Принцип радиосвязи кратко физика

Обновлено: 05.07.2024

Хотя радио имеет долгую и интересную историю, на вопрос, кто его открыл, однозначного ответа нет. Например, принципы радиосвязи были практически продемонстрированы в 1893 году Николой Теслой, который представил работу беспроводного радио в Сент-Луисе, США. С другой стороны, изобретателем радио часто называют Гульельмо Маркони - человека, получившего первый патент на беспроводной телеграф (Англия, 1896 год). А уже 12 декабря 1901 года Маркони стал первым человеком, передавшим радиосигналы через Атлантический океан. Наконец, нельзя не вспомнить и нашего Александра Попова, представившего в Петербурге 7 мая 1895 года прибор, который обеспечивал генерацию направленных колебаний «атмосферного электричества« (по сути, являлся радиоприёмником).

Радиосигналы происходят в результате направленного перемещения радиоволн. Подобно волнам на пруду, радиоволна представляет собой серию повторяющихся пиков и впадин. Радиоволна генерируется передатчиком, а затем обнаруживается приёмником.

Основные разновидности радиосвязи и их применение

Высокочастотные колебания - составляющие любого радиосигнала, представляют собой направленное наложение двух колеблющихся в пространстве под углом 900 полей, магнитного и электрического. Энергия, которую вырабатывают эти поля, увеличиваются по мере повышения синхронности таких колебаний и помре увеличения площади, на которую распространяется действие этих полей. Соответственно, сила прохождения сигнала, при росте расстояния до его источника падает.

Для передачи радиосигнала применяются антенны. Конструкция любой антенны предусматривает концентрацию радиоволн, которые содержатся в луче, с увеличением степени такой концентрации КПД антенного устройства увеличивается. Конструктивные особенности передатчика и антенны определяют разновидности радиосвязи.

Радиорелейная связь

Функции радиорелейной линии заключаются в приёме и ретрансляции сигналов, которые принимаются либо от другой радиостанции, либо от провода, оптоволоконного, микроволнового, коаксиального кабеля или другого канала интегрированной наземной линии. Радиорелейная связь – важная, хотя уже и постепенно устаревающая технология системы радиосвязи.

Большинство станций радиорелейной связи представляют собой наземную систему связи типа "точка-точка". Типовой представитель - система связи с релейным микроволновым излучением или система спутниковой связи.

Расположение радиорелейных станций и диаграммы направленности антенн должны быть установлены так, чтобы обеспечивать минимальные помехи для наземных спутниковых станций. Аналоговые и цифровые схемы основной полосы частот радиорелейной связи аналогичны спутниковым системам, однако процесс обмена и передачи сигналов происходит в атмосфере. Радиорелейные линии могут быть частью соединения между земной станцией и центром коммутации сигнала.

виды радиосвязи

Передача сигналов через спутник

  1. Научные данные (например, снимки, сделанные спутником);
  2. Текущее состояние систем спутника;
  3. Данные о местонахождении спутника в космическом пространстве.

Спутниковая передача сигналов происходит по пути их распространения в прямой видимости от наземной станции к спутнику связи (восходящая линия связи) и обратно к земной станции (нисходящая линия связи). Спутник обычно размещается на геостационарной орбите, на высоте около 18…20 тыс. км над Землей, так что он кажется неподвижным из любой точки, откуда виден. Оттуда спутник действует как ретранслятор в небе. Наземная станция включает в себя антенны, здания и электронику, необходимые для передачи, приёма и последующей обработки сигналов.

Используемый частотный спектр аналогичен тому, который применяется для наземного микроволнового радио. Антенна наземной станции обычно является остронаправленной, в то время как спутниковая антенна имеет увеличенную ширину луча, чтобы покрывать большую часть земной поверхности и иметь возможность одновременно связываться со многими удаленными друг от друга земными станциями.

Сотовая связь

виды радиосвязи

Сотовая связь - форма коммуникационной технологии, позволяющая использовать мобильные телефоны. Мобильный телефон является двунаправленным радиоприёмником, обеспечивающим одновременную передачу и прием сигналов. Сотовая связь основана на географическом разделении зоны покрытия связи на соты и внутри сот. Каждой ячейке выделяется определенное количество частот (или каналов), что позволяет большому количеству абонентов вести разговоры одновременно. Таким образом, покрытие сотовой связи происходит путём пространственного разделения на ячейки с базовыми станциями.

Общим элементом всех технологий сотовой связи является использование определенных радиочастот, а также повторное использование частот. Это позволяет предоставлять услугу большому количеству абонентов при уменьшении количества каналов (ширины полосы). Можно создавать широкие сети связи за счет полной интеграции передовых возможностей мобильного телефона.

Как осуществляется радиосвязь

Радиосвязь работает путём передачи и приема электромагнитных волн. Для распространения и перехвата радиоволн используются передатчик и приёмник. Передатчик излучает электромагнитное поле наружу через антенну; затем приемник улавливает это поле и преобразует его в звуки/изображения.

Генерация и приём радиоволн

Радиоволна действует как носитель информационных сигналов; информация кодируется непосредственно на волне – в виде звуков (голос и музыка) и/или изображений (телевидение). Звуки и изображения преобразуются в электрические сигналы (микрофоном или видеокамерой), усиливаются и используются для формирования несущей волны. Усиленный сигнал подаётся на антенну, которая преобразует электрические сигналы в электромагнитные волны для излучения в космос.

как работает радио

Такие волны излучаются со скоростью света и передаются не только по линии прямой видимости, но и за счет отклонения от ионосферы. Приёмные антенны перехватывают часть этого излучения, возвращая ему форму электрические сигналы, после чего подают сигнал на приёмник.

Кодирование информации в радиоволне

На этом принципе основаны все системы беспроводной связи - от пульта дистанционного управления телевизором до контроля положения спутниковой антенны. Отметим, что в современном мире используются все более сложные технологии для кодирования электромагнитных сигналов, улучшения их качества, увеличения объема информации или обеспечения безопасности передачи. Для этого используются устройства Wi-Fi или Bluetooth.

Телеграфирование

Электрический телеграф в ХХ веке был распространённой формой цифровой передачи сигналов в основной полосе частот с использованием металлических носителей (открытый провод). Но, по сегодняшним меркам, скорость передачи информации при телеграфировании является низкой.

Радиотелефонная связь

Является дальнейшим развитием телеграфирования, и реализуется путём передачи речи по витым парам проводов. Из-за возможностей технических средств полоса пропускания речевых сигналов ограничена частотой 4 кГц, эта полоса сохраняется и до настоящего времени.

виды радиосвязи

Сейчас практически все магистральные системы передачи используют цифровую передачу на основе оптического волокна. Однако передача данных в голосовой полосе, которая представляет собой передачу потока цифровых данных через канал, предназначенный для одного аналогового голосового канала, по-прежнему используется в сети доступа - той части сети, которая находится между помещением абонента и обслуживающим центральным офисом.

Голосовые модемы дополняются и вытесняются в сети доступа технологией цифровой абонентской линии, которая повышает скорость обмена информацией при одновременном снижении стоимости услуг. Кроме того, цифровые абонентские линии имеют постоянное подключение к данным.

Модуляция и детектирование

Виды радиосвязи зависят от типа модуляции сигнала. В радиоустройствах с амплитудной модуляцией (АМ) сила амплитуда сигнала изменяется в пределах от минимума до максимума производимых частот. В радио с частотной модуляцией сигнала (FM) изменяется скорость прохождения сигнала. Когда вы настраиваетесь на радио, номер набора показывает частоту в МГц, на которой транслируется сигнал.

FM-модуляция распространена в коммерческих, а АМ-модуляция – в производственных применениях.

Обратным модуляции процессом является детектирование, при котором из общего высокочастотного сигнала выделяется та его часть, которая содержит информационную составляющую. Первые радиоприёмники были именно детекторными.

Телевидение — передача и приём изображения, речи и музыки с помощью электромагнитных волн радиодиапазона.

Задающий генератор электрических колебаний высокой частоты вырабатывает гармонические колебания высокой частоты ВЧ (несущая частота более \(100\) \(000\) Гц ).

Модулирующее устройство изменяет (модулирует) по амплитуде высокочастотные колебания с помощью электрических колебаний низкой частоты НЧ.

Приёмная антенна принимает электромагнитные волны. Электромагнитная волна, достигшая приёмной антенны, индуцирует в ней переменный ток той же частоты, на которой работает передатчик.

Динамик — прибор для преобразования электрических сигналов в механические волны звукового диапазона и передачи их в окружающее пространство.

Модулятор – аппарат, преобразующий параметры несущего сигнала в соответствии с изменениями параметров передаваемого (информационного) сигнала.

С помощью электромагнитных волн можно передавать речь, музыку другие звуки и сигналы на расстояние.

Радиосвязь – передача информации с помощью электромагнитных волн.

Важным принципом радиосвязи является использование модуляции (амплитудной или частотной) под действием сигнала, несущего информацию, например, звукового.

Так можно изобразить схему радиопередатчика:

блок-схема передатчика

Электромагнитные колебания звуковой частоты не способны излучаться антенной. Поэтому для осуществления радиотелефонной связи необходимо использовать высокочастотные колебания.

высокочастотные колебания

Незатухающие гармонические колебания высокой частоты вырабатывает генератор. Для передачи звука эти высокочастотные колебания изменяют, или как говорят, модулируют с помощью электрических колебаний низкой (звуковой) частоты.

модулируемые колебания

Так выглядит схема радиоприемника:

блок-схема приемника

В приемнике из модулированных колебаний высокой частоты выделяются низкочастотные колебания. Этот процесс называется детектированием (демодуляцией).

низкочастотные колебания

Полученные в результате детектирования колебания соответствуют тем звуковым колебаниям, которые воздействовали на микрофон передатчика. После усиления колебания низкой частоты могут быть превращены в звук.

Радиоприемник имеет колебательный контур, настроенный на частоту радиостанции, поскольку радиоприем связан с явлением резонанса.

Простейший детекторный приемник состоит из контурной катушки L, конденсатора настройки переменной емкости С, полупроводникового диода D, конденсатора С1 (фильтр), телефона.

простейший радиоприемник

Приемник работает исключительно за счет энергии электромагнитных волн. Поэтому высокие требования предъявляются к антенне А и заземлению приемника. Так как выходная мощность приемника невелика, то прием возможен только на головной телефон.

Изобретение радио А. С. Поповым

Впервые радиосвязь была установлена в России А. С. Поповым, создавшим аппаратуру, принимающую и передающую сигналы.

Опыты Герца, описание которых появилось в 1888 г., побудили искать пути усовершенствования излучателя и приемника электромагнитных волн.

В России одним из первых изучением электромагнитных волн занялся преподаватель офицерских курсов в Кронштадте А. С. Попов.


Сила тока в катушке электромагнитного реле возрастает, и оно включает звонок.
Молоточек звонка, ударяя по когереру, встряхивает его и возвращает в исходное состояние.
С последним встряхиванием когерера аппарат готов к приему новой волны.

Чтобы повысить чувствительность аппарата, А. С. Попов один из выводов когерера заземлил, а другой присоединил к высоко поднятому куску проволоки, создав тем самым первую в мире приемную антенну для беспроволочной связи.
Заземление превращает проводящую поверхность земли в часть открытого колебательного контура, что увеличивает дальность приема.

Основные принципы действия современных радиоприеников те же, что и в приборе Попова.
Современный приемник также имеет антенну, в которой приходящая волна вызывает очень слабые электромагнитные колебания.
Как и в приемнике А. С. Попова, энергия этих колебаний не используется непосредственно для приема.
Слабые сигналы лишь управляют источниками энергии, питающими последующие цепи.
Сейчас такое управление осуществляется с помощью полупроводниковых приборов.

7 мая 1895 г. на заседании Русского физико-химического общества в Петербурге А. С. Попов продемонстрировал действие своего прибора, явившегося, по сути дела, первым в мире радиоприемником.
День 7 мая стал днем рождения радио.

А. С. Попов продолжал настойчиво совершенствовать приемную и передающую аппаратуру.
Он ставил своей непосредственной задачей создать прибор для передачи сигналов на большие расстояния.

Вначале радиосвязь была установлена на расстоянии 250 м, но вскоре Попов добился дальности связи более 600 м.
Затем на маневрах Черноморского флота в 1899 г. ученый установил радиосвязь на расстоянии свыше 20 км, а в 1901 г. дальность радиосвязи была уже 150 км.
В новой конструкции передатчика искровой промежуток был размещен в колебательном контуре, индуктивно связанном с передающей антенной и настроенном с ней в резонанс.
Изменились и способы регистрации сигнала: параллельно звонку был подключен телеграфный аппарат, позволивший вести автоматическую запись сигналов.
В 1899 г. была обнаружена возможность приема сигналов с помощью телефона.
В начале 1900 г. радиосвязь успешно использовали в ходе спасательных работ в Финском заливе.
При участии А. С. Попова радиосвязь начали применять на флоте и в армии России.

За границей усовершенствование подобных приборов проводилось фирмой, организованной итальянским инженером Г. Маркони.
Опыты, поставленные в широком масштабе, позволили осуществить радиотелеграфную передачу через Атлантический океан.

Принципы радиосвязи

Переменный электрический ток высокой частоты, созданный в передающей антенне, вызывает в окружающем пространстве быстроменяющееся электромагнитное поле, которое распространяется в виде электромагнитной волны.
Достигая приемной антенны, электромагнитная волна вызывает в ней переменный ток той же частоты, на которой работает передатчик.

Радиотелефонная связь

При радиотелефонной связи колебания давления воздуха в звуковой волне превращаются с помощью микрофона в электрические колебания той же формы.
Казалось бы, если эти колебания усилить и подать в антенну, то можно будет передавать на расстояние речь и музыку с помощью электромагнитных волн.

Однако в действительности такой способ передачи неосуществим.
Дело в том, что частота звуковых колебаний мала, а электромагнитные волны низкой (звуковой) частоты имеют малую интенсивность.

Модуляция

Для осуществления радиотелефонной связи необходимо использовать высокочастотные колебания, интенсивно излучаемые антенной.
Незатухающие гармонические колебания высокой частоты вырабатывает генератор, например генератор на транзисторе.

Для передачи звука эти высокочастотные колебания изменяют, или, как говорят, модулируют, с помощью электрических колебаний низкой (звуковой) частоты.
Можно, например, изменять со звуковой частотой амплитуду высокочастотных колебаний.
Этот способ называют амплитудной модуляцией.

На рисунке приведены три графика:
а) график колебаний высокой частоты, которую называют несущей частотой;
б) график колебаний звуковой частоты, т. е. модулирующих колебаний;
в) график модулированных по амплитуде колебаний.


Без модуляции мы в лучшем случае можем контролировать лишь, работает станция или молчит.
Без модуляции нет ни телефонной, ни телевизионной передачи.

Модуляция — медленный процесс.
Это такие изменения в высокочастотной колебательной системе, при которых она успевает совершить очень много высокочастотных колебаний, прежде чем их амплитуда изменится заметным образом.

Детектирование

Основные принципы радиосвязи представлены в виде блок-схемы:


В приемнике из модулированных колебаний высокой частоты выделяются низкочастотные колебания.
Такой процесс преобразования сигнала называют детектированием.

Полученный в результате детектирования сигнал соответствует тому звуковому сигналу, который действовал на микрофон передатчика.
После усиления колебания низкой частоты могут быть превращены в звук.

Электромагнитные волны. Физика, учебник для 11 класса - Класс!ная физика

Радиосвязь – передача и прием информации с помощью радиоволн, распространяющихся в пространстве без проводов.

Источник – переменный ток частоты от 2 · 10 4 Гц до 10 9 Гц ( λ =0,3 м – 1,5 · 10 4 м)

Вида радиосвязи (отличаются типом кодирования передаваемого сигнала):


радиотелеграфная связь ( осуществляется путем передачи сочетания точек и тире, кодирующего букву алфавита в азбуке Морзе) ; радиотелефонная связь ( передача подобной информации только для приема конкретным абонентом. При радиотелефонной связи колебания давления воздуха в звуковой волне превращаются с помощью микрофона в электрические

колебания той же формы ); радиовещание ( передача в эфир речи, музыки, звуковых


эффектов с помощью электромагнитных волн) ; телевидение ( В основе телевизионной передачи изображений лежат три физических процесса: Преобразование оптического изображения в электрические сигналы; Передача электрических сигналов по каналам связи; Преобразование переданных электрических сигналов в оптическое изображение) ; ЦВЕТНОЕ ТЕЛЕВИДЕНИЕ позволяет передавать и воспроизводить цветные изображения подвижных и неподвижных объектов. Для этого в телевизионной передающей камере цветного телевидения изображение разделяется на 3 одноцветных изображения. Передача каждого из этих изображений осуществляется по тому же принципу, что и в черно-белом телевидении. В результате на экране кинескопа цветного телевизора воспроизводятся одновременно 3 одноцветных изображения, дающих в совокупности цветное. Первая система цветного телевидения механического типа была предложена в 1907-08 русским инженером И. А. Адамианом .

радиолокация ( обнаружение и определение точного местоположения об ъектов с помощью радиоволн) .

Отличаются типом кодирования передаваемого сигнала.

Переменный электрический ток высокой частоты, созданный в передающей антенне, вызывает в окружающем пространстве быстро меняющееся электромагнитное поле, которое распространяется в виде электромагнитной волны. Достигая приемной антенны, электромагнитная волна вызывает в ней переменный ток той же частоты, на которой работает передатчик.

Частота звуковых колебаний мала, а электромагнитные волны низкой (звуковой) частоты имеют малую интенсивность.

Вывод : Принцип радиосвязи заключается в том, что электрический ток высокой частоты , созданный в передающей антенне, вызывает в окружающем пространстве быстроменяющееся электромагнитное поле , которое распространяется в виде электромагнитной волны. Трудность передачи звукового сигнала состоит в том, что для радиосвязи необходимы колебания высокой частоты , а колебания звукового диапазона — низкочастотные колебания , для излучения которых невозможно построить эффективные антенны.




Звук - Микрофон (УНЧ) - Модулятор- (У ВЧ) - Передающая антенна ---- ЭФИР --- Приемная антенна (УВЧ) - Детектор (У НЧ)- Динамик

З адающий генератор вырабатывает гармонические колебания высокой

частоты (несущая частота более 100 тыс.Гц).

Микрофон преобразует механические звуковые колебания в электрические

Модулятор изменяет по частоте или амплитуде высокочастотные колебания с

помощью электрических колебаний низкой частоты.


Усилители высокой и низкой частоты усиливают по мощность высокочастотные

и звуковые (низкочастотные) колебания.

Передающая антенна излуч ает м одулированные электромагнитные волны.

Читайте также: