Процессы происходящие в тканях под действием электрических токов и полей кратко

Обновлено: 28.06.2024

Живые ткани являются композиционными средами. Объемное сочетание разнородных компонентов.

Одни структурные элементы тканей обладают свойствами проводников, а другие - диэлектриков.

Проводники - это вещества, в которых есть свободные заряды, способные перемещаться под действием электрического поля (ионы)

Диэлектрики - все заряды неподвижны=связанные заряды(диполи) определяют поляризацию биологических тканей.

Первичное действие постоянного тока связано с:

Направленным движением ионов, их разделением и изменением их концентрации в разных элементах тканей у БМ, а так же с поляризационными явлениями. Тело – свойства проводника. В тканях возникает ток проводимости, который течет по межклеточной жидкости. Здесь ток встречает наименьшее сопротивление.

Лечебное применение: гальванизация (50 мА, 60-80В), электрофорез (50 мА, 60-80В), франклинизация, аэроионизация

Аэроионы – ионы в воздухе, образованные благодаря действию космической, почвенной и солнечной радиации. Могут присоед к нейтральным молекулам и взвешенным частицам. Легкие отрицательные ионы – усиливают заряд эритроцитов

Импульсные токи НЧ: раздражающее, стимулирующее действие. Т.к. есть быстрое перемещение и накопление ионов Na и K у клеточных мембран, а во время паузы – быстрое удаление.

Лечение: динамические токи (постоянные по направлению синусоидальные импульсные токи 50 Гц и 100 Гц, I=50 мА, U=60-80В), электросон, амплипульстерапия (синусоидальные переменные токи 5000 Гц, модулированных колебаниями 50-150 Гц), стимуляторы, дефибриллятор

Токи и поля высокой частоты(>200 Гц): тепловое + осцилляторное + специфическое воздействие

При этой частоте смещение ионов соизмеримо с их смещением в результате молекулярно-теплового движения

Преимущества ВЧ прогревания:

1. Тепло внутри организма

2. Селективное прогревание тканей, зависящее от удельного сопротивления

3. Управление мощностью тепловыделения

4. Дозирование нагрева

Пассивные электрические свойства биологических тканей

Живые ткани являются композиционными средами: объемное сочетание разнородных компонентов

Биологические ткани разнородны по электропроводимости и являются:

Проводники (внутриклеточная и межклеточная жидкость)

обладают свободными зарядами (ионы)

определяют электропроводность биологических тканей

Электропроводность – способность тканей пропускать электротокк под воздействием электрополя. Связана с присутствием ионов, которые являются свободными зарядами, создающими ток проводимости. В организме определяется элек свойствами крови, лимф, межклеточной жидкости и цитозоля. Электрич ток выбирает путь, где наименьшее сопротивление. Чем больше в тканях жидкости, тем больше электропроводность G. Определяется: наличием свободных ионов (их концентрацией и подвижностью), явлениями поляризации

обладают связанными зарядами(диполи)

определяют поляризацию биотканей

под действием внешнего электромагнитного поля возникают токи смещения (выше 30 МГц)

Диэлектрики – вещества, в которых нет свободных носителей зарядов, а только связанные заряды – диполи. При помещении во внешнее электрич поле, диполи ориентируются вдоль силовых линий поля. Поле внутри диэлектрика слабеет, возникают токи смещения.

Электрический диполь.

Это система 2 зарядов, равных модулю,но противоположных по знаку. Дипольный момент направлен от минуса к плюсу.

Элекрическое поле диполя. Сам диполь является источником электр. поляпотенциал в т. А прямо пропорционален проекции дипольного момента.

Диполь – частный случай системы эл зарядов, обладающий определенной симметрией. Общее название – эл мультиполь

Токовый диполь

- Это двухплюсная система из истока + и стока - тока в проводящей среде

Ток токового диполя: I= ЭДС/r

Эл момент токового диполя – от минуса к плюсу, от возбужденного к невозбуженному

электрическое поле токового диполя в неограниченной проводящей среде.

потенциал электрического поля токового диполя: (дипольного электрического генератора) (формула)

Откуда берется токовый диполь и дипольный момент в организме? Это распределение волны возбуждения по нервным и мышечным волокнам. Изменения эл поля сердца происходят при деполяризации и реполяризации мембраны клеток сердца. На диполь действует сила, завис от его электр момента и степени неоднородности поля

Все вещества состоят из молекул, каждая из них является системой зарядов. Поэтому состояние тел существенно зависит от протекающих через них токов и от воздействующего электромагнитного поля. Электрические свойства биологических тел более сложны, чем свойства неживых объектов, ибо организм – это еще и совокупность ионов с переменной концентрацией в пространстве.

Первичный механизм воздействия токов и электромагнитных полей на организм – физический.

Первичное действие постоянного тока на ткани организма. Гальванизация. Электрофорез лекарственных веществ

Человеческий организм в значительной степени состоит из биологических жидкостей, содержащих большое количество ионов, которые участвуют в различных обменных процессах. Под влиянием электрического поля ионы движутся с разной скоростью и скапливаются около клеточных мембран, образуя встречное электрическое поле, называемое поляризационным. Таким образом, первичное действие постоянного тока связано с движением ионов в разных элементах тканей.

Воздействие постоянного тока на организм зависит от силы тока, поэтому весьма существенное значение имеет электрическое сопротивление тканей, прежде всего кожи. Влага, пот значительно уменьшают сопротивление, что даже при небольшом напряжении может вызвать прохождение тока через организм. Непрерывный постоянный ток напряжением 60–80 В используют как лечебный метод физиотерапии (гальванизация). Источником тока служит двухполупериод-ный выпрямитель – аппарат гальванизации. Применяют для этого электроды из листового свинца толщиной 0,3–0,5 мм. Так как продукты электролиза раствора поваренной соли, содержащиеся в тканях, вызывают прижигание, то между электродами и кожей помещают гидрофильные прокладки, смоченные теплой водой.

Постоянный ток используют в лечебной практике также и для введения лекарственных веществ через кожу или слизистые оболочки. Этот метод получил название электрофореза лекарственных веществ. Для этой цели поступают так же, как и при гальванизации, но прокладку активного электрода смачивают раствором соответствующего лекарственного вещества. Лекарство вводят с того полюса, зарядом которого оно обладает: анионы вводят с катода, катионы – с анода.

Гальванизацию и электрофорез лекарственных веществ можно осуществлять с помощью жидкостных электродов в виде ванн, в которые погружают конечности пациента.

Вопрос 5. Пассивные электрические свойства тканей тела человека

К пассивным электрическим свойствам биоло­гических объек­тов относятся: сопротивление, электропроводимость, емкость, диэлектрическая проницаемость. В норме и патологии эти пара­мет­ры меняются и поэтому могут быть исполь­зованы для изучения структуры и физико-химического состояния биологического ве­щества. Эти свойства проявляются, если к исследуемому участку ткани приложить напря­жение небольшой величины.

При приложении постоянной разности потен­циалов к тканям организма в них наблюдается два явления:

1. Постоянный электрический ток в проводящих тканях.

2. Различные виды поляризации в диэлектриче­ских тканях. Величина тока в тканях определя­ется по закону Ома для участка цепи, однако для электролитов, а следовательно и биообъектов, закон имеет своеобразный вид:

В этой формуле U - приложенное к участку ткани напряже­ние, R - активное сопротивление этого участка, εn (t) – ЭДС поляризации, которая возникает в результате поляризационных яв­лений как на электродах, так и внутри ткани на полупроницаемых и непроницаемых для ионов перегородках. ЭДС поляризации со временем возрастает, а ток в тканях уменьшается и при дли­тельном воздействии становится равным нулю


.

В диэлектриках заряды связаны, однако они перемещаются при наложении внешнего элек­трического поля внутри микро­структуры: атома, молекулы, клетки или в пределах границы про­водящей и непроводящей среды. Для каждого вида поляризации приводится значение времени релаксации τ.







Время релаксации - это время, в течение которого поляри­зация увеличивается от нуля до максимума, с момента прило­жения внешнего напряжения.




1. При электронной поляризации под воздейст­вием внешнего электрического поля происходит деформация электронных орбиталей атомов, ориентированных вдоль поля. Время релаксации = (10 -16 - 10 -14 ) с.

2. При ионной поляризации происходит смеще­ние ионов в кристаллической решетке вдоль направления электрического поля, = (10 -8 - 10 -3 )с.

3. Дипольно-ориентационная поляризация происходит в структурах, в которых уже име­ются полярные молекулы — дипо­ли, ориентиро­ванные хаотично. Под действием электрического поля они выстраиваются вдоль поля, = (10 -13 - 10 -7 ) с.

4. При микроструктурной поляризации проис­ходит перерасп­ределение ионов в результате действия электрического поля на раз­личных полупроницаемых и непроницаемых для ионов перегород­ках, например: на цитоплазматических мембранах, мембранах кле­точных органоидов, некоторых разделительных тканевых оболочках. В результате такого перераспределения возни­кает структура, по­добная гигантской поляризо­ванной молекуле, = (10 -8 - 10 -3 ) с.

5. Электролитическая или электрохимическая поляризация воз­никает между электродами, опущенными в электролит. Ионы, подхо­дящие к электродам, не полностью успевают нейтрализо­ваться по причине вторичных реакций на элек­тродах и неодинаковой подвиж­ности ионов. В результате, вокруг каждого электрода возникает "об­лако" зарядов противоположного знака, что ведет к образованию поля, направленного противоположно внешнему и постепенному уменьшению тока, проходящего через электро­лит, = (10 -3 - 10 2 ) с.

6. Поверхностная поляризация возникает на образованиях, имеющих двойной электрический слой. Ионы дисперсионной час­ти двойного электрического слоя связаны с атомами поверх­ности и не являются свободными. Диффузион­ный слой образуется за счет притяжения ионами дисперсионного слоя. При приложении внеш­него поля происходит частичное смещение ионов обеих сло­ев, образуются так называемые наве­денные диполи, = (10 -3 - 1) с.

Все рассмотренные явления поляризации в той или иной сте­пени присущи биологическим объектам. При приложении внеш­него поля в тканях индуцируется противоположно направ­ленное поле за счет поляризационных явлений, которое уменьшает внеш­нее поле и обуславли­вает высокое удельное сопротивление тканей постоянному току. Количественно явление поляризации характери­зуется величиной относи­тельной диэлектрической проницаемости.

где Ео - напряженность внешнего электрического поля в вакууме, Е - напряженность поля в среде, оно равно разности Ео и Еn, где Еn - напряжен­ность поля, создаваемая наведенными диполями при поляризации. Относительную диэлектриче­скую проницае­мость можно определить также соотношением емкостей

где Со - емкость электродов в вакууме, С - емкость электродов в среде.

При приложении к биологическому объекту переменного (как правило, синусоидального) напряжения, в нем также возни­кают электриче­ский ток и поляризационные явления. Электри­чес­кую модель биологического объекта для переменного тока мож­но представить в виде двух сопротивлений:

- активного, определяемого по формуле Ra = (pL)/S

- индуктивное сопротивление равно нулю.

Эти сопротивления в самой ткани могут быть соединены как последовательно так и парал­лельно.


Общее сопротив­ление ткани в цепи переменного тока называется импедансом и обозначается Z. Импеданс определяется по формуле:

- при последовательном соединении

- при параллельном соединении:

Импеданс ткани изменяется с частотой. Это явление называют дисперсией. Величина импе­данса определяется сопротивлением самой ткани, а также зависит от соотношения частоты или перио-

да приложенного напряжения и време­ни релак­сации:

1) если Т/4 > τ (Т/4 — время возрас­тания прило­женного напряжения от 0 до max, τ - время релаксации), прово­димость объекта и диэлектри­ческая проницаемость с частотой не меняется,

Все вещества состоят из молекул, каждая из них является системой зарядов. Поэтому состояние тел существенно зависит от протекающих через них токов и от воздействующего электромагнитного поля. Электрические свойства биологических тел более сложны, чем свойства неживых объектов, ибо организм – это еще и совокупность ионов с переменной концентрацией в пространстве.

Первичный механизм воздействия токов и электромагнитных полей на организм – физический.

Первичное действие постоянного тока на ткани организма. Гальванизация. Электрофорез лекарственных веществ

Человеческий организм в значительной степени состоит из биологических жидкостей, содержащих большое количество ионов, которые участвуют в различных обменных процессах. Под влиянием электрического поля ионы движутся с разной скоростью и скапливаются около клеточных мембран, образуя встречное электрическое поле, называемое поляризационным. Таким образом, первичное действие постоянного тока связано с движением ионов в разных элементах тканей.

Воздействие постоянного тока на организм зависит от силы тока, поэтому весьма существенное значение имеет электрическое сопротивление тканей, прежде всего кожи. Влага, пот значительно уменьшают сопротивление, что даже при небольшом напряжении может вызвать прохождение тока через организм. Непрерывный постоянный ток напряжением 60–80 В используют как лечебный метод физиотерапии (гальванизация). Источником тока служит двухполупериод-ный выпрямитель – аппарат гальванизации. Применяют для этого электроды из листового свинца толщиной 0,3–0,5 мм. Так как продукты электролиза раствора поваренной соли, содержащиеся в тканях, вызывают прижигание, то между электродами и кожей помещают гидрофильные прокладки, смоченные теплой водой.

Постоянный ток используют в лечебной практике также и для введения лекарственных веществ через кожу или слизистые оболочки. Этот метод получил название электрофореза лекарственных веществ. Для этой цели поступают так же, как и при гальванизации, но прокладку активного электрода смачивают раствором соответствующего лекарственного вещества. Лекарство вводят с того полюса, зарядом которого оно обладает: анионы вводят с катода, катионы – с анода.

Гальванизацию и электрофорез лекарственных веществ можно осуществлять с помощью жидкостных электродов в виде ванн, в которые погружают конечности пациента.

Вопрос 5. Пассивные электрические свойства тканей тела человека

К пассивным электрическим свойствам биоло­гических объек­тов относятся: сопротивление, электропроводимость, емкость, диэлектрическая проницаемость. В норме и патологии эти пара­мет­ры меняются и поэтому могут быть исполь­зованы для изучения структуры и физико-химического состояния биологического ве­щества. Эти свойства проявляются, если к исследуемому участку ткани приложить напря­жение небольшой величины.

При приложении постоянной разности потен­циалов к тканям организма в них наблюдается два явления:

1. Постоянный электрический ток в проводящих тканях.

2. Различные виды поляризации в диэлектриче­ских тканях. Величина тока в тканях определя­ется по закону Ома для участка цепи, однако для электролитов, а следовательно и биообъектов, закон имеет своеобразный вид:

В этой формуле U - приложенное к участку ткани напряже­ние, R - активное сопротивление этого участка, εn (t) – ЭДС поляризации, которая возникает в результате поляризационных яв­лений как на электродах, так и внутри ткани на полупроницаемых и непроницаемых для ионов перегородках. ЭДС поляризации со временем возрастает, а ток в тканях уменьшается и при дли­тельном воздействии становится равным нулю


.

В диэлектриках заряды связаны, однако они перемещаются при наложении внешнего элек­трического поля внутри микро­структуры: атома, молекулы, клетки или в пределах границы про­водящей и непроводящей среды. Для каждого вида поляризации приводится значение времени релаксации τ.







Время релаксации - это время, в течение которого поляри­зация увеличивается от нуля до максимума, с момента прило­жения внешнего напряжения.

1. При электронной поляризации под воздейст­вием внешнего электрического поля происходит деформация электронных орбиталей атомов, ориентированных вдоль поля. Время релаксации = (10 -16 - 10 -14 ) с.

2. При ионной поляризации происходит смеще­ние ионов в кристаллической решетке вдоль направления электрического поля, = (10 -8 - 10 -3 )с.

3. Дипольно-ориентационная поляризация происходит в структурах, в которых уже име­ются полярные молекулы — дипо­ли, ориентиро­ванные хаотично. Под действием электрического поля они выстраиваются вдоль поля, = (10 -13 - 10 -7 ) с.

4. При микроструктурной поляризации проис­ходит перерасп­ределение ионов в результате действия электрического поля на раз­личных полупроницаемых и непроницаемых для ионов перегород­ках, например: на цитоплазматических мембранах, мембранах кле­точных органоидов, некоторых разделительных тканевых оболочках. В результате такого перераспределения возни­кает структура, по­добная гигантской поляризо­ванной молекуле, = (10 -8 - 10 -3 ) с.

5. Электролитическая или электрохимическая поляризация воз­никает между электродами, опущенными в электролит. Ионы, подхо­дящие к электродам, не полностью успевают нейтрализо­ваться по причине вторичных реакций на элек­тродах и неодинаковой подвиж­ности ионов. В результате, вокруг каждого электрода возникает "об­лако" зарядов противоположного знака, что ведет к образованию поля, направленного противоположно внешнему и постепенному уменьшению тока, проходящего через электро­лит, = (10 -3 - 10 2 ) с.

6. Поверхностная поляризация возникает на образованиях, имеющих двойной электрический слой. Ионы дисперсионной час­ти двойного электрического слоя связаны с атомами поверх­ности и не являются свободными. Диффузион­ный слой образуется за счет притяжения ионами дисперсионного слоя. При приложении внеш­него поля происходит частичное смещение ионов обеих сло­ев, образуются так называемые наве­денные диполи, = (10 -3 - 1) с.

Все рассмотренные явления поляризации в той или иной сте­пени присущи биологическим объектам. При приложении внеш­него поля в тканях индуцируется противоположно направ­ленное поле за счет поляризационных явлений, которое уменьшает внеш­нее поле и обуславли­вает высокое удельное сопротивление тканей постоянному току. Количественно явление поляризации характери­зуется величиной относи­тельной диэлектрической проницаемости.

где Ео - напряженность внешнего электрического поля в вакууме, Е - напряженность поля в среде, оно равно разности Ео и Еn, где Еn - напряжен­ность поля, создаваемая наведенными диполями при поляризации. Относительную диэлектриче­скую проницае­мость можно определить также соотношением емкостей

где Со - емкость электродов в вакууме, С - емкость электродов в среде.

При приложении к биологическому объекту переменного (как правило, синусоидального) напряжения, в нем также возни­кают электриче­ский ток и поляризационные явления. Электри­чес­кую модель биологического объекта для переменного тока мож­но представить в виде двух сопротивлений:

- активного, определяемого по формуле Ra = (pL)/S

- индуктивное сопротивление равно нулю.

Эти сопротивления в самой ткани могут быть соединены как последовательно так и парал­лельно.


Общее сопротив­ление ткани в цепи переменного тока называется импедансом и обозначается Z. Импеданс определяется по формуле:

- при последовательном соединении

- при параллельном соединении:

Импеданс ткани изменяется с частотой. Это явление называют дисперсией. Величина импе­данса определяется сопротивлением самой ткани, а также зависит от соотношения частоты или перио-

да приложенного напряжения и време­ни релак­сации:

1) если Т/4 > τ (Т/4 — время возрас­тания прило­женного напряжения от 0 до max, τ - время релаксации), прово­димость объекта и диэлектри­ческая проницаемость с частотой не меняется,

Все вещества состоят из молекул, каждая из них является системой зарядов. Поэтому состояние тел существенно зависит от протекающих через них токов и от воздействующего электромагнитного поля. Электрические свойства биологических тел более сложны, чем свойства неживых объектов, ибо организм – это еще и совокупность ионов с переменной концентрацией в пространстве.

Первичный механизм воздействия токов и электромагнитных полей на организм – физический.

Первичное действие постоянного тока на ткани организма. Гальванизация. Электрофорез лекарственных веществ

Человеческий организм в значительной степени состоит из биологических жидкостей, содержащих большое количество ионов, которые участвуют в различных обменных процессах. Под влиянием электрического поля ионы движутся с разной скоростью и скапливаются около клеточных мембран, образуя встречное электрическое поле, называемое поляризационным. Таким образом, первичное действие постоянного тока связано с движением ионов в разных элементах тканей.

Воздействие постоянного тока на организм зависит от силы тока, поэтому весьма существенное значение имеет электрическое сопротивление тканей, прежде всего кожи. Влага, пот значительно уменьшают сопротивление, что даже при небольшом напряжении может вызвать прохождение тока через организм. Непрерывный постоянный ток напряжением 60–80 В используют как лечебный метод физиотерапии (гальванизация). Источником тока служит двухполупериод-ный выпрямитель – аппарат гальванизации. Применяют для этого электроды из листового свинца толщиной 0,3–0,5 мм. Так как продукты электролиза раствора поваренной соли, содержащиеся в тканях, вызывают прижигание, то между электродами и кожей помещают гидрофильные прокладки, смоченные теплой водой.

Постоянный ток используют в лечебной практике также и для введения лекарственных веществ через кожу или слизистые оболочки. Этот метод получил название электрофореза лекарственных веществ. Для этой цели поступают так же, как и при гальванизации, но прокладку активного электрода смачивают раствором соответствующего лекарственного вещества. Лекарство вводят с того полюса, зарядом которого оно обладает: анионы вводят с катода, катионы – с анода.

Гальванизацию и электрофорез лекарственных веществ можно осуществлять с помощью жидкостных электродов в виде ванн, в которые погружают конечности пациента.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Физические принципы против логических структур

Физические принципы против логических структур Много лет я убеждался в том, что математика и физика подчиняются определенной диалектике взаимоотношений. Физика — не просто бессмысленная, произвольная последовательность диаграмм Фейнмана и симметрий, а математика —

5. Процессы. Второй закон термодинамики

5. Процессы. Второй закон термодинамики Второй закон термодинамики, в отличие от первого закона термодинамики, изучает все процессы, которые протекают в природе, и эти процессы можно классифицировать следующим образом.Процессы бывают самопроизвольные,

2. Электродные процессы

2. Электродные процессы Электродные процессы – процессы, связанные с переносом зарядов через границу между электродом и раствором. Катодные процессы связаны с восстановлением молекул или ионов реагирующего вещества, анодные – с окислением реагирующего вещества и с

3. Катодные и анодные процессы в гальванотехнике

3. Катодные и анодные процессы в гальванотехнике Основными процессами в гальванотехнике являются восстановление и снижение.На Kat – восстановление, где Kat – катод. На An – снижение, где An – анод.Электролиз H2O: Катодные реакции Последняя реакция протекает свыделением

4. Стохастические процессы и самоорганизующиеся системы

4. Стохастические процессы и самоорганизующиеся системы Стохастические процессы и самоорганизующиеся системы являются предметом изучения электрохимической синергетики. Такие процессы имеют место во всех областях: переход от ламинарного к турбулентному процессу,

Физические условия изменяют спектры

Физические условия изменяют спектры Мы уже говорили, что оптические спектры зависят от тех условий, в которых находятся атомы. Сильные магнитные поля изменяют оптические спектры атомов; они расщепляют спектральные линии. Таково же действие сильных электрических полей.

22. Физические вопросы гемодинамики

22. Физические вопросы гемодинамики Гемодинамикой называют область биомеханики, в которой исследуется движение крови по сосудистой системе. Физической основой гемодинамики является гидродинамика.Существует связь между ударным объемом крови (объемом крови,

29. Физические процессы в биологических мембранах

29. Физические процессы в биологических мембранах Важной частью клетки являются биологические мембраны. Они отграничивают клетку от окружающей среды, защищают ее от вредных внешних воздействий, управляют обменом веществ между клеткой и ее окружением, способствуют

30. Физические свойства и параметры мембран

30. Физические свойства и параметры мембран Измерение подвижности молекул мембраны и диффузия частиц через мембрану свидетельствует о том, что билипидный слой ведет себя подобно жидкости. Однако мембрана есть упорядоченная структура. Эти два факта предполагают, что

34. Физические основы электрокардиографии

ФИЗИЧЕСКИЕ КОРРЕЛЯТЫ

ФИЗИЧЕСКИЕ КОРРЕЛЯТЫ Основная проблема заключается в том, что противоречия между наукой и религией уходят намного глубже конкретных формулировок. Даже если речь не идет о буквальном толковании каких бы то ни было текстов, проблема не решается. Религия и наука опираются

КАСКАДНЫЕ И КОМБИНИРОВАННЫЕ ПРОЦЕССЫ

КАСКАДНЫЕ И КОМБИНИРОВАННЫЕ ПРОЦЕССЫ 9.32. Во всех статистических методах разделения изотопов для получения вещества, содержащего 90 % или больше U-235 или дейтерия, необходимо много последовательных ступеней разделения. Если поток движется непрерывно от одной ступени к

ВОПРОСЫ, ВОЗНИКАЮЩИЕ ПЕРЕД НАРОДОМ

ВОПРОСЫ, ВОЗНИКАЮЩИЕ ПЕРЕД НАРОДОМ 13.7. Мы имеем дело со взрывчатым веществом, которое далеко еще несовершенно. Однако, грядущие возможности таких взрывчатых веществ ужасны, и их влияние на будущие войны и международные отношения необычайно велико. Перед нами новое

Литературно-физические пародии

Литературно-физические пародии Г. Копылов Пародия на газетную статью о науке Микромир среди лесовТишину хвойного леса, подступающего вплотную к стенам корпуса, разрывает на мелкие кусочки лязг и грохот ускоряемых протонов. Вокруг корпусов раскинулся благоустроенный

4.2. Физические характеристики, строение ядра

4.2. Физические характеристики, строение ядра В последнее десятилетие наши знания о кометах и о процессах, происходящих на них, значительно расширились. Резкому повышению интереса к кометам способствовали подготовка и проведение международного космического

Физические процессы в тканях при воздействии током и электромагнитными полями.
Под действием электромагнитных полей в тканях возникают два вида токов: 1) токи смещения, и 2) токи проводимости.

Токи смещения связаны с поляризацией молекул и их переориентацией, т.е. с вызванной электрическим полем вращательной переориентацией диполей.

Токи проводимости возникают за счет движения в электрическом поле зарядов –в электролитах носителями тока являются ионы.

При низких частотах преобладают токи проводимости. При частотах приблизительно более 500 кГц смещение ионов становится небольшим, соизмеримым с их смещением в результате молекулярно-теплового движения. При более высоких частотах преобладают токи смещения.


Д
ля того, чтобы разобраться в механизме действия переменных электромагнитных полей полезно вернуться к частотной зависимости импеданса тканей. Возникновение областей α-, β- и γ-дисперсии импеданса обусловлено частотной зависимостью диэлектрической проницаемости тканей (рис. 1).

Рисунок 1. Частотная зависимость диэлектрической проницаемости тканей.

Область γ-дисперсии обусловлена переоринтацией в электрическом поле небольших диполей воды. При возрастании частоты увеличивается скорость их переориентации, соответственно возрастают силы трения. При частотах выше 10 9 Гц трение становится столь большим, что диполи воды уже не успевают следовать за полем и при частотах выше 10 12 Гц диполи воды совсем перестают вращаться.

В области β-дисперсии аналогичные процессы наблюдаются для более крупных диполей, например, молекул белков, полярных головок молекул фосфолипидов и др. молекул. На рисунке 2 показаны для сравнения диполи молекул воды и фосфолипида лецитина.


Р
исунок 2. Электрические диполи молекул лецитина и воды.
В молекулах воды электронные облака смещены от атомов водорода в сторону кислорода, в результате у атома кислорода возникает избыточный δ- отрицательный заряд, который меньше заряда электрона. Соответственно у атомов водорода появляется такой же по величине избыточный положительный заряд. В молекулах лецитина при нейтральных рН в ионизированном состоянии находятся остатки фосфорной кислоты и холина. На этих группах возникают отрицательный и положительный заряды, равные заряду электрона. Таким образом, полярная головка молекулы лецитина представляет собой электрический диполь, дипольный момент (p=ql) которого значительно больше, чем у воды из-за больших величин зарядов (q) и расстояний между ними (l). Естественно, что более громоздкому диполю головки лецитина вращаться труднее, чем маленькому диполю воды. Такие громоздкие диполи способны переориентироваться вслед за полем, если частота поля меньше 10 7 -10 8 Гц. Ориентационной поляризацией крупных диполей молекул белков и липидов, входящих в состав биологических мембран, обусловлено возникновение области β-дисперсии.

Область α-дисперсии обусловлена поляризацией еще более крупных структур, к которым могут быть отнесены целые клетки или даже органы. Это наиболее медленные из всех рассмотренных процессов. В результате поляризации клеток на них возникает разность электрических потенциалов, которая при достижении пороговых значений может привести к переходу нервных и мышечных клеток из состояния покоя в состояние возбуждения. Физиологически это проявляется в виде ощутимых или неотпускающих токов. На рисунке 3 представлены зависимости порогов ощутимого и неотпускающего токов от частоты прилагаемого электрического поля.


Ощутимые токи используют для проверки годности электрических батареек для карманных фонариков напряжением 1,5-4,5 В. Если при приложении клемм батарейки к языку возникает характерное пощипывание, то это означает, что возникает ток, превышающий порог ощутимого тока. Электрический ток вызывает раздражение нервных клеток. Как правило, это означает, что батарейка пригодна к использованию. Порогом ощутимого тока называют наименьшую силу тока, раздражающее действие которого ощущает человек. Эта величина зависит от места и площади контакта тела с подведенным напряжением, частоты тока. Для участка предплечье – кисть у мужчин среднее значение порога ощутимого тока при частоте 50 Гц составляет около 1 мА.

При увеличении силы тока можно вызвать такое сгибание сустава, при котором человек не сможет самостоятельно разжать руку и освободиться от проводника – источника напряжения. Минимальную силу этого тока называют порогом неотпускающего тока. Токи меньшей силы являются отпускающими.

Наиболее опасны токи, проходящие через область сердца, т.к. они могут вызвать фибрилляцию сердечных мышц желудочков. Сердце перестает качать кровь, если не произвести дефибрилляцию в течение примерно 10 минут, начинаются необратимые повреждения тканей головного мозга, что в итоге и является причиной гибели человека.

Чем выше частота тока, тем труднее вызвать раздражение клеток и вызвать фибрилляцию. Электроопасными можно считать частоты ниже 10 5 Гц (рис. 2). При более высоких частотах (за пределами α-дисперсии) токи не вызывают раздражения и являются поэтому не опасными. В области β- и γ-дисперсии основным является тепловое воздействие. На рис. 2 видно, что все применяемые в медицине терапевтические и электрохирургические методы основаны на применении электробезопасных высокочастотных токов, вызывающих тепловые эффекты.

Важным параметром является глубина проникновения электромагнитного излучения в ткани δ. Величина δ численно равна глубине проникновения, при которой поле ослабевает в е раз. Особенно существенно учитывать этот параметр при использовании высокочастотных полей.

где g – средняя удельная проводимость биологических тканей (g = 0,6 Ом -1 м -1 ), μ0 = 1,256•10 -6 В с А -1 м -1 , μ = 1 (магнитная проницаемость биологических тканей). Эта формула показывает, что глубина проникновения понижается с увеличением частоты ν. Так, для УВЧ-излучения δ=0,102 м, для дециметровых СВЧ-волн – 0,031 м, для микроволновой СВЧ – 0,013 м. Приведенные величины являются приблизительными, т.к. при их расчете не учитывается диэлектрическая гетерогенность биологических тканей.

Наша искренность в немалой доле вызвана желанием поговорить о себе и выставить свои недостатки в благоприятном свете. Франсуа Ларошфуко
ещё >>

Читайте также: