в таблице Д.И. Менделеева. Различие в атомном весе у изотопов объясняется тем, что ядра их атомов содержат разное число нейтронов.

Изотопы радиоактивные — изотопы любого элемента периодической системы Д. И. Менделеева, атомы которых имеют неустойчивые ядра и переходят в устойчивое состояние путем радиоактивного распада сопровождающегося излучением.

У элементов с порядковым номером больше 82 все изотопы радиоактивны и распадаются путем альфа- или бета- распада. Это — так называемые естественные радиоактивные изотопы, встречающиеся обычно в природе. Атомы, образующиеся при распаде этих элементов, если у них порядковый номер выше 82, в свою очередь подвергаются радиоактивному распаду, продукты которого также могут быть радиоактивны. Получается как бы последовательная цепочка, или так называемое семейство радиоактивных изотопов. Известно три естественных радиоактивных семейства, называемых по первому элементу ряда семействами урана , тория и актиноурана ( актиния ). К семейству урана относятся радий и радон. Последний элемент каждого ряда превращается в результате распада в один из устойчивых изотопов свинца с порядковым номером 82. Кроме этих семейств, известны отдельные естественные радиоактивные изотопы элементов с порядковыми номерами меньше 82. Это калий-40 и некоторые другие. Из них важен калий-40 , так как он содержится в любом живом организме.

Радиоактивные изотопы всех химических элементов можно получить искусственным путем.

При распаде изотопа может образоваться изотоп, также радиоактивный. Например, стронций-90 превращается в иттрий-90 , барий-140 — в лантан-140 и т. п.

Искусственным путем были получены не известные в природе трансурановые элементы с порядковым номером больше 92 ( нептуний , плутоний , америций , кюрий и т. д.), все изотопы которых радиоактивны. Один из них дает начало еще одному радиоактивному семейству — семейству нептуния.

Остаточные эффекты после взаимодействия

Активность радиоактивных изотопов измеряется в единицах кюри или производных от нее — милликюри и микрокюри.

По химическим и физико-химическим свойствам радиоактивные изотопы практически не отличаются от природных элементов; их примесь к какому-либо веществу не меняет его поведения в живом организме.

Применения радиоактивных изотопов в промышленности

Одним из примеров этого может служить следующий способ контроля износа поршневых колец в двигателях внутреннего сгорания. Облучая поршневое кольцо нейтронами, вызывают в нем ядерные реакции и делают его радиоактивным. При работе двигателя частички материала кольца попадают в смазочное масло. Исследуя уровень радиоактивности масла после определенного времени работы двигателя, определяют износ кольца. Радиоактивные изотопы позволяют судить о диффузии металлов, процессах в доменных печах и т. д.

Мощное гамма-излучение радиоактивных препаратов используют для исследования внутренней структуры металлических отливок с целью обнаружения в них дефектов.

Радиоактивные изотопы, испускающие гамма-лучи могут применяться вместо громоздких рентгеновских установок для просвечивания изделий, так как свойства гамма-лучей сходны со свойствами рентгеновских лучей. По одну сторону проверяемого изделия помещают источник гамма-лучей, а по другую - фотопленку. Такой метод проверки называют гамма-дефектоскопией . Таким способом в настоящее время проверяется черное и цветное литье, готовые изделия (стальные изделия толщиной до 300мм) и качество сварных швов.

С помощью радиоактивных изотопов легко на ходу и без соприкосновения измерить толщину металлической ленты или прокатываемых листов металла и автоматически поддерживать толщину постоянной. Под движущейся лентой, выбегающей из-под вальцов машины, помещают источник бета-частиц. Изменение толщины ленты ведет, следовательно, к изменению тока в счетчике. Этот ток усиливается и направляется либо в измерительный прибор, либо в автомат, который мгновенно сблизит или, наоборот, раздвинет вальцы. Приборы подобного типа используются также в бумажной, резиновой и кожевенной промышленности.

Созданы радиоизотопные источники электрической энергии. Они используют тепло, выделяемое в образце, поглощающем излучение. С помощью термоэлементов это тепло превращается в электрический ток. Источник весом в несколько килограммов обеспечивает мощность в несколько десятков ватт в течение 10 лет бесперебойной работы. Такие источники используются для питания автоматических маяков и автоматических метеостанций, работающих в труднодоступных районах. Более мощные источники были установлены на советских луноходах, запущенных на Луну. Они надежно работали при температурах от -140 до +120 .

Радиоактивные изотопы в медицине

Ионизирующее излучение представляет собой поток частиц, способных вызывать ионизацию вещества. При ионизации происходит отрыв электрона или нескольких электронов от атома, или молекулы, которые при этом превращаются в положительно заряженные ионы. Оторванные от атомов или молекул электроны могут присоединяться другими атомами, или молекулами, образуя отрицательно заряженные ионы.

Разряд заряженного электрометра, находящегося в воздухе, происходящий независимо от качества электрической изоляции прибора, заметил еще Шарль Кулон в 1785 г., но только в XX веке удалось объяснить обнаруженные им закономерности действием космических лучей , представляющих собой одну из составляющих естественного ионизирующего излучения .

Результат действия ионизирующего излучения называют облучением . Несмотря на многообразие явлений, которые возникают в веществе под действием ионизирующего излучения, оказалось, что облучение может быть охарактеризовано единой величиной, называемой дозой облучения .

Действие ионизирующего излучения в широком диапазоне доз скрыто от непосредственных ощущений человека и поэтому оно кажется ему одним из наиболее опасных факторов воздействия.

Ионизирующее излучение (ИИ) — поток микрочастиц или электромагнитные поля, способные ионизировать вещество. В жизни, под ионизирующим излучением понимают проникающую радиацию — поток гамма-лучей и частиц ( альфа, бета, нейтронов и др.).

Это, по сути, поток элементарных частиц, ионов и электромагнитных волн, не видимых и не ощущаемых человеком. Однако, их действие может быть коварно. При определенном уровне облучения нарушаются биохимические и физические процессы в живых организмах. Это воздействие может привести к лучевой болезни и даже к смерти. Различные виды ионизирующего излучения различают по их ионизирующей и проникающей способности.

Чаще всего ионизирующие излучения делят на:

Корпускулярное ИИ состоит из частиц вещества – элементарных частиц и ионов, в т.ч. ядер атомов. Корпускулярное ИИ делят на:

  • заряженные частицы, в том числе,
  • легкие заряженные частицы (электроны и позитроны);
  • тяжелые заряженные частицы (мюоны, пионы и другие мезоны, протоны, заряженные гипероны, дейтроны, альфа-частицы, и другие ионы);
  • электрически нейтральные частицы (нейтрино, нейтральные пионы и другие мезоны, нейтроны, нейтральные гипероны).

2. электромагнитное (фотонное) ионизирующее излучение.

Что такое и от чего зависит проникающая способность излучения? Что такое и от чего зависит ионизирующая способность излучения?

Расстояние, на которое ионизирующее излучение может проникать в вещество, называется его проникающей способностью излучения . Оно зависит от энергии излучения и свойств вещества, через которое излучение проникает.

Ионизирующее излучение представляет собой поток частиц, способных вызывать ионизацию вещества. При ионизации происходит отрыв электрона или нескольких электронов от атома, или молекулы, которые при этом превращаются в положительно заряженные ионы. Оторванные от атомов или молекул электроны могут присоединяться другими атомами, или молекулами, образуя отрицательно заряженные ионы.

Альфа - излучение

Из-за относительно большого размера и электрического заряда, альфа-частицы вступают во взаимодействие со всеми встреченными на пути атомами и, теряя энергию, легко тормозятся при контакте с веществом. В воздухе их пробег равен нескольким сантиметрам. Толстый лист бумаги остановит частицу полностью. В живой человеческой ткани пробег частицы - меньше чем 0,7 мм. Альфа-излучение, воздействующее на незащищенную часть тела, не может проникнуть даже через наружный слой кожи, образованный отмершими клетками, и не причиняет вреда организму. Поэтому альфа-излучение опасно только тогда, когда альфа-частицы попадают внутрь организма (с воздухом, питьевой водой и пищевыми продуктами) и напрямую воздействуют на клетки органов, вызывая их повреждения.

Альфа-излучение (поток ядер гелия, возникающий в результате альфа распада ядер элементов) обладает высокой ионизирующей, но слабой проникающей способностью: пробег альфа-частиц в сухом воздухе при нормальных условиях не превышает 20 см, а в биологической ткани – 260 мкм. То есть слой воздуха 9-10 см, верхняя одежда, резиновые перчатки, марлевые повязки, даже бумага полностью защищают организм от внешних потоков альфа-частиц.

Бета - излучение

Проникающая способность бета-частицы значительно больше чем альфа-частицы, потому что электрический заряд бета-частицы - вдвое меньше заряда альфа-частицы. Кроме того, масса бета-частицы - приблизительно в 7000 раз меньше массы альфа-частицы. Из-за ее маленькой массы и маленького заряда ионизация, вызванная бета-частицей меньше, и, как следствие, энергия бета-частицы расходуется на более значительном расстоянии. Проникающая способность бета-частицы в воздухе изменяется от 0,1 до 20 метров в зависимости от начальной энергии частицы. В большинстве случаев защитные очки и средства индивидуальной защиты (СИЗ - костюм, ботинки, перчатки, головной убор) обеспечивают достаточную защиту от внешнего облучения организма бета-частицами. Большой риск облучения бета-частицами связан с попаданием их вовнутрь организма при приеме пищи в следствии нарушения гигиенических правил.

Бета-излучение (поток электронов или позитронов, возникающий в результате бета-распада ядер) имеет меньшую ионизирующую способность, чем альфа-излучение, но большую проникающую способность. Поскольку максимальные энергии бета-частиц не превышают 3 МэВ, то от них гарантированно защитит оргстекло толщиной 1,2 см, либо слой алюминия в 5,2 мм. А вот на ускорителе с максимальной энергией электронов 7 МэВ от электронов защитит слой алюминия в 1,5 см, либо слой бетона шириной в 2 см.

Гамма-излучение

Защититься от воздействие гамма-излучения сложнее, чем от воздействия альфа- и бета- частиц. Проникающая способность его очень высока, и гамма-излучение способно насквозь пронизывать живую человеческую ткань. Нельзя однозначно заявлять, что некоторая толщина некоторого вещества полностью остановит действие гамма-излучения. Часть излучения будет остановлена, а часть его - нет. Однако, чем более толстый слой защиты и чем больше удельный вес и атомный номер вещества, которое используется в качестве защиты, тем более она эффективна. Толщина материала, требуемого, чтобы уменьшить излучение в два раза - называется слой половиного ослабления . Толщина его, естественно, изменяется в зависимости от применяемого материала защиты и энергии излучения. Уменьшить мощность гамма-излучения на 50 % может 1 см свинца, 5 см бетона, или 10 см воды. Этот пример применим к излучению от кобальта-60 , который является преобладающим источником гамма-излучения на атомных электростанциях.

Гамма-излучение - сопутствующее ядерным превращениям электромагнитное излучение. Сегодня к гамма-излучению относят также жесткое рентгеновское излучение. Обладает очень высокой проникающей способностью. Оградить себя от гамма-излучения практически невозможно, однако можно ослабить его до приемлемого уровня. Защитные средства, обладающие экранирующим действием от такого рода радиации, выполняются из свинца, чугуна, стали, вольфрама и других металлов с высоким порядковым номером. Гамма-лучи обладают большой проникающей способностью и малым ионизирующим действием.

Еще много полезного и интересного вы сможете найти на наших ресурсах:

Определение

Чтобы разобраться с понятием радиоактивных элементов, необходимо для начала сказать, что изотопы – это образцы одного и тот же химического элемента, но с разной массой. Что это значит? Вопросы исчезнут, если для начала мы вспомним строение атома. Состоит он из электронов, протонов и нейтронов. Число первых двух элементарных частиц в ядре атома всегда постоянно, тогда как нейтроны, имеющие собственную массу, могут встречаться в одном и том же веществе в разных количествах. Это обстоятельство и порождает разнообразие химических элементов с разными физическими свойствами.

изотопы это

Теперь мы можем дать научное определение исследуемому понятию. Итак, изотопы – это совокупный набор похожих по свойствам химических элементов, но имеющих разную массу и физические свойства. Согласно более современной терминологии, они носят название плеяды нуклеотидов химического элемента.

Немного истории

В начале прошлого века ученые обнаружили, что у одного и того же химического соединения в разных условиях могут наблюдаться разные массы ядер электронов. С чисто теоретической точки зрения, такие элементы можно было посчитать новыми и начать заполнять ими пустые клеточки в периодической таблице Д. Менделеева. Но свободных ячеек в ней всего девять, а новые элементы ученые открывали десятками. К тому же и математические подсчеты показали, что обнаруженные соединения не могут считаться ранее не известными, ведь их химические свойства полностью соответствовали характеристикам уже существующих.

После длительных обсуждений было решено назвать эти элементы изотопами и помещать их в одну клеточку с теми, ядра которых содержат с ними одинаковое количество электронов. Ученым удалось определить, что изотопы – это всего лишь некоторые вариации химических элементов. Однако причины их возникновения и длительность жизни изучались еще почти целое столетие. Даже в начале XXI века утверждать, что человечество знает абсолютно все об изотопах, нельзя.

Стойкие и нестойкие вариации

Каждый химический элемент имеет несколько изотопов. Из-за того, что в их ядрах есть свободные нейтроны, они не всегда вступают в стабильные связи с остальными составляющими атома. Через некоторое время свободные частицы покидают ядро, из-за чего меняется его масса и физические свойства. Так образуются другие изотопы, что ведет в конце концов к образованию вещества с равным количеством протонов, нейтронов и электронов.

Те вещества, которые распадаются очень быстро, называются радиоактивными изотопами. Они выпускают в пространство большое количество нейтронов, образующих мощное ионизирующее гамма-излучение, известное своей сильной проникающей способностью, которая негативно влияет на живые организмы.

радиоактивные изотопы

Более стойкие изотопы не являются радиоактивными, поскольку количество выделяемых ими свободных нейтронов не способно образовывать излучения и существенно влиять на другие атомы.

Достаточно давно учеными была установлена одна важная закономерность: у каждого химического элемента есть свои изотопы, стойкие или радиоактивные. Интересно, что многие из них были получены в лабораторных условиях, а их присутствие в естественном виде невелико и не всегда фиксируется приборами.

Распространение в природе

В естественных условиях чаще всего встречаются вещества, масса изотопа которых напрямую определяется его порядковым числом в таблице Д. Менделеева. К примеру, водород, обозначаемый символом Н, имеет порядковый номер 1, а его масса равна единице. Изотопы его, 2Н и 3Н, в природе встречаются крайне редко.

Даже человеческий организм имеет некоторое количество радиоактивных изотопов. Попадают они внутрь через пищу в виде изотопов углерода, который, в свою очередь, впитывается растениями из почвы или воздуха и переходит в состав органических веществ в процессе фотосинтеза. Поэтому и человек, и животные, и растения излучают определенный радиационный фон. Только он настолько низкий, что не мешает нормальному функционированию и росту.

Источниками, которые способствуют образованию изотопов, выступают внутренние слои земного ядра и излучения из космоса.

масса изотопа

Как известно, температура на планете во многом зависит от ее горячего ядра. Но только совсем недавно стало понятно, что источником этого тепла выступает сложная термоядерная реакция, в которой участвуют радиоактивные изотопы.

Распад изотопов

Поскольку изотопы – это нестойкие образования, можно предположить, что они по прошествии времени всегда распадаются на более постоянные ядра химических элементов. Это утверждение верно, поскольку ученым не удалось обнаружить в природе огромного количества радиоактивных изотопов. Да и большинство из тех, которые были добыты в лабораториях, просуществовали от пары минут до нескольких дней, а потом снова превратились в обычные химические элементы.

Но есть в природе и такие изотопы, которые оказываются очень устойчивыми к распаду. Они могут существовать миллиарды лет. Образовались такие элементы в те далекие времена, когда земля еще формировалась, а на ее поверхности не было даже твердой коры.

Радиоактивные изотопы распадаются и вновь образуются очень быстро. Поэтому с той целью, чтобы облегчить оценку стойкости изотопа, учеными было принято решение рассматривать категорию периода его полураспада.

Период полураспада

Не всем читателям может быть сразу понятно, что имеется в виду под этим понятием. Определим же его. Период полураспада изотопа – это время, за которое перестанет существовать условная половина взятого вещества.

распад изотопов

Это не означает, что оставшаяся часть соединения будет уничтожена за такое же количество времени. Применительно к этой половине необходимо рассматривать иную категорию – период времени, за который исчезнет ее вторая часть, то есть четверть изначального количества вещества. И такое рассмотрение продолжается до бесконечности. Можно предположить, что время полного распада изначального количества вещества посчитать просто невозможно, поскольку этот процесс практически бесконечен.

Однако ученые, зная период полураспада, могут определить, какое количество вещества существовало вначале. Эти данные успешно используются в смежных науках.

В современном научном мире понятие полного распада практически не используется. Относительно каждого изотопа принято указывать время его полураспада, которое варьирует от нескольких секунд до многих миллиардов лет. Чем меньше показатель полураспада, там большее излучение исходит от вещества и тем выше его радиоактивность.

Обогащение ископаемых

В некоторых отраслях науки и техники использование относительно большого количества радиоактивных веществ считается обязательным. Но при этом в естественных условиях таких соединений совсем немного.

Известно, что изотопы – это нераспространенные варианты химических элементов. Количество их измеряется несколькими процентами от самой стойкой разновидности. Именно поэтому ученым необходимо проводить искусственное обогащение ископаемых материалов.

За годы исследований удалось узнать, что распад изотопа сопровождается цепной реакцией. Освобожденные нейтроны одного вещества начинают влиять на другое. В результате этого тяжелые ядра распадаются на более легкие и получаются новые химические элементы.

распад радиоактивных изотопов

Это явление получило название цепной реакции, в результате которой можно получить более стойкие, но менее распространенные изотопы, которые в дальнейшем используются в народном хозяйстве.

Применение энергии распада

Также учеными было выяснено, что в ходе распада радиоактивного изотопа выделяется огромное количество свободной энергии. Ее количество принято измерять единицей Кюри, равной времени деления 1 г радона-222 за 1 секунду. Чем выше этот показатель, тем больше энергии выделяется.

Это стало поводом для разработки способов использования свободной энергии. Так появились атомные реакторы, в которые помещается радиоактивный изотоп. Большая часть энергии, выделяемой им, собирается и превращается в электричество. На основании этих реакторов создаются атомные станции, которые дают самое дешевое электричество. Уменьшенные варианты таких реакторов ставят на самоходные механизмы. Учитывая опасность аварий, чаще всего такими машинами выступают подводные лодки. В случае отказа реактора количество жертв на подлодке будет легче свести к минимуму.

полураспад изотопа

Еще один очень страшный вариант использования энергии полураспада – атомные бомбы. Во время Второй мировой войны они были испытаны на человечестве в японских городах Хиросима и Нагасаки. Последствия оказались очень печальными. Поэтому в мире действует соглашение о неиспользовании этого опасного оружия. В месте с тем большие государства с ориентацией на милитаризацию и сегодня продолжают исследования в этой отрасли. Кроме того, многие из них втайне от мирового сообщества изготавливают атомные бомбы, которые в тысячи раз опаснее тех, которые использовались в Японии.

Изотопы в медицине

В мирных целях распад радиоактивных изотопов научились использовать в медицине. Направив излучение на пораженный участок организма, можно приостановить течение болезни или помочь пациенту полностью излечиться.

Но чаще радиоактивные изотопы используют для диагностики. Все дело в том, что их движение и характер скопления проще всего зафиксировать по излучению, которое они производят. Так, в организм человека вводится определенное неопасное количество радиоактивного вещества, а по приборам медики наблюдают, как и куда оно попадет.

период полураспада изотопа

Таким образом проводят диагностику работы головного мозга, характера раковых опухолей, особенности работы желез внутренней и внешней секреции.

Применение в археологии

Известно, что в живых организмах всегда есть радиоактивный углерод-14, полураспад изотопа которого равен 5570 лет. Кроме того, ученные знают, какое количество этого элемента содержится в организме до момента его смерти. Это значит, что все спиленные деревья излучают одинаковое количество радиации. Со временем интенсивность излучения падает.

Это помогает археологам определить, как давно умерло дерево, из которого построили галеру или любой другой корабль, а значит, и само время строительства. Этот метод исследования получил название радиоактивного углеродного анализа. Благодаря ему ученым легче установить хронологию исторических событий.

Радиоактивность — это явление, при котором ядра одного химического элемента самопроизвольно превращаются в ядра другого элемента или изотопы того же элемента. Процесс сопровождается испусканием частиц и электромагнитного излучения. При этом происходит изменение состава ядра атома: его заряда и массового числа.

В определении присутствует термин изотоп. Прежде чем рассмотреть его, вспомним определение нуклида.

Нуклид — это отдельный вид атома химического элемента с определенными значениями массового и протонного чисел.

Для обозначения определенного нуклида используют запись вида

где X — символ химического элемента, A — массовое (нуклонное) число, Z — зарядовое (протонное) число.

Количество нейтронов в ядре N = A − Z

Изотоп — это разновидность атома определенного элемента с таким же атомным номером, но другим массовым числом.

Это значит, что в изотопах одинаковое число протонов, но разное число нейтронов.

У первого элемента в периодической системе элементов Менделеева, водорода ( H ) , известно три изотопа:

  • протий H 1 1 ;
  • дейтерий H 1 2 ;
  • тритий H 1 3 .

Всего известно более двух тысяч радиоактивных изотопов. Для сравнения, стабильных открыто около 280.

Ученые разделяют нуклиды на стабильные и нестабильные. Нестабильные, также известные как радионуклиды, со временем распадаются. Стабильные же способны существовать в неизменном виде неопределенно долгий промежуток времени.

Суть явления радиоактивности заключается в том, что при распаде ядра нестабильного атома из него с большой скоростью вылетает целое число частиц с высокой энергией. Вещества, которые содержат радиоактивные ядра, называют радиоактивными.

Радиация (радиоактивное излучение) — это поток частиц высокой энергии, вылетающих из нестабильного ядра.

В современной химии выделяют естественную и искусственную радиоактивность.

Естественная радиоактивность — это явление самопроизвольного распада атомных ядер в природе.

Примером естественной радиоактивности служит солнечная радиация. В ядре солнца постоянно происходят термоядерные реакции, в ходе которых водород превращается в гелий.

Искусственная радиоактивность — это явление самопроизвольного распада атомных ядер, полученных искусственным путем через соответствующие ядерные реакции.

Техногенная радиоактивность применяется людьми. Например, на атомных электростанциях электрическую энергию получают за счет искусственно созданных ядерных реакций.

В результате экспериментов было установлено, что в периодической системе Менделеева радиоактивны все элементы, начиная с висмута. Их порядковый номер больше 82.

Единицы измерения

В химии существует несколько единиц измерения радиоактивности:

В Международной системе единиц ( С И ) единицей измерения активности радионуклида является беккерель. На русском языке он обозначается как Бк, в международном формате — Bq.

Эту единицу назвали в честь Антуана Беккереля, одного из первооткрывателей радиоактивности. Один Беккерель равен одному распаду в секунду.

В Международной СИ секунде в минус первой степени равен не только беккерель, но и герц. Важно не путать их: беккерель используют для измерения случайных процессов распада, а герц — для периодических процессов. Их природа различна.

Один Беккерель — это маленькая единица измерения, так что на практике принято использовать кратные единицы.

Внесистемная, но широко распространенная единица — кюри. Ее используют для измерения активности радионуклидов. На русском обозначается как Ки, в международных исследованиях — Ci. Названа она в честь Пьера Кюри и Марии Склодовской-Кюри.

Точно установлена связь между значениями Ки и Бк:

1 К и = 3 , 7 ⋅ 10 10 Б к

Перевести значения из Бк в Ки сложнее, т.к. соотношение приблизительно:

1 Б к ≈ 2 , 7027 ⋅ 10 - 11 К и

Еще одна единица измерения, которой в современности пользуются редко — резерфорд. Его обозначают как Рд или Rd в русском и международном стандартах соответственно. Единица тоже названа в честь ученого — Эрнеста Резерфорда, также изучавшего природу радиоактивности.

Один резерфорд равен 10 6 распадам в 1 секунду. Точно равенство:

1 Р д = 1 ⋅ 10 6 Б к = 1 М Б к

Дозиметрия — это определение дозы радиоактивного излучения, поглощаемого объектом.

В дозиметрии используют свои единицы облучения:

Поглощенную дозу в Международной СИ измеряют в единицах грэй (Гр). Один грэй равен энергии излучения в 1 Дж, поглощенной 1 кг вещества.

Эквивалентную дозу, т.е. произведение поглощенной дозы на коэффициент качества излучения, в Си измеряют в зивертах. Один зиверт эквивалентен излучению, создающему такой же биологический эффект, как и поглощенная доза в 1 Гр гамма-излучения или рентгеновского излучения.

1 З в = 1 Д ж / к г

За один бэр принято считать такое количество энергии излучения, поглощенного 1 кг вещества, при котором биологическое воздействие соответствует поглощенной дозе в 1 рад гамма-излучения или рентгеновского излучения. То есть:

1 б э р = 0 , 01 З в = 100 э р г / г

Для измерения воздействия радиации используют также понятие мощность дозы. Это доза, полученная объектом за выбранную единицу времени.

Кто открыл, как это произошло

Лучи Рентгена представляют собой электромагнитное излучение длиной волн от ~ 10 3 д о ~ 10 - 2 Å ( от ~ 10 2 ;до ~ 10 - 3 н м ) . Энергия фотонов этих волн лежит между ультрафиолетовым и гамма-излучением.

Хотя рентгеновское излучение менее вредно, чем радиоактивное, оно все равно является ионизирующим и в больших объемах способно навредить живым организмам.

Вскоре после Рентгена новый вид лучей открыл французский физик Антуан Анри Беккерель. В 1896 году Беккерель посетил заседание Академии наук, на котором узнал о предполагаемой связи рентгеновского излучения и флуоресценции. Чтобы проверить эту гипотезу, Беккерель провел эксперимент с фотопластинкой и солями урана. Он обнаружил, что лучи проходят через препятствия, оставляя изображение на фотопластинке.

Сперва Беккерель предположил, что открыл новый, более простой способ делать рентгеновские снимки. Но после многочисленных экспериментов он не мог дать объяснения, откуда уран получает свою энергию. К тому же, вопреки его данным, уран фосфоресцировал даже без солнечного света, что никак не согласовывалось с его гипотезой.

Так Беккерель понял, что открыл новый вид лучей. Но из-за неспособности разрешить найденное противоречие ученый временно отказался от изучения, как известно теперь, радиоактивности.

В 1898 году Мария и Пьер Кюри обнаружили, что новые лучи свойственны не только урану, но и торию. Позднее пара ученых открыла радиоактивность полония и радия. От названия последнего и было дано название явлению — радиоактивность.

К тому же, Беккерель и Кюри совместно обнаружили биологическое действие радиоактивности. На одной из лекций Беккерель держал в пробирке в жилетном кармане радиоактивное вещество. На следующий день на теле под карманом он обнаружил покраснение в форме пробирки. Пьер Кюри после этого 10 часов носил на себе пробирку с радием, и спустя несколько дней у него тоже появилось покраснение. Это покраснение впоследствии перешло в тяжелую язву, с которой Пьер боролся еще два месяца.

Пагубное влияние радиоактивных веществ не остановило ученых. В 1934 году Мария Склодовская-Кюри умерла от осложнений, вызванных долгой работой с радием.

В дальнейшем значительную роль в исследовании радиоактивности сыграл Эрнест Резерфорд. Ученый установил природу радиоактивных превращений и излучения, обнаружил сложный состав излучения.

Разновидности излучения, свойства и характеристики

Ученые выделили 3 вида излучения:

  • альфа-излучение ( α ) — поток ядер гелия (их называют альфа-частицами);
  • бета-излучение ( β ) — поток электронов;
  • гамма-излучение ( γ ) — электромагнитное излучение с большой проникающей способностью.

На основе излучения выделяют 3 основных типа радиоактивного распада:

  • альфа-распад;
  • бета-распад;
  • гамма-распад, или изомерный переход.

Известны также распады с испусканием протонов (одного или двух), нейтрона и кластерная радиоактивность.

Процесс радиоактивного распада может быть продолжительным. Если дочернее ядро, полученное в результат радиоактивного распада, также является радиоактивным, то со временем и оно распадается. Так продолжается, пока не образуется стабильное нерадиоактивное ядро.

При этом некоторые изотопы могут одновременно испытывать более одного вида распада.

Альфа-распад

Альфа-распад — вид самопроизвольного распада атомного ядра на дочернее ядро, при котором происходит испускание альфа-частицы — ядра атома атома гелия. При этом массовое число дочернего ядра меньше на 4, а атомный номер — на 2.

Альфа-распад, т.е. поток положительно заряженных частиц, характерен для изотопов всех тяжелых элементов, начиная с висмута.

Альфа-частицы покидают ядро со скоростью от 9400 до 23700 км/с. При этом в воздухе при нормальных условиях альфа-излучение способно преодолеть лишь расстояние от 2,5 до 7,5 см.

Эффективно задержать радиоактивное излучение альфа-частиц можно несколькими десятками микрометров плотного вещества. К примеру, листом бумаги или даже ороговевшим слоем кожи — человеческим эпидермисом. Это делает его относительно безопасным для человека.

Однако если источник альфа-излучения все же попадет в организм (например, в виде пыли), это может привести к серьезным последствиям. Альфа-частицы наносят примерно в 20 раз больше повреждений, чем бета- и гамма-частицы той же энергии.

Правило смещения Содди, также закон радиоактивных смещений — это правило, описывающее превращение элементов в процессе радиоактивного распада.

Рассмотрим правило смещения Содди для α -распада:

X Z A → Y Z - 2 A - 4 + H 2 4 e

Пример
Как уже было описано ранее, процесс радиоактивного распада продолжается до тех пор, пока не образуется стабильное ядро. Рассмотрим такую цепочку на основе альфа-распада урана-238:

U 92 238 → α - р а с п а д T 90 234 h + H 2 4 e → α R 88 230 a + H 2 4 e → α R 86 226 n + H 2 4 e → α P 84 222 o + H 2 4 e → α P 82 218 b + H 2 4 e

Бета-распад

Бета-распад — вид самопроизвольного распада атомного ядра на дочернее ядро, при котором происходит испускание потока электронов и антинейтрино. Массовое число при этом остается тем же, поскольку число нуклонов в ядре остается неизменным.

Бета-излучение как отрицательное излучение малой массы обладает большей проникающей способностью, нежели альфа-частицы. Задержать его можно алюминиевой фольгой.

Среди всех видов радиоактивного распада бета-распад является наиболее распространенным. Он особенно характерен для искусственных радионуклидов.

Выделяют несколько подвидов бета-распада:

  • бета-минус распад;
  • бета-плюс распад;
  • электронный захват.

Бета-минус распад представляет собой испускание из ядра электрона, образовавшегося в результате самопроизвольного превращения одного из нейтронов в протон и электрон. Такой электрон называют бета-минус частицей.

Правило смещения Содди для β - -распада:

X Z A → Y Z + 1 A + e - 1 0 + ν ¯ e

Рассмотрим бета-минус распад трития в гелий-3:

H 1 3 → H 2 3 e + e - 1 0 + ν ¯ e

Бета-плюс распад, или позитронный распад сопровождается испусканием из ядра позитрона (античастицы электрона), образовавшегося в результате самопроизвольного превращения одного из протонов в нейтрон и позитрон. Получившуюся частицу называют бета-плюс частицей.

Правило смещения Содди для β + -распада:

X Z A → Y Z - 1 A + e + + ν e

Рассмотрим бета-плюс распад углерода:

C 6 11 → B 5 11 + e + + ν e

Позитронный распад всегда сопровождается электронным захватом. Ядро захватывает электрон из атомной оболочки и испускает нейтрино. Заряд ядра также уменьшается на единицу.

Правило смещения Содди для электронного захвата:

X Z A + e - → Y Z - 1 A + ν e

Рассмотрим электронный захват на примере захвата бериллия в литий:

B 4 7 e + e - → L 3 7 i + ν e

Гамма-распад

Гамма-распад чаще называют изомерным переходом. Такое название обосновано существованием изомерных состояний ядер. Большинство ядер способны существовать в возбужденном состоянии очень малое количество времени — менее наносекунды. Некоторые ядра способны существовать дольше — микросекунды, сутки или даже года. Такие долгоживущие состояния и называют изомерными.

При гамма-распаде изомерные состояния ядер переходят в основное состояние с излучением одного или нескольких гамма-квантов.

Гамма-излучение обладает намного большей проникающей способностью, чем альфа- и бета-излучение. Оно не имеет электрического заряда, обладает огромной энергией и может быть остановлено только толстым слоем железобетона, стали, свинца или другого серьезного препятствия.

Период полураспада, модели атомов и ядра, кратко

Рассмотрим общепринятую модель строения атома. В центре находится заряженное ядро, внутри которого — нейтральные нейтроны и положительно заряженные протоны. Почти вся масса атома приходится на тяжелое ядро. Вокруг положительно заряженного ядра движутся легкие отрицательно заряженные электроны. В невозбужденном состоянии и вне реакции количество протонов и электронов, как правило, равно, так что атом электронейтрален.

Наглядная схема представлена ниже.

Одной из главных характеристик радиоактивных атомов является его время жизни. Число ежесекундно происходящих распадов пропорционально количеству имеющихся атомов.

Если за промежуток времени распадается половина исходного количества радиоактивных атомов, то половина оставшихся атомов распадется в течение следующего промежутка той же длительности. Время T 1 / 2 , за которое распадается половина всех имеющихся радиоактивных ядер, называют периодом полураспада радиоактивного элемента.

Период полураспада радиоактивного изотопа бериллия-8 составляет всего 8 , 2 ⋅ 10 - 17 ;с. период полураспада фосфора-32 — 14,3 дня. Самый долгий период полураспада у изотопа теллура - 128 T 128 e — 2 , 2 ⋅ 1024 лет или 2,2 септиллиона лет.

На основе периода полураспада некоторых радиоизотопов основан исторический метод радиоизотопного датирования. Для определения возраста некоторых объектов определяют, какая доля радиоактивного изотопа в составе успела распасться. Используют:

  • уран-свинцовый метод;
  • калий-аргоновый метод;
  • радиоуглеродный метод и др.

Любой радиоактивный распад происходит по закону радиоактивного распада. Математически данный закон выражается в следующем виде:

где N — число нераспавшихся атомов в любой момент времени, N 0 — число радиоактивных атомов в начальный момент времени, T — период полураспада, t — период времени.

Читайте также: